LAPACK 3.11.0
LAPACK: Linear Algebra PACKage

◆ dlatrs3()

subroutine dlatrs3 ( character  UPLO,
character  TRANS,
character  DIAG,
character  NORMIN,
integer  N,
integer  NRHS,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( ldx, * )  X,
integer  LDX,
double precision, dimension( * )  SCALE,
double precision, dimension( * )  CNORM,
double precision, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

DLATRS3 solves a triangular system of equations with the scale factors set to prevent overflow.

Purpose:
 DLATRS3 solves one of the triangular systems

    A * X = B * diag(scale)  or  A**T * X = B * diag(scale)

 with scaling to prevent overflow.  Here A is an upper or lower
 triangular matrix, A**T denotes the transpose of A. X and B are
 n by nrhs matrices and scale is an nrhs element vector of scaling
 factors. A scaling factor scale(j) is usually less than or equal
 to 1, chosen such that X(:,j) is less than the overflow threshold.
 If the matrix A is singular (A(j,j) = 0 for some j), then
 a non-trivial solution to A*X = 0 is returned. If the system is
 so badly scaled that the solution cannot be represented as
 (1/scale(k))*X(:,k), then x(:,k) = 0 and scale(k) is returned.

 This is a BLAS-3 version of LATRS for solving several right
 hand sides simultaneously.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the matrix A is upper or lower triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the operation applied to A.
          = 'N':  Solve A * x = s*b  (No transpose)
          = 'T':  Solve A**T* x = s*b  (Transpose)
          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
[in]DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the matrix A is unit triangular.
          = 'N':  Non-unit triangular
          = 'U':  Unit triangular
[in]NORMIN
          NORMIN is CHARACTER*1
          Specifies whether CNORM has been set or not.
          = 'Y':  CNORM contains the column norms on entry
          = 'N':  CNORM is not set on entry.  On exit, the norms will
                  be computed and stored in CNORM.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of X.  NRHS >= 0.
[in]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          The triangular matrix A.  If UPLO = 'U', the leading n by n
          upper triangular part of the array A contains the upper
          triangular matrix, and the strictly lower triangular part of
          A is not referenced.  If UPLO = 'L', the leading n by n lower
          triangular part of the array A contains the lower triangular
          matrix, and the strictly upper triangular part of A is not
          referenced.  If DIAG = 'U', the diagonal elements of A are
          also not referenced and are assumed to be 1.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max (1,N).
[in,out]X
          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
          On entry, the right hand side B of the triangular system.
          On exit, X is overwritten by the solution matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max (1,N).
[out]SCALE
          SCALE is DOUBLE PRECISION array, dimension (NRHS)
          The scaling factor s(k) is for the triangular system
          A * x(:,k) = s(k)*b(:,k)  or  A**T* x(:,k) = s(k)*b(:,k).
          If SCALE = 0, the matrix A is singular or badly scaled.
          If A(j,j) = 0 is encountered, a non-trivial vector x(:,k)
          that is an exact or approximate solution to A*x(:,k) = 0
          is returned. If the system so badly scaled that solution
          cannot be presented as x(:,k) * 1/s(k), then x(:,k) = 0
          is returned.
[in,out]CNORM
          CNORM is DOUBLE PRECISION array, dimension (N)

          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
          contains the norm of the off-diagonal part of the j-th column
          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
          must be greater than or equal to the 1-norm.

          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
          returns the 1-norm of the offdiagonal part of the j-th column
          of A.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (LWORK).
          On exit, if INFO = 0, WORK(1) returns the optimal size of
          WORK.
[in]LWORKLWORK is INTEGER LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where NBA = (N + NB - 1)/NB and NB is the optimal block size.

If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal dimensions of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

Parameters
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -k, the k-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details: