LAPACK 3.11.0
LAPACK: Linear Algebra PACKage

◆ dsycon_3()

subroutine dsycon_3 ( character  UPLO,
integer  N,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( * )  E,
integer, dimension( * )  IPIV,
double precision  ANORM,
double precision  RCOND,
double precision, dimension( * )  WORK,
integer, dimension( * )  IWORK,
integer  INFO 
)

DSYCON_3

Download DSYCON_3 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DSYCON_3 estimates the reciprocal of the condition number (in the
 1-norm) of a real symmetric matrix A using the factorization
 computed by DSYTRF_RK or DSYTRF_BK:

    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),

 where U (or L) is unit upper (or lower) triangular matrix,
 U**T (or L**T) is the transpose of U (or L), P is a permutation
 matrix, P**T is the transpose of P, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

 An estimate is obtained for norm(inv(A)), and the reciprocal of the
 condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 This routine uses BLAS3 solver DSYTRS_3.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are
          stored as an upper or lower triangular matrix:
          = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
          = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          Diagonal of the block diagonal matrix D and factors U or L
          as computed by DSYTRF_RK and DSYTRF_BK:
            a) ONLY diagonal elements of the symmetric block diagonal
               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
               (superdiagonal (or subdiagonal) elements of D
                should be provided on entry in array E), and
            b) If UPLO = 'U': factor U in the superdiagonal part of A.
               If UPLO = 'L': factor L in the subdiagonal part of A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]E
          E is DOUBLE PRECISION array, dimension (N)
          On entry, contains the superdiagonal (or subdiagonal)
          elements of the symmetric block diagonal matrix D
          with 1-by-1 or 2-by-2 diagonal blocks, where
          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.

          NOTE: For 1-by-1 diagonal block D(k), where
          1 <= k <= N, the element E(k) is not referenced in both
          UPLO = 'U' or UPLO = 'L' cases.
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by DSYTRF_RK or DSYTRF_BK.
[in]ANORM
          ANORM is DOUBLE PRECISION
          The 1-norm of the original matrix A.
[out]RCOND
          RCOND is DOUBLE PRECISION
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
          estimate of the 1-norm of inv(A) computed in this routine.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (2*N)
[out]IWORK
          IWORK is INTEGER array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
  June 2017,  Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester