LAPACK 3.11.0
LAPACK: Linear Algebra PACKage

◆ clals0()

subroutine clals0 ( integer  ICOMPQ,
integer  NL,
integer  NR,
integer  SQRE,
integer  NRHS,
complex, dimension( ldb, * )  B,
integer  LDB,
complex, dimension( ldbx, * )  BX,
integer  LDBX,
integer, dimension( * )  PERM,
integer  GIVPTR,
integer, dimension( ldgcol, * )  GIVCOL,
integer  LDGCOL,
real, dimension( ldgnum, * )  GIVNUM,
integer  LDGNUM,
real, dimension( ldgnum, * )  POLES,
real, dimension( * )  DIFL,
real, dimension( ldgnum, * )  DIFR,
real, dimension( * )  Z,
integer  K,
real  C,
real  S,
real, dimension( * )  RWORK,
integer  INFO 
)

CLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd.

Download CLALS0 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLALS0 applies back the multiplying factors of either the left or the
 right singular vector matrix of a diagonal matrix appended by a row
 to the right hand side matrix B in solving the least squares problem
 using the divide-and-conquer SVD approach.

 For the left singular vector matrix, three types of orthogonal
 matrices are involved:

 (1L) Givens rotations: the number of such rotations is GIVPTR; the
      pairs of columns/rows they were applied to are stored in GIVCOL;
      and the C- and S-values of these rotations are stored in GIVNUM.

 (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
      row, and for J=2:N, PERM(J)-th row of B is to be moved to the
      J-th row.

 (3L) The left singular vector matrix of the remaining matrix.

 For the right singular vector matrix, four types of orthogonal
 matrices are involved:

 (1R) The right singular vector matrix of the remaining matrix.

 (2R) If SQRE = 1, one extra Givens rotation to generate the right
      null space.

 (3R) The inverse transformation of (2L).

 (4R) The inverse transformation of (1L).
Parameters
[in]ICOMPQ
          ICOMPQ is INTEGER
         Specifies whether singular vectors are to be computed in
         factored form:
         = 0: Left singular vector matrix.
         = 1: Right singular vector matrix.
[in]NL
          NL is INTEGER
         The row dimension of the upper block. NL >= 1.
[in]NR
          NR is INTEGER
         The row dimension of the lower block. NR >= 1.
[in]SQRE
          SQRE is INTEGER
         = 0: the lower block is an NR-by-NR square matrix.
         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.

         The bidiagonal matrix has row dimension N = NL + NR + 1,
         and column dimension M = N + SQRE.
[in]NRHS
          NRHS is INTEGER
         The number of columns of B and BX. NRHS must be at least 1.
[in,out]B
          B is COMPLEX array, dimension ( LDB, NRHS )
         On input, B contains the right hand sides of the least
         squares problem in rows 1 through M. On output, B contains
         the solution X in rows 1 through N.
[in]LDB
          LDB is INTEGER
         The leading dimension of B. LDB must be at least
         max(1,MAX( M, N ) ).
[out]BX
          BX is COMPLEX array, dimension ( LDBX, NRHS )
[in]LDBX
          LDBX is INTEGER
         The leading dimension of BX.
[in]PERM
          PERM is INTEGER array, dimension ( N )
         The permutations (from deflation and sorting) applied
         to the two blocks.
[in]GIVPTR
          GIVPTR is INTEGER
         The number of Givens rotations which took place in this
         subproblem.
[in]GIVCOL
          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
         Each pair of numbers indicates a pair of rows/columns
         involved in a Givens rotation.
[in]LDGCOL
          LDGCOL is INTEGER
         The leading dimension of GIVCOL, must be at least N.
[in]GIVNUM
          GIVNUM is REAL array, dimension ( LDGNUM, 2 )
         Each number indicates the C or S value used in the
         corresponding Givens rotation.
[in]LDGNUM
          LDGNUM is INTEGER
         The leading dimension of arrays DIFR, POLES and
         GIVNUM, must be at least K.
[in]POLES
          POLES is REAL array, dimension ( LDGNUM, 2 )
         On entry, POLES(1:K, 1) contains the new singular
         values obtained from solving the secular equation, and
         POLES(1:K, 2) is an array containing the poles in the secular
         equation.
[in]DIFL
          DIFL is REAL array, dimension ( K ).
         On entry, DIFL(I) is the distance between I-th updated
         (undeflated) singular value and the I-th (undeflated) old
         singular value.
[in]DIFR
          DIFR is REAL array, dimension ( LDGNUM, 2 ).
         On entry, DIFR(I, 1) contains the distances between I-th
         updated (undeflated) singular value and the I+1-th
         (undeflated) old singular value. And DIFR(I, 2) is the
         normalizing factor for the I-th right singular vector.
[in]Z
          Z is REAL array, dimension ( K )
         Contain the components of the deflation-adjusted updating row
         vector.
[in]K
          K is INTEGER
         Contains the dimension of the non-deflated matrix,
         This is the order of the related secular equation. 1 <= K <=N.
[in]C
          C is REAL
         C contains garbage if SQRE =0 and the C-value of a Givens
         rotation related to the right null space if SQRE = 1.
[in]S
          S is REAL
         S contains garbage if SQRE =0 and the S-value of a Givens
         rotation related to the right null space if SQRE = 1.
[out]RWORK
          RWORK is REAL array, dimension
         ( K*(1+NRHS) + 2*NRHS )
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA