LAPACK 3.11.0
LAPACK: Linear Algebra PACKage

◆ zget23()

subroutine zget23 ( logical  COMP,
integer  ISRT,
character  BALANC,
integer  JTYPE,
double precision  THRESH,
integer, dimension( 4 )  ISEED,
integer  NOUNIT,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( lda, * )  H,
complex*16, dimension( * )  W,
complex*16, dimension( * )  W1,
complex*16, dimension( ldvl, * )  VL,
integer  LDVL,
complex*16, dimension( ldvr, * )  VR,
integer  LDVR,
complex*16, dimension( ldlre, * )  LRE,
integer  LDLRE,
double precision, dimension( * )  RCONDV,
double precision, dimension( * )  RCNDV1,
double precision, dimension( * )  RCDVIN,
double precision, dimension( * )  RCONDE,
double precision, dimension( * )  RCNDE1,
double precision, dimension( * )  RCDEIN,
double precision, dimension( * )  SCALE,
double precision, dimension( * )  SCALE1,
double precision, dimension( 11 )  RESULT,
complex*16, dimension( * )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
integer  INFO 
)

ZGET23

Purpose:
    ZGET23  checks the nonsymmetric eigenvalue problem driver CGEEVX.
    If COMP = .FALSE., the first 8 of the following tests will be
    performed on the input matrix A, and also test 9 if LWORK is
    sufficiently large.
    if COMP is .TRUE. all 11 tests will be performed.

    (1)     | A * VR - VR * W | / ( n |A| ulp )

      Here VR is the matrix of unit right eigenvectors.
      W is a diagonal matrix with diagonal entries W(j).

    (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )

      Here VL is the matrix of unit left eigenvectors, A**H is the
      conjugate transpose of A, and W is as above.

    (3)     | |VR(i)| - 1 | / ulp and largest component real

      VR(i) denotes the i-th column of VR.

    (4)     | |VL(i)| - 1 | / ulp and largest component real

      VL(i) denotes the i-th column of VL.

    (5)     0 if W(full) = W(partial), 1/ulp otherwise

      W(full) denotes the eigenvalues computed when VR, VL, RCONDV
      and RCONDE are also computed, and W(partial) denotes the
      eigenvalues computed when only some of VR, VL, RCONDV, and
      RCONDE are computed.

    (6)     0 if VR(full) = VR(partial), 1/ulp otherwise

      VR(full) denotes the right eigenvectors computed when VL, RCONDV
      and RCONDE are computed, and VR(partial) denotes the result
      when only some of VL and RCONDV are computed.

    (7)     0 if VL(full) = VL(partial), 1/ulp otherwise

      VL(full) denotes the left eigenvectors computed when VR, RCONDV
      and RCONDE are computed, and VL(partial) denotes the result
      when only some of VR and RCONDV are computed.

    (8)     0 if SCALE, ILO, IHI, ABNRM (full) =
                 SCALE, ILO, IHI, ABNRM (partial)
            1/ulp otherwise

      SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.
      (full) is when VR, VL, RCONDE and RCONDV are also computed, and
      (partial) is when some are not computed.

    (9)     0 if RCONDV(full) = RCONDV(partial), 1/ulp otherwise

      RCONDV(full) denotes the reciprocal condition numbers of the
      right eigenvectors computed when VR, VL and RCONDE are also
      computed. RCONDV(partial) denotes the reciprocal condition
      numbers when only some of VR, VL and RCONDE are computed.

   (10)     |RCONDV - RCDVIN| / cond(RCONDV)

      RCONDV is the reciprocal right eigenvector condition number
      computed by ZGEEVX and RCDVIN (the precomputed true value)
      is supplied as input. cond(RCONDV) is the condition number of
      RCONDV, and takes errors in computing RCONDV into account, so
      that the resulting quantity should be O(ULP). cond(RCONDV) is
      essentially given by norm(A)/RCONDE.

   (11)     |RCONDE - RCDEIN| / cond(RCONDE)

      RCONDE is the reciprocal eigenvalue condition number
      computed by ZGEEVX and RCDEIN (the precomputed true value)
      is supplied as input.  cond(RCONDE) is the condition number
      of RCONDE, and takes errors in computing RCONDE into account,
      so that the resulting quantity should be O(ULP). cond(RCONDE)
      is essentially given by norm(A)/RCONDV.
Parameters
[in]COMP
          COMP is LOGICAL
          COMP describes which input tests to perform:
            = .FALSE. if the computed condition numbers are not to
                      be tested against RCDVIN and RCDEIN
            = .TRUE.  if they are to be compared
[in]ISRT
          ISRT is INTEGER
          If COMP = .TRUE., ISRT indicates in how the eigenvalues
          corresponding to values in RCDVIN and RCDEIN are ordered:
            = 0 means the eigenvalues are sorted by
                increasing real part
            = 1 means the eigenvalues are sorted by
                increasing imaginary part
          If COMP = .FALSE., ISRT is not referenced.
[in]BALANC
          BALANC is CHARACTER
          Describes the balancing option to be tested.
            = 'N' for no permuting or diagonal scaling
            = 'P' for permuting but no diagonal scaling
            = 'S' for no permuting but diagonal scaling
            = 'B' for permuting and diagonal scaling
[in]JTYPE
          JTYPE is INTEGER
          Type of input matrix. Used to label output if error occurs.
[in]THRESH
          THRESH is DOUBLE PRECISION
          A test will count as "failed" if the "error", computed as
          described above, exceeds THRESH.  Note that the error
          is scaled to be O(1), so THRESH should be a reasonably
          small multiple of 1, e.g., 10 or 100.  In particular,
          it should not depend on the precision (single vs. double)
          or the size of the matrix.  It must be at least zero.
[in]ISEED
          ISEED is INTEGER array, dimension (4)
          If COMP = .FALSE., the random number generator seed
          used to produce matrix.
          If COMP = .TRUE., ISEED(1) = the number of the example.
          Used to label output if error occurs.
[in]NOUNIT
          NOUNIT is INTEGER
          The FORTRAN unit number for printing out error messages
          (e.g., if a routine returns INFO not equal to 0.)
[in]N
          N is INTEGER
          The dimension of A. N must be at least 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          Used to hold the matrix whose eigenvalues are to be
          computed.
[in]LDA
          LDA is INTEGER
          The leading dimension of A, and H. LDA must be at
          least 1 and at least N.
[out]H
          H is COMPLEX*16 array, dimension (LDA,N)
          Another copy of the test matrix A, modified by ZGEEVX.
[out]W
          W is COMPLEX*16 array, dimension (N)
          Contains the eigenvalues of A.
[out]W1
          W1 is COMPLEX*16 array, dimension (N)
          Like W, this array contains the eigenvalues of A,
          but those computed when ZGEEVX only computes a partial
          eigendecomposition, i.e. not the eigenvalues and left
          and right eigenvectors.
[out]VL
          VL is COMPLEX*16 array, dimension (LDVL,N)
          VL holds the computed left eigenvectors.
[in]LDVL
          LDVL is INTEGER
          Leading dimension of VL. Must be at least max(1,N).
[out]VR
          VR is COMPLEX*16 array, dimension (LDVR,N)
          VR holds the computed right eigenvectors.
[in]LDVR
          LDVR is INTEGER
          Leading dimension of VR. Must be at least max(1,N).
[out]LRE
          LRE is COMPLEX*16 array, dimension (LDLRE,N)
          LRE holds the computed right or left eigenvectors.
[in]LDLRE
          LDLRE is INTEGER
          Leading dimension of LRE. Must be at least max(1,N).
[out]RCONDV
          RCONDV is DOUBLE PRECISION array, dimension (N)
          RCONDV holds the computed reciprocal condition numbers
          for eigenvectors.
[out]RCNDV1
          RCNDV1 is DOUBLE PRECISION array, dimension (N)
          RCNDV1 holds more computed reciprocal condition numbers
          for eigenvectors.
[in]RCDVIN
          RCDVIN is DOUBLE PRECISION array, dimension (N)
          When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
          condition numbers for eigenvectors to be compared with
          RCONDV.
[out]RCONDE
          RCONDE is DOUBLE PRECISION array, dimension (N)
          RCONDE holds the computed reciprocal condition numbers
          for eigenvalues.
[out]RCNDE1
          RCNDE1 is DOUBLE PRECISION array, dimension (N)
          RCNDE1 holds more computed reciprocal condition numbers
          for eigenvalues.
[in]RCDEIN
          RCDEIN is DOUBLE PRECISION array, dimension (N)
          When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
          condition numbers for eigenvalues to be compared with
          RCONDE.
[out]SCALE
          SCALE is DOUBLE PRECISION array, dimension (N)
          Holds information describing balancing of matrix.
[out]SCALE1
          SCALE1 is DOUBLE PRECISION array, dimension (N)
          Holds information describing balancing of matrix.
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (11)
          The values computed by the 11 tests described above.
          The values are currently limited to 1/ulp, to avoid
          overflow.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The number of entries in WORK.  This must be at least
          2*N, and 2*N+N**2 if tests 9, 10 or 11 are to be performed.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (2*N)
[out]INFO
          INFO is INTEGER
          If 0,  successful exit.
          If <0, input parameter -INFO had an incorrect value.
          If >0, ZGEEVX returned an error code, the absolute
                 value of which is returned.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.