1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
//! Multi-producer, single-consumer FIFO queue communication primitives.
//!
//! This module provides message-based communication over channels, concretely
//! defined among three types:
//!
//! * [`Sender`]
//! * [`SyncSender`]
//! * [`Receiver`]
//!
//! A [`Sender`] or [`SyncSender`] is used to send data to a [`Receiver`]. Both
//! senders are clone-able (multi-producer) such that many threads can send
//! simultaneously to one receiver (single-consumer).
//!
//! These channels come in two flavors:
//!
//! 1. An asynchronous, infinitely buffered channel. The [`channel`] function
//!    will return a `(Sender, Receiver)` tuple where all sends will be
//!    **asynchronous** (they never block). The channel conceptually has an
//!    infinite buffer.
//!
//! 2. A synchronous, bounded channel. The [`sync_channel`] function will
//!    return a `(SyncSender, Receiver)` tuple where the storage for pending
//!    messages is a pre-allocated buffer of a fixed size. All sends will be
//!    **synchronous** by blocking until there is buffer space available. Note
//!    that a bound of 0 is allowed, causing the channel to become a "rendezvous"
//!    channel where each sender atomically hands off a message to a receiver.
//!
//! [`send`]: Sender::send
//!
//! ## Disconnection
//!
//! The send and receive operations on channels will all return a [`Result`]
//! indicating whether the operation succeeded or not. An unsuccessful operation
//! is normally indicative of the other half of a channel having "hung up" by
//! being dropped in its corresponding thread.
//!
//! Once half of a channel has been deallocated, most operations can no longer
//! continue to make progress, so [`Err`] will be returned. Many applications
//! will continue to [`unwrap`] the results returned from this module,
//! instigating a propagation of failure among threads if one unexpectedly dies.
//!
//! [`unwrap`]: Result::unwrap
//!
//! # Examples
//!
//! Simple usage:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::channel;
//!
//! // Create a simple streaming channel
//! let (tx, rx) = channel();
//! thread::spawn(move|| {
//!     tx.send(10).unwrap();
//! });
//! assert_eq!(rx.recv().unwrap(), 10);
//! ```
//!
//! Shared usage:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::channel;
//!
//! // Create a shared channel that can be sent along from many threads
//! // where tx is the sending half (tx for transmission), and rx is the receiving
//! // half (rx for receiving).
//! let (tx, rx) = channel();
//! for i in 0..10 {
//!     let tx = tx.clone();
//!     thread::spawn(move|| {
//!         tx.send(i).unwrap();
//!     });
//! }
//!
//! for _ in 0..10 {
//!     let j = rx.recv().unwrap();
//!     assert!(0 <= j && j < 10);
//! }
//! ```
//!
//! Propagating panics:
//!
//! ```
//! use std::sync::mpsc::channel;
//!
//! // The call to recv() will return an error because the channel has already
//! // hung up (or been deallocated)
//! let (tx, rx) = channel::<i32>();
//! drop(tx);
//! assert!(rx.recv().is_err());
//! ```
//!
//! Synchronous channels:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::sync_channel;
//!
//! let (tx, rx) = sync_channel::<i32>(0);
//! thread::spawn(move|| {
//!     // This will wait for the parent thread to start receiving
//!     tx.send(53).unwrap();
//! });
//! rx.recv().unwrap();
//! ```
//!
//! Unbounded receive loop:
//!
//! ```
//! use std::sync::mpsc::sync_channel;
//! use std::thread;
//!
//! let (tx, rx) = sync_channel(3);
//!
//! for _ in 0..3 {
//!     // It would be the same without thread and clone here
//!     // since there will still be one `tx` left.
//!     let tx = tx.clone();
//!     // cloned tx dropped within thread
//!     thread::spawn(move || tx.send("ok").unwrap());
//! }
//!
//! // Drop the last sender to stop `rx` waiting for message.
//! // The program will not complete if we comment this out.
//! // **All** `tx` needs to be dropped for `rx` to have `Err`.
//! drop(tx);
//!
//! // Unbounded receiver waiting for all senders to complete.
//! while let Ok(msg) = rx.recv() {
//!     println!("{msg}");
//! }
//!
//! println!("completed");
//! ```

#![stable(feature = "rust1", since = "1.0.0")]

#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;

#[cfg(all(test, not(target_os = "emscripten")))]
mod sync_tests;

// A description of how Rust's channel implementation works
//
// Channels are supposed to be the basic building block for all other
// concurrent primitives that are used in Rust. As a result, the channel type
// needs to be highly optimized, flexible, and broad enough for use everywhere.
//
// The choice of implementation of all channels is to be built on lock-free data
// structures. The channels themselves are then consequently also lock-free data
// structures. As always with lock-free code, this is a very "here be dragons"
// territory, especially because I'm unaware of any academic papers that have
// gone into great length about channels of these flavors.
//
// ## Flavors of channels
//
// From the perspective of a consumer of this library, there is only one flavor
// of channel. This channel can be used as a stream and cloned to allow multiple
// senders. Under the hood, however, there are actually three flavors of
// channels in play.
//
// * Flavor::Oneshots - these channels are highly optimized for the one-send use
//                      case. They contain as few atomics as possible and
//                      involve one and exactly one allocation.
// * Streams - these channels are optimized for the non-shared use case. They
//             use a different concurrent queue that is more tailored for this
//             use case. The initial allocation of this flavor of channel is not
//             optimized.
// * Shared - this is the most general form of channel that this module offers,
//            a channel with multiple senders. This type is as optimized as it
//            can be, but the previous two types mentioned are much faster for
//            their use-cases.
//
// ## Concurrent queues
//
// The basic idea of Rust's Sender/Receiver types is that send() never blocks,
// but recv() obviously blocks. This means that under the hood there must be
// some shared and concurrent queue holding all of the actual data.
//
// With two flavors of channels, two flavors of queues are also used. We have
// chosen to use queues from a well-known author that are abbreviated as SPSC
// and MPSC (single producer, single consumer and multiple producer, single
// consumer). SPSC queues are used for streams while MPSC queues are used for
// shared channels.
//
// ### SPSC optimizations
//
// The SPSC queue found online is essentially a linked list of nodes where one
// half of the nodes are the "queue of data" and the other half of nodes are a
// cache of unused nodes. The unused nodes are used such that an allocation is
// not required on every push() and a free doesn't need to happen on every
// pop().
//
// As found online, however, the cache of nodes is of an infinite size. This
// means that if a channel at one point in its life had 50k items in the queue,
// then the queue will always have the capacity for 50k items. I believed that
// this was an unnecessary limitation of the implementation, so I have altered
// the queue to optionally have a bound on the cache size.
//
// By default, streams will have an unbounded SPSC queue with a small-ish cache
// size. The hope is that the cache is still large enough to have very fast
// send() operations while not too large such that millions of channels can
// coexist at once.
//
// ### MPSC optimizations
//
// Right now the MPSC queue has not been optimized. Like the SPSC queue, it uses
// a linked list under the hood to earn its unboundedness, but I have not put
// forth much effort into having a cache of nodes similar to the SPSC queue.
//
// For now, I believe that this is "ok" because shared channels are not the most
// common type, but soon we may wish to revisit this queue choice and determine
// another candidate for backend storage of shared channels.
//
// ## Overview of the Implementation
//
// Now that there's a little background on the concurrent queues used, it's
// worth going into much more detail about the channels themselves. The basic
// pseudocode for a send/recv are:
//
//
//      send(t)                             recv()
//        queue.push(t)                       return if queue.pop()
//        if increment() == -1                deschedule {
//          wakeup()                            if decrement() > 0
//                                                cancel_deschedule()
//                                            }
//                                            queue.pop()
//
// As mentioned before, there are no locks in this implementation, only atomic
// instructions are used.
//
// ### The internal atomic counter
//
// Every channel has a shared counter with each half to keep track of the size
// of the queue. This counter is used to abort descheduling by the receiver and
// to know when to wake up on the sending side.
//
// As seen in the pseudocode, senders will increment this count and receivers
// will decrement the count. The theory behind this is that if a sender sees a
// -1 count, it will wake up the receiver, and if the receiver sees a 1+ count,
// then it doesn't need to block.
//
// The recv() method has a beginning call to pop(), and if successful, it needs
// to decrement the count. It is a crucial implementation detail that this
// decrement does *not* happen to the shared counter. If this were the case,
// then it would be possible for the counter to be very negative when there were
// no receivers waiting, in which case the senders would have to determine when
// it was actually appropriate to wake up a receiver.
//
// Instead, the "steal count" is kept track of separately (not atomically
// because it's only used by receivers), and then the decrement() call when
// descheduling will lump in all of the recent steals into one large decrement.
//
// The implication of this is that if a sender sees a -1 count, then there's
// guaranteed to be a waiter waiting!
//
// ## Native Implementation
//
// A major goal of these channels is to work seamlessly on and off the runtime.
// All of the previous race conditions have been worded in terms of
// scheduler-isms (which is obviously not available without the runtime).
//
// For now, native usage of channels (off the runtime) will fall back onto
// mutexes/cond vars for descheduling/atomic decisions. The no-contention path
// is still entirely lock-free, the "deschedule" blocks above are surrounded by
// a mutex and the "wakeup" blocks involve grabbing a mutex and signaling on a
// condition variable.
//
// ## Select
//
// Being able to support selection over channels has greatly influenced this
// design, and not only does selection need to work inside the runtime, but also
// outside the runtime.
//
// The implementation is fairly straightforward. The goal of select() is not to
// return some data, but only to return which channel can receive data without
// blocking. The implementation is essentially the entire blocking procedure
// followed by an increment as soon as its woken up. The cancellation procedure
// involves an increment and swapping out of to_wake to acquire ownership of the
// thread to unblock.
//
// Sadly this current implementation requires multiple allocations, so I have
// seen the throughput of select() be much worse than it should be. I do not
// believe that there is anything fundamental that needs to change about these
// channels, however, in order to support a more efficient select().
//
// FIXME: Select is now removed, so these factors are ready to be cleaned up!
//
// # Conclusion
//
// And now that you've seen all the races that I found and attempted to fix,
// here's the code for you to find some more!

use crate::cell::UnsafeCell;
use crate::error;
use crate::fmt;
use crate::mem;
use crate::sync::Arc;
use crate::time::{Duration, Instant};

mod blocking;
mod mpsc_queue;
mod oneshot;
mod shared;
mod spsc_queue;
mod stream;
mod sync;

mod cache_aligned;

/// The receiving half of Rust's [`channel`] (or [`sync_channel`]) type.
/// This half can only be owned by one thread.
///
/// Messages sent to the channel can be retrieved using [`recv`].
///
/// [`recv`]: Receiver::recv
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
///     send.send("Hello world!").unwrap();
///     thread::sleep(Duration::from_secs(2)); // block for two seconds
///     send.send("Delayed for 2 seconds").unwrap();
/// });
///
/// println!("{}", recv.recv().unwrap()); // Received immediately
/// println!("Waiting...");
/// println!("{}", recv.recv().unwrap()); // Received after 2 seconds
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Receiver")]
pub struct Receiver<T> {
    inner: UnsafeCell<Flavor<T>>,
}

// The receiver port can be sent from place to place, so long as it
// is not used to receive non-sendable things.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for Receiver<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Receiver<T> {}

/// An iterator over messages on a [`Receiver`], created by [`iter`].
///
/// This iterator will block whenever [`next`] is called,
/// waiting for a new message, and [`None`] will be returned
/// when the corresponding channel has hung up.
///
/// [`iter`]: Receiver::iter
/// [`next`]: Iterator::next
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
///     send.send(1u8).unwrap();
///     send.send(2u8).unwrap();
///     send.send(3u8).unwrap();
/// });
///
/// for x in recv.iter() {
///     println!("Got: {x}");
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Iter<'a, T: 'a> {
    rx: &'a Receiver<T>,
}

/// An iterator that attempts to yield all pending values for a [`Receiver`],
/// created by [`try_iter`].
///
/// [`None`] will be returned when there are no pending values remaining or
/// if the corresponding channel has hung up.
///
/// This iterator will never block the caller in order to wait for data to
/// become available. Instead, it will return [`None`].
///
/// [`try_iter`]: Receiver::try_iter
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (sender, receiver) = channel();
///
/// // Nothing is in the buffer yet
/// assert!(receiver.try_iter().next().is_none());
/// println!("Nothing in the buffer...");
///
/// thread::spawn(move || {
///     sender.send(1).unwrap();
///     sender.send(2).unwrap();
///     sender.send(3).unwrap();
/// });
///
/// println!("Going to sleep...");
/// thread::sleep(Duration::from_secs(2)); // block for two seconds
///
/// for x in receiver.try_iter() {
///     println!("Got: {x}");
/// }
/// ```
#[stable(feature = "receiver_try_iter", since = "1.15.0")]
#[derive(Debug)]
pub struct TryIter<'a, T: 'a> {
    rx: &'a Receiver<T>,
}

/// An owning iterator over messages on a [`Receiver`],
/// created by [`into_iter`].
///
/// This iterator will block whenever [`next`]
/// is called, waiting for a new message, and [`None`] will be
/// returned if the corresponding channel has hung up.
///
/// [`into_iter`]: Receiver::into_iter
/// [`next`]: Iterator::next
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
///     send.send(1u8).unwrap();
///     send.send(2u8).unwrap();
///     send.send(3u8).unwrap();
/// });
///
/// for x in recv.into_iter() {
///     println!("Got: {x}");
/// }
/// ```
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
#[derive(Debug)]
pub struct IntoIter<T> {
    rx: Receiver<T>,
}

/// The sending-half of Rust's asynchronous [`channel`] type. This half can only be
/// owned by one thread, but it can be cloned to send to other threads.
///
/// Messages can be sent through this channel with [`send`].
///
/// Note: all senders (the original and the clones) need to be dropped for the receiver
/// to stop blocking to receive messages with [`Receiver::recv`].
///
/// [`send`]: Sender::send
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (sender, receiver) = channel();
/// let sender2 = sender.clone();
///
/// // First thread owns sender
/// thread::spawn(move || {
///     sender.send(1).unwrap();
/// });
///
/// // Second thread owns sender2
/// thread::spawn(move || {
///     sender2.send(2).unwrap();
/// });
///
/// let msg = receiver.recv().unwrap();
/// let msg2 = receiver.recv().unwrap();
///
/// assert_eq!(3, msg + msg2);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Sender<T> {
    inner: UnsafeCell<Flavor<T>>,
}

// The send port can be sent from place to place, so long as it
// is not used to send non-sendable things.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for Sender<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Sender<T> {}

/// The sending-half of Rust's synchronous [`sync_channel`] type.
///
/// Messages can be sent through this channel with [`send`] or [`try_send`].
///
/// [`send`] will block if there is no space in the internal buffer.
///
/// [`send`]: SyncSender::send
/// [`try_send`]: SyncSender::try_send
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// // Create a sync_channel with buffer size 2
/// let (sync_sender, receiver) = sync_channel(2);
/// let sync_sender2 = sync_sender.clone();
///
/// // First thread owns sync_sender
/// thread::spawn(move || {
///     sync_sender.send(1).unwrap();
///     sync_sender.send(2).unwrap();
/// });
///
/// // Second thread owns sync_sender2
/// thread::spawn(move || {
///     sync_sender2.send(3).unwrap();
///     // thread will now block since the buffer is full
///     println!("Thread unblocked!");
/// });
///
/// let mut msg;
///
/// msg = receiver.recv().unwrap();
/// println!("message {msg} received");
///
/// // "Thread unblocked!" will be printed now
///
/// msg = receiver.recv().unwrap();
/// println!("message {msg} received");
///
/// msg = receiver.recv().unwrap();
///
/// println!("message {msg} received");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct SyncSender<T> {
    inner: Arc<sync::Packet<T>>,
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for SyncSender<T> {}

/// An error returned from the [`Sender::send`] or [`SyncSender::send`]
/// function on **channel**s.
///
/// A **send** operation can only fail if the receiving end of a channel is
/// disconnected, implying that the data could never be received. The error
/// contains the data being sent as a payload so it can be recovered.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(PartialEq, Eq, Clone, Copy)]
pub struct SendError<T>(#[stable(feature = "rust1", since = "1.0.0")] pub T);

/// An error returned from the [`recv`] function on a [`Receiver`].
///
/// The [`recv`] operation can only fail if the sending half of a
/// [`channel`] (or [`sync_channel`]) is disconnected, implying that no further
/// messages will ever be received.
///
/// [`recv`]: Receiver::recv
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RecvError;

/// This enumeration is the list of the possible reasons that [`try_recv`] could
/// not return data when called. This can occur with both a [`channel`] and
/// a [`sync_channel`].
///
/// [`try_recv`]: Receiver::try_recv
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum TryRecvError {
    /// This **channel** is currently empty, but the **Sender**(s) have not yet
    /// disconnected, so data may yet become available.
    #[stable(feature = "rust1", since = "1.0.0")]
    Empty,

    /// The **channel**'s sending half has become disconnected, and there will
    /// never be any more data received on it.
    #[stable(feature = "rust1", since = "1.0.0")]
    Disconnected,
}

/// This enumeration is the list of possible errors that made [`recv_timeout`]
/// unable to return data when called. This can occur with both a [`channel`] and
/// a [`sync_channel`].
///
/// [`recv_timeout`]: Receiver::recv_timeout
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
pub enum RecvTimeoutError {
    /// This **channel** is currently empty, but the **Sender**(s) have not yet
    /// disconnected, so data may yet become available.
    #[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
    Timeout,
    /// The **channel**'s sending half has become disconnected, and there will
    /// never be any more data received on it.
    #[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
    Disconnected,
}

/// This enumeration is the list of the possible error outcomes for the
/// [`try_send`] method.
///
/// [`try_send`]: SyncSender::try_send
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum TrySendError<T> {
    /// The data could not be sent on the [`sync_channel`] because it would require that
    /// the callee block to send the data.
    ///
    /// If this is a buffered channel, then the buffer is full at this time. If
    /// this is not a buffered channel, then there is no [`Receiver`] available to
    /// acquire the data.
    #[stable(feature = "rust1", since = "1.0.0")]
    Full(#[stable(feature = "rust1", since = "1.0.0")] T),

    /// This [`sync_channel`]'s receiving half has disconnected, so the data could not be
    /// sent. The data is returned back to the callee in this case.
    #[stable(feature = "rust1", since = "1.0.0")]
    Disconnected(#[stable(feature = "rust1", since = "1.0.0")] T),
}

enum Flavor<T> {
    Oneshot(Arc<oneshot::Packet<T>>),
    Stream(Arc<stream::Packet<T>>),
    Shared(Arc<shared::Packet<T>>),
    Sync(Arc<sync::Packet<T>>),
}

#[doc(hidden)]
trait UnsafeFlavor<T> {
    fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>>;
    unsafe fn inner_mut(&self) -> &mut Flavor<T> {
        &mut *self.inner_unsafe().get()
    }
    unsafe fn inner(&self) -> &Flavor<T> {
        &*self.inner_unsafe().get()
    }
}
impl<T> UnsafeFlavor<T> for Sender<T> {
    fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>> {
        &self.inner
    }
}
impl<T> UnsafeFlavor<T> for Receiver<T> {
    fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>> {
        &self.inner
    }
}

/// Creates a new asynchronous channel, returning the sender/receiver halves.
/// All data sent on the [`Sender`] will become available on the [`Receiver`] in
/// the same order as it was sent, and no [`send`] will block the calling thread
/// (this channel has an "infinite buffer", unlike [`sync_channel`], which will
/// block after its buffer limit is reached). [`recv`] will block until a message
/// is available while there is at least one [`Sender`] alive (including clones).
///
/// The [`Sender`] can be cloned to [`send`] to the same channel multiple times, but
/// only one [`Receiver`] is supported.
///
/// If the [`Receiver`] is disconnected while trying to [`send`] with the
/// [`Sender`], the [`send`] method will return a [`SendError`]. Similarly, if the
/// [`Sender`] is disconnected while trying to [`recv`], the [`recv`] method will
/// return a [`RecvError`].
///
/// [`send`]: Sender::send
/// [`recv`]: Receiver::recv
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (sender, receiver) = channel();
///
/// // Spawn off an expensive computation
/// thread::spawn(move|| {
/// #   fn expensive_computation() {}
///     sender.send(expensive_computation()).unwrap();
/// });
///
/// // Do some useful work for awhile
///
/// // Let's see what that answer was
/// println!("{:?}", receiver.recv().unwrap());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
    let a = Arc::new(oneshot::Packet::new());
    (Sender::new(Flavor::Oneshot(a.clone())), Receiver::new(Flavor::Oneshot(a)))
}

/// Creates a new synchronous, bounded channel.
/// All data sent on the [`SyncSender`] will become available on the [`Receiver`]
/// in the same order as it was sent. Like asynchronous [`channel`]s, the
/// [`Receiver`] will block until a message becomes available. `sync_channel`
/// differs greatly in the semantics of the sender, however.
///
/// This channel has an internal buffer on which messages will be queued.
/// `bound` specifies the buffer size. When the internal buffer becomes full,
/// future sends will *block* waiting for the buffer to open up. Note that a
/// buffer size of 0 is valid, in which case this becomes "rendezvous channel"
/// where each [`send`] will not return until a [`recv`] is paired with it.
///
/// The [`SyncSender`] can be cloned to [`send`] to the same channel multiple
/// times, but only one [`Receiver`] is supported.
///
/// Like asynchronous channels, if the [`Receiver`] is disconnected while trying
/// to [`send`] with the [`SyncSender`], the [`send`] method will return a
/// [`SendError`]. Similarly, If the [`SyncSender`] is disconnected while trying
/// to [`recv`], the [`recv`] method will return a [`RecvError`].
///
/// [`send`]: SyncSender::send
/// [`recv`]: Receiver::recv
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// let (sender, receiver) = sync_channel(1);
///
/// // this returns immediately
/// sender.send(1).unwrap();
///
/// thread::spawn(move|| {
///     // this will block until the previous message has been received
///     sender.send(2).unwrap();
/// });
///
/// assert_eq!(receiver.recv().unwrap(), 1);
/// assert_eq!(receiver.recv().unwrap(), 2);
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn sync_channel<T>(bound: usize) -> (SyncSender<T>, Receiver<T>) {
    let a = Arc::new(sync::Packet::new(bound));
    (SyncSender::new(a.clone()), Receiver::new(Flavor::Sync(a)))
}

////////////////////////////////////////////////////////////////////////////////
// Sender
////////////////////////////////////////////////////////////////////////////////

impl<T> Sender<T> {
    fn new(inner: Flavor<T>) -> Sender<T> {
        Sender { inner: UnsafeCell::new(inner) }
    }

    /// Attempts to send a value on this channel, returning it back if it could
    /// not be sent.
    ///
    /// A successful send occurs when it is determined that the other end of
    /// the channel has not hung up already. An unsuccessful send would be one
    /// where the corresponding receiver has already been deallocated. Note
    /// that a return value of [`Err`] means that the data will never be
    /// received, but a return value of [`Ok`] does *not* mean that the data
    /// will be received. It is possible for the corresponding receiver to
    /// hang up immediately after this function returns [`Ok`].
    ///
    /// This method will never block the current thread.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::mpsc::channel;
    ///
    /// let (tx, rx) = channel();
    ///
    /// // This send is always successful
    /// tx.send(1).unwrap();
    ///
    /// // This send will fail because the receiver is gone
    /// drop(rx);
    /// assert_eq!(tx.send(1).unwrap_err().0, 1);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn send(&self, t: T) -> Result<(), SendError<T>> {
        let (new_inner, ret) = match *unsafe { self.inner() } {
            Flavor::Oneshot(ref p) => {
                if !p.sent() {
                    return p.send(t).map_err(SendError);
                } else {
                    let a = Arc::new(stream::Packet::new());
                    let rx = Receiver::new(Flavor::Stream(a.clone()));
                    match p.upgrade(rx) {
                        oneshot::UpSuccess => {
                            let ret = a.send(t);
                            (a, ret)
                        }
                        oneshot::UpDisconnected => (a, Err(t)),
                        oneshot::UpWoke(token) => {
                            // This send cannot panic because the thread is
                            // asleep (we're looking at it), so the receiver
                            // can't go away.
                            a.send(t).ok().unwrap();
                            token.signal();
                            (a, Ok(()))
                        }
                    }
                }
            }
            Flavor::Stream(ref p) => return p.send(t).map_err(SendError),
            Flavor::Shared(ref p) => return p.send(t).map_err(SendError),
            Flavor::Sync(..) => unreachable!(),
        };

        unsafe {
            let tmp = Sender::new(Flavor::Stream(new_inner));
            mem::swap(self.inner_mut(), tmp.inner_mut());
        }
        ret.map_err(SendError)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Sender<T> {
    /// Clone a sender to send to other threads.
    ///
    /// Note, be aware of the lifetime of the sender because all senders
    /// (including the original) need to be dropped in order for
    /// [`Receiver::recv`] to stop blocking.
    fn clone(&self) -> Sender<T> {
        let packet = match *unsafe { self.inner() } {
            Flavor::Oneshot(ref p) => {
                let a = Arc::new(shared::Packet::new());
                {
                    let guard = a.postinit_lock();
                    let rx = Receiver::new(Flavor::Shared(a.clone()));
                    let sleeper = match p.upgrade(rx) {
                        oneshot::UpSuccess | oneshot::UpDisconnected => None,
                        oneshot::UpWoke(task) => Some(task),
                    };
                    a.inherit_blocker(sleeper, guard);
                }
                a
            }
            Flavor::Stream(ref p) => {
                let a = Arc::new(shared::Packet::new());
                {
                    let guard = a.postinit_lock();
                    let rx = Receiver::new(Flavor::Shared(a.clone()));
                    let sleeper = match p.upgrade(rx) {
                        stream::UpSuccess | stream::UpDisconnected => None,
                        stream::UpWoke(task) => Some(task),
                    };
                    a.inherit_blocker(sleeper, guard);
                }
                a
            }
            Flavor::Shared(ref p) => {
                p.clone_chan();
                return Sender::new(Flavor::Shared(p.clone()));
            }
            Flavor::Sync(..) => unreachable!(),
        };

        unsafe {
            let tmp = Sender::new(Flavor::Shared(packet.clone()));
            mem::swap(self.inner_mut(), tmp.inner_mut());
        }
        Sender::new(Flavor::Shared(packet))
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        match *unsafe { self.inner() } {
            Flavor::Oneshot(ref p) => p.drop_chan(),
            Flavor::Stream(ref p) => p.drop_chan(),
            Flavor::Shared(ref p) => p.drop_chan(),
            Flavor::Sync(..) => unreachable!(),
        }
    }
}

#[stable(feature = "mpsc_debug", since = "1.8.0")]
impl<T> fmt::Debug for Sender<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Sender").finish_non_exhaustive()
    }
}

////////////////////////////////////////////////////////////////////////////////
// SyncSender
////////////////////////////////////////////////////////////////////////////////

impl<T> SyncSender<T> {
    fn new(inner: Arc<sync::Packet<T>>) -> SyncSender<T> {
        SyncSender { inner }
    }

    /// Sends a value on this synchronous channel.
    ///
    /// This function will *block* until space in the internal buffer becomes
    /// available or a receiver is available to hand off the message to.
    ///
    /// Note that a successful send does *not* guarantee that the receiver will
    /// ever see the data if there is a buffer on this channel. Items may be
    /// enqueued in the internal buffer for the receiver to receive at a later
    /// time. If the buffer size is 0, however, the channel becomes a rendezvous
    /// channel and it guarantees that the receiver has indeed received
    /// the data if this function returns success.
    ///
    /// This function will never panic, but it may return [`Err`] if the
    /// [`Receiver`] has disconnected and is no longer able to receive
    /// information.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::sync::mpsc::sync_channel;
    /// use std::thread;
    ///
    /// // Create a rendezvous sync_channel with buffer size 0
    /// let (sync_sender, receiver) = sync_channel(0);
    ///
    /// thread::spawn(move || {
    ///    println!("sending message...");
    ///    sync_sender.send(1).unwrap();
    ///    // Thread is now blocked until the message is received
    ///
    ///    println!("...message received!");
    /// });
    ///
    /// let msg = receiver.recv().unwrap();
    /// assert_eq!(1, msg);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn send(&self, t: T) -> Result<(), SendError<T>> {
        self.inner.send(t).map_err(SendError)
    }

    /// Attempts to send a value on this channel without blocking.
    ///
    /// This method differs from [`send`] by returning immediately if the
    /// channel's buffer is full or no receiver is waiting to acquire some
    /// data. Compared with [`send`], this function has two failure cases
    /// instead of one (one for disconnection, one for a full buffer).
    ///
    /// See [`send`] for notes about guarantees of whether the
    /// receiver has received the data or not if this function is successful.
    ///
    /// [`send`]: Self::send
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::sync::mpsc::sync_channel;
    /// use std::thread;
    ///
    /// // Create a sync_channel with buffer size 1
    /// let (sync_sender, receiver) = sync_channel(1);
    /// let sync_sender2 = sync_sender.clone();
    ///
    /// // First thread owns sync_sender
    /// thread::spawn(move || {
    ///     sync_sender.send(1).unwrap();
    ///     sync_sender.send(2).unwrap();
    ///     // Thread blocked
    /// });
    ///
    /// // Second thread owns sync_sender2
    /// thread::spawn(move || {
    ///     // This will return an error and send
    ///     // no message if the buffer is full
    ///     let _ = sync_sender2.try_send(3);
    /// });
    ///
    /// let mut msg;
    /// msg = receiver.recv().unwrap();
    /// println!("message {msg} received");
    ///
    /// msg = receiver.recv().unwrap();
    /// println!("message {msg} received");
    ///
    /// // Third message may have never been sent
    /// match receiver.try_recv() {
    ///     Ok(msg) => println!("message {msg} received"),
    ///     Err(_) => println!("the third message was never sent"),
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn try_send(&self, t: T) -> Result<(), TrySendError<T>> {
        self.inner.try_send(t)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for SyncSender<T> {
    fn clone(&self) -> SyncSender<T> {
        self.inner.clone_chan();
        SyncSender::new(self.inner.clone())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for SyncSender<T> {
    fn drop(&mut self) {
        self.inner.drop_chan();
    }
}

#[stable(feature = "mpsc_debug", since = "1.8.0")]
impl<T> fmt::Debug for SyncSender<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("SyncSender").finish_non_exhaustive()
    }
}

////////////////////////////////////////////////////////////////////////////////
// Receiver
////////////////////////////////////////////////////////////////////////////////

impl<T> Receiver<T> {
    fn new(inner: Flavor<T>) -> Receiver<T> {
        Receiver { inner: UnsafeCell::new(inner) }
    }

    /// Attempts to return a pending value on this receiver without blocking.
    ///
    /// This method will never block the caller in order to wait for data to
    /// become available. Instead, this will always return immediately with a
    /// possible option of pending data on the channel.
    ///
    /// This is useful for a flavor of "optimistic check" before deciding to
    /// block on a receiver.
    ///
    /// Compared with [`recv`], this function has two failure cases instead of one
    /// (one for disconnection, one for an empty buffer).
    ///
    /// [`recv`]: Self::recv
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::sync::mpsc::{Receiver, channel};
    ///
    /// let (_, receiver): (_, Receiver<i32>) = channel();
    ///
    /// assert!(receiver.try_recv().is_err());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn try_recv(&self) -> Result<T, TryRecvError> {
        loop {
            let new_port = match *unsafe { self.inner() } {
                Flavor::Oneshot(ref p) => match p.try_recv() {
                    Ok(t) => return Ok(t),
                    Err(oneshot::Empty) => return Err(TryRecvError::Empty),
                    Err(oneshot::Disconnected) => return Err(TryRecvError::Disconnected),
                    Err(oneshot::Upgraded(rx)) => rx,
                },
                Flavor::Stream(ref p) => match p.try_recv() {
                    Ok(t) => return Ok(t),
                    Err(stream::Empty) => return Err(TryRecvError::Empty),
                    Err(stream::Disconnected) => return Err(TryRecvError::Disconnected),
                    Err(stream::Upgraded(rx)) => rx,
                },
                Flavor::Shared(ref p) => match p.try_recv() {
                    Ok(t) => return Ok(t),
                    Err(shared::Empty) => return Err(TryRecvError::Empty),
                    Err(shared::Disconnected) => return Err(TryRecvError::Disconnected),
                },
                Flavor::Sync(ref p) => match p.try_recv() {
                    Ok(t) => return Ok(t),
                    Err(sync::Empty) => return Err(TryRecvError::Empty),
                    Err(sync::Disconnected) => return Err(TryRecvError::Disconnected),
                },
            };
            unsafe {
                mem::swap(self.inner_mut(), new_port.inner_mut());
            }
        }
    }

    /// Attempts to wait for a value on this receiver, returning an error if the
    /// corresponding channel has hung up.
    ///
    /// This function will always block the current thread if there is no data
    /// available and it's possible for more data to be sent (at least one sender
    /// still exists). Once a message is sent to the corresponding [`Sender`]
    /// (or [`SyncSender`]), this receiver will wake up and return that
    /// message.
    ///
    /// If the corresponding [`Sender`] has disconnected, or it disconnects while
    /// this call is blocking, this call will wake up and return [`Err`] to
    /// indicate that no more messages can ever be received on this channel.
    /// However, since channels are buffered, messages sent before the disconnect
    /// will still be properly received.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::mpsc;
    /// use std::thread;
    ///
    /// let (send, recv) = mpsc::channel();
    /// let handle = thread::spawn(move || {
    ///     send.send(1u8).unwrap();
    /// });
    ///
    /// handle.join().unwrap();
    ///
    /// assert_eq!(Ok(1), recv.recv());
    /// ```
    ///
    /// Buffering behavior:
    ///
    /// ```
    /// use std::sync::mpsc;
    /// use std::thread;
    /// use std::sync::mpsc::RecvError;
    ///
    /// let (send, recv) = mpsc::channel();
    /// let handle = thread::spawn(move || {
    ///     send.send(1u8).unwrap();
    ///     send.send(2).unwrap();
    ///     send.send(3).unwrap();
    ///     drop(send);
    /// });
    ///
    /// // wait for the thread to join so we ensure the sender is dropped
    /// handle.join().unwrap();
    ///
    /// assert_eq!(Ok(1), recv.recv());
    /// assert_eq!(Ok(2), recv.recv());
    /// assert_eq!(Ok(3), recv.recv());
    /// assert_eq!(Err(RecvError), recv.recv());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn recv(&self) -> Result<T, RecvError> {
        loop {
            let new_port = match *unsafe { self.inner() } {
                Flavor::Oneshot(ref p) => match p.recv(None) {
                    Ok(t) => return Ok(t),
                    Err(oneshot::Disconnected) => return Err(RecvError),
                    Err(oneshot::Upgraded(rx)) => rx,
                    Err(oneshot::Empty) => unreachable!(),
                },
                Flavor::Stream(ref p) => match p.recv(None) {
                    Ok(t) => return Ok(t),
                    Err(stream::Disconnected) => return Err(RecvError),
                    Err(stream::Upgraded(rx)) => rx,
                    Err(stream::Empty) => unreachable!(),
                },
                Flavor::Shared(ref p) => match p.recv(None) {
                    Ok(t) => return Ok(t),
                    Err(shared::Disconnected) => return Err(RecvError),
                    Err(shared::Empty) => unreachable!(),
                },
                Flavor::Sync(ref p) => return p.recv(None).map_err(|_| RecvError),
            };
            unsafe {
                mem::swap(self.inner_mut(), new_port.inner_mut());
            }
        }
    }

    /// Attempts to wait for a value on this receiver, returning an error if the
    /// corresponding channel has hung up, or if it waits more than `timeout`.
    ///
    /// This function will always block the current thread if there is no data
    /// available and it's possible for more data to be sent (at least one sender
    /// still exists). Once a message is sent to the corresponding [`Sender`]
    /// (or [`SyncSender`]), this receiver will wake up and return that
    /// message.
    ///
    /// If the corresponding [`Sender`] has disconnected, or it disconnects while
    /// this call is blocking, this call will wake up and return [`Err`] to
    /// indicate that no more messages can ever be received on this channel.
    /// However, since channels are buffered, messages sent before the disconnect
    /// will still be properly received.
    ///
    /// # Known Issues
    ///
    /// There is currently a known issue (see [`#39364`]) that causes `recv_timeout`
    /// to panic unexpectedly with the following example:
    ///
    /// ```no_run
    /// use std::sync::mpsc::channel;
    /// use std::thread;
    /// use std::time::Duration;
    ///
    /// let (tx, rx) = channel::<String>();
    ///
    /// thread::spawn(move || {
    ///     let d = Duration::from_millis(10);
    ///     loop {
    ///         println!("recv");
    ///         let _r = rx.recv_timeout(d);
    ///     }
    /// });
    ///
    /// thread::sleep(Duration::from_millis(100));
    /// let _c1 = tx.clone();
    ///
    /// thread::sleep(Duration::from_secs(1));
    /// ```
    ///
    /// [`#39364`]: https://github.com/rust-lang/rust/issues/39364
    ///
    /// # Examples
    ///
    /// Successfully receiving value before encountering timeout:
    ///
    /// ```no_run
    /// use std::thread;
    /// use std::time::Duration;
    /// use std::sync::mpsc;
    ///
    /// let (send, recv) = mpsc::channel();
    ///
    /// thread::spawn(move || {
    ///     send.send('a').unwrap();
    /// });
    ///
    /// assert_eq!(
    ///     recv.recv_timeout(Duration::from_millis(400)),
    ///     Ok('a')
    /// );
    /// ```
    ///
    /// Receiving an error upon reaching timeout:
    ///
    /// ```no_run
    /// use std::thread;
    /// use std::time::Duration;
    /// use std::sync::mpsc;
    ///
    /// let (send, recv) = mpsc::channel();
    ///
    /// thread::spawn(move || {
    ///     thread::sleep(Duration::from_millis(800));
    ///     send.send('a').unwrap();
    /// });
    ///
    /// assert_eq!(
    ///     recv.recv_timeout(Duration::from_millis(400)),
    ///     Err(mpsc::RecvTimeoutError::Timeout)
    /// );
    /// ```
    #[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
    pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError> {
        // Do an optimistic try_recv to avoid the performance impact of
        // Instant::now() in the full-channel case.
        match self.try_recv() {
            Ok(result) => Ok(result),
            Err(TryRecvError::Disconnected) => Err(RecvTimeoutError::Disconnected),
            Err(TryRecvError::Empty) => match Instant::now().checked_add(timeout) {
                Some(deadline) => self.recv_deadline(deadline),
                // So far in the future that it's practically the same as waiting indefinitely.
                None => self.recv().map_err(RecvTimeoutError::from),
            },
        }
    }

    /// Attempts to wait for a value on this receiver, returning an error if the
    /// corresponding channel has hung up, or if `deadline` is reached.
    ///
    /// This function will always block the current thread if there is no data
    /// available and it's possible for more data to be sent. Once a message is
    /// sent to the corresponding [`Sender`] (or [`SyncSender`]), then this
    /// receiver will wake up and return that message.
    ///
    /// If the corresponding [`Sender`] has disconnected, or it disconnects while
    /// this call is blocking, this call will wake up and return [`Err`] to
    /// indicate that no more messages can ever be received on this channel.
    /// However, since channels are buffered, messages sent before the disconnect
    /// will still be properly received.
    ///
    /// # Examples
    ///
    /// Successfully receiving value before reaching deadline:
    ///
    /// ```no_run
    /// #![feature(deadline_api)]
    /// use std::thread;
    /// use std::time::{Duration, Instant};
    /// use std::sync::mpsc;
    ///
    /// let (send, recv) = mpsc::channel();
    ///
    /// thread::spawn(move || {
    ///     send.send('a').unwrap();
    /// });
    ///
    /// assert_eq!(
    ///     recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
    ///     Ok('a')
    /// );
    /// ```
    ///
    /// Receiving an error upon reaching deadline:
    ///
    /// ```no_run
    /// #![feature(deadline_api)]
    /// use std::thread;
    /// use std::time::{Duration, Instant};
    /// use std::sync::mpsc;
    ///
    /// let (send, recv) = mpsc::channel();
    ///
    /// thread::spawn(move || {
    ///     thread::sleep(Duration::from_millis(800));
    ///     send.send('a').unwrap();
    /// });
    ///
    /// assert_eq!(
    ///     recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
    ///     Err(mpsc::RecvTimeoutError::Timeout)
    /// );
    /// ```
    #[unstable(feature = "deadline_api", issue = "46316")]
    pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError> {
        use self::RecvTimeoutError::*;

        loop {
            let port_or_empty = match *unsafe { self.inner() } {
                Flavor::Oneshot(ref p) => match p.recv(Some(deadline)) {
                    Ok(t) => return Ok(t),
                    Err(oneshot::Disconnected) => return Err(Disconnected),
                    Err(oneshot::Upgraded(rx)) => Some(rx),
                    Err(oneshot::Empty) => None,
                },
                Flavor::Stream(ref p) => match p.recv(Some(deadline)) {
                    Ok(t) => return Ok(t),
                    Err(stream::Disconnected) => return Err(Disconnected),
                    Err(stream::Upgraded(rx)) => Some(rx),
                    Err(stream::Empty) => None,
                },
                Flavor::Shared(ref p) => match p.recv(Some(deadline)) {
                    Ok(t) => return Ok(t),
                    Err(shared::Disconnected) => return Err(Disconnected),
                    Err(shared::Empty) => None,
                },
                Flavor::Sync(ref p) => match p.recv(Some(deadline)) {
                    Ok(t) => return Ok(t),
                    Err(sync::Disconnected) => return Err(Disconnected),
                    Err(sync::Empty) => None,
                },
            };

            if let Some(new_port) = port_or_empty {
                unsafe {
                    mem::swap(self.inner_mut(), new_port.inner_mut());
                }
            }

            // If we're already passed the deadline, and we're here without
            // data, return a timeout, else try again.
            if Instant::now() >= deadline {
                return Err(Timeout);
            }
        }
    }

    /// Returns an iterator that will block waiting for messages, but never
    /// [`panic!`]. It will return [`None`] when the channel has hung up.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::sync::mpsc::channel;
    /// use std::thread;
    ///
    /// let (send, recv) = channel();
    ///
    /// thread::spawn(move || {
    ///     send.send(1).unwrap();
    ///     send.send(2).unwrap();
    ///     send.send(3).unwrap();
    /// });
    ///
    /// let mut iter = recv.iter();
    /// assert_eq!(iter.next(), Some(1));
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), Some(3));
    /// assert_eq!(iter.next(), None);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn iter(&self) -> Iter<'_, T> {
        Iter { rx: self }
    }

