dwww Home | Show directory contents | Find package

R version 3.4.2 (2017-09-28) -- "Short Summer"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(survey)
Loading required package: grid
Loading required package: Matrix
Loading required package: survival

Attaching package: 'survey'

The following object is masked from 'package:graphics':

    dotchart

> 
> ## two-phase simple random sampling.
> data(pbc, package="survival")
> pbc$id<-1:nrow(pbc)
> pbc$randomized<-with(pbc, !is.na(trt) & trt>-9)
> (d2pbc<-twophase(id=list(~id,~id), data=pbc, subset=~I(!randomized)))
Two-phase sparse-matrix design:
 twophase2(id = id, strata = strata, probs = probs, fpc = fpc, 
    subset = subset, data = data)
Phase 1:
Independent Sampling design (with replacement)
svydesign(ids = ~id)
Phase 2:
Independent Sampling design
svydesign(ids = ~id, fpc = `*phase1*`)
> m<-svymean(~bili, d2pbc)
> all.equal(as.vector(coef(m)),with(pbc, mean(bili[!randomized])))
[1] TRUE
> all.equal(as.vector(SE(m)),
+           with(pbc, sd(bili[!randomized])/sqrt(sum(!randomized))),
+           tolerance=0.002)
[1] TRUE
> 
> ## two-stage sampling as two-phase
> data(mu284)
> ii<-with(mu284, c(1:15, rep(1:5,n2[1:5]-3)))
> mu284.1<-mu284[ii,]
> mu284.1$id<-1:nrow(mu284.1)
> mu284.1$sub<-rep(c(TRUE,FALSE),c(15,34-15))
> dmu284<-svydesign(id=~id1+id2,fpc=~n1+n2, data=mu284)
> ## first phase cluster sample, second phase stratified within cluster
> (d2mu284<-twophase(id=list(~id1,~id),strata=list(NULL,~id1),
+                    fpc=list(~n1,NULL),data=mu284.1,subset=~sub,method="approx"))
Two-phase design: twophase(id = list(~id1, ~id), strata = list(NULL, ~id1), fpc = list(~n1, 
    NULL), data = mu284.1, subset = ~sub, method = "approx")
Phase 1:
1 - level Cluster Sampling design
With (5) clusters.
svydesign(ids = ~id1, fpc = ~n1)
Phase 2:
Stratified Independent Sampling design
svydesign(ids = ~id, strata = ~id1, fpc = `*phase1*`)
> (d22mu284<-twophase(id=list(~id1,~id),strata=list(NULL,~id1),
+                    fpc=list(~n1,NULL),data=mu284.1,subset=~sub,method="full"))
Two-phase sparse-matrix design:
 twophase2(id = id, strata = strata, probs = probs, fpc = fpc, 
    subset = subset, data = data)
Phase 1:
1 - level Cluster Sampling design
With (5) clusters.
svydesign(ids = ~id1, fpc = ~n1)
Phase 2:
Stratified Independent Sampling design
svydesign(ids = ~id, strata = ~id1, fpc = `*phase1*`)
> summary(d2mu284)
Two-phase design: twophase(id = list(~id1, ~id), strata = list(NULL, ~id1), fpc = list(~n1, 
    NULL), data = mu284.1, subset = ~sub, method = "approx")
Phase 1:
1 - level Cluster Sampling design
With (5) clusters.
svydesign(ids = ~id1, fpc = ~n1)
Probabilities:
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    0.1     0.1     0.1     0.1     0.1     0.1 
Population size (PSUs): 50 
Phase 2:
