LAPACK 3.11.0
LAPACK: Linear Algebra PACKage

◆ cbdt01()

subroutine cbdt01 ( integer  M,
integer  N,
integer  KD,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( ldq, * )  Q,
integer  LDQ,
real, dimension( * )  D,
real, dimension( * )  E,
complex, dimension( ldpt, * )  PT,
integer  LDPT,
complex, dimension( * )  WORK,
real, dimension( * )  RWORK,
real  RESID 
)

CBDT01

Purpose:
 CBDT01 reconstructs a general matrix A from its bidiagonal form
    A = Q * B * P**H
 where Q (m by min(m,n)) and P**H (min(m,n) by n) are unitary
 matrices and B is bidiagonal.

 The test ratio to test the reduction is
    RESID = norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
 where EPS is the machine precision.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrices A and Q.
[in]N
          N is INTEGER
          The number of columns of the matrices A and P**H.
[in]KD
          KD is INTEGER
          If KD = 0, B is diagonal and the array E is not referenced.
          If KD = 1, the reduction was performed by xGEBRD; B is upper
          bidiagonal if M >= N, and lower bidiagonal if M < N.
          If KD = -1, the reduction was performed by xGBBRD; B is
          always upper bidiagonal.
[in]A
          A is COMPLEX array, dimension (LDA,N)
          The m by n matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[in]Q
          Q is COMPLEX array, dimension (LDQ,N)
          The m by min(m,n) unitary matrix Q in the reduction
          A = Q * B * P**H.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  LDQ >= max(1,M).
[in]D
          D is REAL array, dimension (min(M,N))
          The diagonal elements of the bidiagonal matrix B.
[in]E
          E is REAL array, dimension (min(M,N)-1)
          The superdiagonal elements of the bidiagonal matrix B if
          m >= n, or the subdiagonal elements of B if m < n.
[in]PT
          PT is COMPLEX array, dimension (LDPT,N)
          The min(m,n) by n unitary matrix P**H in the reduction
          A = Q * B * P**H.
[in]LDPT
          LDPT is INTEGER
          The leading dimension of the array PT.
          LDPT >= max(1,min(M,N)).
[out]WORK
          WORK is COMPLEX array, dimension (M+N)
[out]RWORK
          RWORK is REAL array, dimension (M)
[out]RESID
          RESID is REAL
          The test ratio:
          norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.