Previous:   [Contents][Index]

16.3 Functions and Variables for Elliptic Integrals

Function: elliptic_f (phi, m)

The incomplete elliptic integral of the first kind, defined as

integrate(1/sqrt(1 - m*sin(x)^2), x, 0, phi)

See also elliptic_e and elliptic_kc.

‘Category: Elliptic integrals’

Function: elliptic_e (phi, m)

The incomplete elliptic integral of the second kind, defined as

elliptic_e(phi, m) = integrate(sqrt(1 - m*sin(x)^2), x, 0, phi)

See also elliptic_f and elliptic_ec.

‘Category: Elliptic integrals’

Function: elliptic_eu (u, m)

The incomplete elliptic integral of the second kind, defined as

integrate(dn(v,m)^2,v,0,u) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t, 0, tau)

where tau = sn(u,m).

This is related to elliptic_e by

elliptic_eu(u, m) = elliptic_e(asin(sn(u,m)),m)

See also elliptic_e.

‘Category: Elliptic integrals’

Function: elliptic_pi (n, phi, m)

The incomplete elliptic integral of the third kind, defined as

integrate(1/(1-n*sin(x)^2)/sqrt(1 - m*sin(x)^2), x, 0, phi)

‘Category: Elliptic integrals’

Function: elliptic_kc (m)

The complete elliptic integral of the first kind, defined as

integrate(1/sqrt(1 - m*sin(x)^2), x, 0, %pi/2)

For certain values of m, the value of the integral is known in terms of Gamma functions. Use makegamma to evaluate them.

‘Category: Elliptic integrals’

Function: elliptic_ec (m)

The complete elliptic integral of the second kind, defined as

integrate(sqrt(1 - m*sin(x)^2), x, 0, %pi/2)

For certain values of m, the value of the integral is known in terms of Gamma functions. Use makegamma to evaluate them.

‘Category: Elliptic integrals’


Previous:   [Contents][Index]