Stratified Independent Sampling design
svydesign(ids = ~id, strata = ~id1, fpc = `*phase1*`)
Probabilities:
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.3333  0.3750  0.4286  0.4674  0.6000  0.6000 
Stratum Sizes: 
           19 31 45 47 50
obs         3  3  3  3  3
design.PSU  3  3  3  3  3
actual.PSU  3  3  3  3  3
Population stratum sizes (PSUs): 
19 31 45 47 50 
 5  7  8  5  9 
Data variables:
[1] "id1" "n1"  "id2" "y1"  "n2"  "id"  "sub"
> t1<-svytotal(~y1, dmu284)
> t2<-svytotal(~y1, d2mu284)
> t22<-svytotal(~y1,d22mu284)
> m1<-svymean(~y1, dmu284)
> m2<-svymean(~y1, d2mu284)
> m22<-svymean(~y1, d22mu284)
> all.equal(coef(t1),coef(t2))
[1] TRUE
> all.equal(coef(t1),coef(t22))
[1] TRUE
> all.equal(coef(m1),coef(m2))
[1] TRUE
> all.equal(coef(m1),coef(m22))
[1] TRUE
> all.equal(as.vector(SE(m1)),as.vector(SE(m2)))
[1] TRUE
> all.equal(as.vector(SE(m1)),as.vector(SE(m22)))
[1] TRUE
> all.equal(as.vector(SE(t1)),as.vector(SE(t2)))
[1] TRUE
> all.equal(as.vector(SE(t1)),as.vector(SE(t22)))
[1] TRUE
> 
> ## case-cohort design
> ##this example requires R 2.3.1 or later for cch and data.
> library("survival")
> data(nwtco, package="survival")
> ## unstratified, equivalent to Lin & Ying (1993)
> print(dcchs<-twophase(id=list(~seqno,~seqno), strata=list(NULL,~rel),
+                  subset=~I(in.subcohort | rel), data=nwtco))
Two-phase sparse-matrix design:
 twophase2(id = id, strata = strata, probs = probs, fpc = fpc, 
    subset = subset, data = data)
Phase 1:
Independent Sampling design (with replacement)
svydesign(ids = ~seqno)
Phase 2:
Stratified Independent Sampling design
svydesign(ids = ~seqno, strata = ~rel, fpc = `*phase1*`)
> cch1<-svycoxph(Surv(edrel,rel)~factor(stage)+factor(histol)+I(age/12),
+                design=dcchs)
> dcchs2<-twophase(id=list(~seqno,~seqno), strata=list(NULL,~rel),
+                  subset=~I(in.subcohort | rel), data=nwtco,method="approx")
> cch1.2<-svycoxph(Surv(edrel,rel)~factor(stage)+factor(histol)+I(age/12),
+                design=dcchs)
> all.equal(coef(cch1),coef(cch1.2))
[1] TRUE
> all.equal(SE(cch1),SE(cch1.2))
[1] TRUE
> ## Using survival::cch 
> subcoh <- nwtco$in.subcohort
> selccoh <- with(nwtco, rel==1|subcoh==1)
> ccoh.data <- nwtco[selccoh,]
> ccoh.data$subcohort <- subcoh[selccoh]
> cch2<-cch(Surv(edrel, rel) ~ factor(stage) + factor(histol) + I(age/12),
+           data =ccoh.data, subcoh = ~subcohort, id=~seqno,
+           cohort.size=4028, method="LinYing", robust=TRUE)
> 
> print(all.equal(as.vector(coef(cch1)),as.vector(coef(cch2))))
[1] TRUE
> ## cch has smaller variances by a factor of 1.0005 because
> ## there is a (n/(n-1)) in the survey phase1 varianace
> print(all.equal(as.vector(SE(cch1)), as.vector(SE(cch2)),tolerance=0.0006))
[1] TRUE
> 
> 
> ## bug report from Takahiro Tsuchiya for version 3.4
> ## We used to not match Sarndal exactly, because our old phase-one
> ## estimator had a small bias for finite populations
> rei<-read.table(tmp<-textConnection(
+ "  id   N n.a h n.ah n.h   sub  y
+ 1   1 300  20 1   12   5  TRUE  1
+ 2   2 300  20 1   12   5  TRUE  2
+ 3   3 300  20 1   12   5  TRUE  3
+ 4   4 300  20 1   12   5  TRUE  4
+ 5   5 300  20 1   12   5  TRUE  5
+ 6   6 300  20 1   12   5 FALSE NA
+ 7   7 300  20 1   12   5 FALSE NA
+ 8   8 300  20 1   12   5 FALSE NA
+ 9   9 300  20 1   12   5 FALSE NA
+ 10 10 300  20 1   12   5 FALSE NA
+ 11 11 300  20 1   12   5 FALSE NA
+ 12 12 300  20 1   12   5 FALSE NA
+ 13 13 300  20 2    8   3  TRUE  6
+ 14 14 300  20 2    8   3  TRUE  7
+ 15 15 300  20 2    8   3  TRUE  8
+ 16 16 300  20 2    8   3 FALSE NA
+ 17 17 300  20 2    8   3 FALSE NA
+ 18 18 300  20 2    8   3 FALSE NA
+ 19 19 300  20 2    8   3 FALSE NA
+ 20 20 300  20 2    8   3 FALSE NA
+ "), header=TRUE)
> close(tmp)
> 
> des.rei <- twophase(id=list(~id,~id), strata=list(NULL,~h),
+                     fpc=list(~N,NULL), subset=~sub, data=rei, method="approx")
> tot<- svytotal(~y, des.rei)
> des.rei2 <- twophase(id=list(~id,~id), strata=list(NULL,~h),
+                     fpc=list(~N,NULL), subset=~sub, data=rei)
> tot2<- svytotal(~y, des.rei2)
> 
> ## based on Sarndal et al (9.4.14)
> rei$w.ah <- rei$n.ah / rei$n.a
> a.rei <- aggregate(rei, by=list(rei$h), mean, na.rm=TRUE)
> a.rei$S.ysh <- tapply(rei$y, rei$h, var, na.rm=TRUE)
> a.rei$y.u <- sum(a.rei$w.ah * a.rei$y)
> V <- with(a.rei, sum(N * (N-1) * ((n.ah-1)/(n.a-1) - (n.h-1)/(N-1)) * w.ah * S.ysh / n.h))
> V <- V + with(a.rei, sum(N * (N-n.a) * w.ah * (y - y.u)^2 / (n.a-1)))
> 
> a.rei$f.h<-with(a.rei, n.h/n.ah)
> Vphase2<-with(a.rei, sum(N*N*w.ah^2* ((1-f.h)/n.h) *S.ysh))
> 
> a.rei$f<-with(a.rei, n.a/N)
> a.rei$delta.h<-with(a.rei, (1/n.h)*(n.a-n.ah)/(n.a-1))
> Vphase1<-with(a.rei, sum(N*N*((1-f)/n.a)*( w.ah*(1-delta.h)*S.ysh+ ((n.a)/(n.a-1))*w.ah*(y-y.u)^2)))
> 
> V
[1] 36522.63
> Vphase1
[1] 24072.63
> Vphase2
[1] 12450
> vcov(tot)
         y
y 35911.05
attr(,"phases")
attr(,"phases")$phase1
         [,1]
[1,] 23461.05

attr(,"phases")$phase2
      y
y 12450

> vcov(tot2)
         [,1]
[1,] 36522.63
attr(,"phases")
attr(,"phases")$phase1
         [,1]
[1,] 24072.63

attr(,"phases")$phase2
      [,1]
[1,] 12450

> ## phase 2 identical
> all.equal(Vphase2,drop(attr(vcov(tot),"phases")$phase2))
[1] TRUE
> all.equal(Vphase2,drop(attr(vcov(tot2),"phases")$phase2))
[1] TRUE
> ## phase 1 differs by 2.6% for old twophase estimator
> Vphase1/attr(vcov(tot),"phases")$phase1
         [,1]
[1,] 1.026068
> all.equal(Vphase1,as.vector(attr(vcov(tot2),"phases")$phase1))
[1] TRUE
> 
> 
> proc.time()
   user  system elapsed 
  3.561   0.201   3.809 

Generated by dwww version 1.15 on Fri May 24 02:19:16 CEST 2024.