    /// Returns an iterator that will attempt to yield all pending values.
    /// It will return `None` if there are no more pending values or if the
    /// channel has hung up. The iterator will never [`panic!`] or block the
    /// user by waiting for values.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::sync::mpsc::channel;
    /// use std::thread;
    /// use std::time::Duration;
    ///
    /// let (sender, receiver) = channel();
    ///
    /// // nothing is in the buffer yet
    /// assert!(receiver.try_iter().next().is_none());
    ///
    /// thread::spawn(move || {
    ///     thread::sleep(Duration::from_secs(1));
    ///     sender.send(1).unwrap();
    ///     sender.send(2).unwrap();
    ///     sender.send(3).unwrap();
    /// });
    ///
    /// // nothing is in the buffer yet
    /// assert!(receiver.try_iter().next().is_none());
    ///
    /// // block for two seconds
    /// thread::sleep(Duration::from_secs(2));
    ///
    /// let mut iter = receiver.try_iter();
    /// assert_eq!(iter.next(), Some(1));
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), Some(3));
    /// assert_eq!(iter.next(), None);
    /// ```
    #[stable(feature = "receiver_try_iter", since = "1.15.0")]
    pub fn try_iter(&self) -> TryIter<'_, T> {
        TryIter { rx: self }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.rx.recv().ok()
    }
}

#[stable(feature = "receiver_try_iter", since = "1.15.0")]
impl<'a, T> Iterator for TryIter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.rx.try_recv().ok()
    }
}

#[stable(feature = "receiver_into_iter", since = "1.1.0")]
impl<'a, T> IntoIterator for &'a Receiver<T> {
    type Item = T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

#[stable(feature = "receiver_into_iter", since = "1.1.0")]
impl<T> Iterator for IntoIter<T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        self.rx.recv().ok()
    }
}

#[stable(feature = "receiver_into_iter", since = "1.1.0")]
impl<T> IntoIterator for Receiver<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> IntoIter<T> {
        IntoIter { rx: self }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        match *unsafe { self.inner() } {
            Flavor::Oneshot(ref p) => p.drop_port(),
            Flavor::Stream(ref p) => p.drop_port(),
            Flavor::Shared(ref p) => p.drop_port(),
            Flavor::Sync(ref p) => p.drop_port(),
        }
    }
}

#[stable(feature = "mpsc_debug", since = "1.8.0")]
impl<T> fmt::Debug for Receiver<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Receiver").finish_non_exhaustive()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Debug for SendError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("SendError").finish_non_exhaustive()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Display for SendError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        "sending on a closed channel".fmt(f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Send> error::Error for SendError<T> {
    #[allow(deprecated)]
    fn description(&self) -> &str {
        "sending on a closed channel"
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Debug for TrySendError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            TrySendError::Full(..) => "Full(..)".fmt(f),
            TrySendError::Disconnected(..) => "Disconnected(..)".fmt(f),
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Display for TrySendError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            TrySendError::Full(..) => "sending on a full channel".fmt(f),
            TrySendError::Disconnected(..) => "sending on a closed channel".fmt(f),
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Send> error::Error for TrySendError<T> {
    #[allow(deprecated)]
    fn description(&self) -> &str {
        match *self {
            TrySendError::Full(..) => "sending on a full channel",
            TrySendError::Disconnected(..) => "sending on a closed channel",
        }
    }
}

#[stable(feature = "mpsc_error_conversions", since = "1.24.0")]
impl<T> From<SendError<T>> for TrySendError<T> {
    /// Converts a `SendError<T>` into a `TrySendError<T>`.
    ///
    /// This conversion always returns a `TrySendError::Disconnected` containing the data in the `SendError<T>`.
    ///
    /// No data is allocated on the heap.
    fn from(err: SendError<T>) -> TrySendError<T> {
        match err {
            SendError(t) => TrySendError::Disconnected(t),
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for RecvError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        "receiving on a closed channel".fmt(f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl error::Error for RecvError {
    #[allow(deprecated)]
    fn description(&self) -> &str {
        "receiving on a closed channel"
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for TryRecvError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            TryRecvError::Empty => "receiving on an empty channel".fmt(f),
            TryRecvError::Disconnected => "receiving on a closed channel".fmt(f),
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl error::Error for TryRecvError {
    #[allow(deprecated)]
    fn description(&self) -> &str {
        match *self {
            TryRecvError::Empty => "receiving on an empty channel",
            TryRecvError::Disconnected => "receiving on a closed channel",
        }
    }
}

#[stable(feature = "mpsc_error_conversions", since = "1.24.0")]
impl From<RecvError> for TryRecvError {
    /// Converts a `RecvError` into a `TryRecvError`.
    ///
    /// This conversion always returns `TryRecvError::Disconnected`.
    ///
    /// No data is allocated on the heap.
    fn from(err: RecvError) -> TryRecvError {
        match err {
            RecvError => TryRecvError::Disconnected,
        }
    }
}

#[stable(feature = "mpsc_recv_timeout_error", since = "1.15.0")]
impl fmt::Display for RecvTimeoutError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            RecvTimeoutError::Timeout => "timed out waiting on channel".fmt(f),
            RecvTimeoutError::Disconnected => "channel is empty and sending half is closed".fmt(f),
        }
    }
}

#[stable(feature = "mpsc_recv_timeout_error", since = "1.15.0")]
impl error::Error for RecvTimeoutError {
    #[allow(deprecated)]
    fn description(&self) -> &str {
        match *self {
            RecvTimeoutError::Timeout => "timed out waiting on channel",
            RecvTimeoutError::Disconnected => "channel is empty and sending half is closed",
        }
    }
}

#[stable(feature = "mpsc_error_conversions", since = "1.24.0")]
impl From<RecvError> for RecvTimeoutError {
    /// Converts a `RecvError` into a `RecvTimeoutError`.
    ///
    /// This conversion always returns `RecvTimeoutError::Disconnected`.
    ///
    /// No data is allocated on the heap.
    fn from(err: RecvError) -> RecvTimeoutError {
        match err {
            RecvError => RecvTimeoutError::Disconnected,
        }
    }
}