Crypto++ 8.7
Free C++ class library of cryptographic schemes
chacha_simd.cpp
1// chacha_simd.cpp - written and placed in the public domain by
2// Jack Lloyd and Jeffrey Walton
3//
4// This source file uses intrinsics and built-ins to gain access to
5// SSE2, ARM NEON and ARMv8a, Power7 and Altivec instructions. A separate
6// source file is needed because additional CXXFLAGS are required to enable
7// the appropriate instructions sets in some build configurations.
8//
9// SSE2 implementation based on Botan's chacha_sse2.cpp. Many thanks
10// to Jack Lloyd and the Botan team for allowing us to use it.
11//
12// The SSE2 implementation is kind of unusual among Crypto++ algorithms.
13// We guard on CRYTPOPP_SSE2_AVAILABLE and use HasSSE2() at runtime. However,
14// if the compiler says a target machine has SSSE3 or XOP available (say, by
15// way of -march=native), then we can pull another 150 to 800 MB/s out of
16// ChaCha. To capture SSSE3 and XOP we use the compiler defines __SSSE3__ and
17// __XOP__ and forgo runtime tests.
18//
19// Runtime tests for HasSSSE3() and HasXop() are too expensive to make a
20// sub-case of SSE2. The rotates are on a critical path and the runtime tests
21// crush performance.
22//
23// Here are some relative numbers for ChaCha8:
24// * Intel Skylake, 3.0 GHz: SSE2 at 2160 MB/s; SSSE3 at 2310 MB/s.
25// * AMD Bulldozer, 3.3 GHz: SSE2 at 1680 MB/s; XOP at 2510 MB/s.
26
27#include "pch.h"
28#include "config.h"
29
30#include "chacha.h"
31#include "misc.h"
32
33// Internal compiler error in GCC 3.3 and below
34#if defined(__GNUC__) && (__GNUC__ < 4)
35# undef CRYPTOPP_SSE2_INTRIN_AVAILABLE
36#endif
37
38#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
39# include <xmmintrin.h>
40# include <emmintrin.h>
41#endif
42
43#if defined(__SSSE3__)
44# include <tmmintrin.h>
45#endif
46
47#if defined(__XOP__)
48# include <ammintrin.h>
49# if defined(__GNUC__)
50# include <x86intrin.h>
51# endif
52#endif
53
54#if (CRYPTOPP_ARM_NEON_HEADER)
55# include <arm_neon.h>
56#endif
57
58#if (CRYPTOPP_ARM_ACLE_HEADER)
59# include <stdint.h>
60# include <arm_acle.h>
61#endif
62
63#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
64# include "ppc_simd.h"
65#endif
66
67// Squash MS LNK4221 and libtool warnings
68extern const char CHACHA_SIMD_FNAME[] = __FILE__;
69
70ANONYMOUS_NAMESPACE_BEGIN
71
72// ***************************** NEON ***************************** //
73
74#if (CRYPTOPP_ARM_NEON_AVAILABLE)
75
76template <unsigned int R>
77inline uint32x4_t RotateLeft(const uint32x4_t& val)
78{
79 return vorrq_u32(vshlq_n_u32(val, R), vshrq_n_u32(val, 32 - R));
80}
81
82template <unsigned int R>
83inline uint32x4_t RotateRight(const uint32x4_t& val)
84{
85 return vorrq_u32(vshlq_n_u32(val, 32 - R), vshrq_n_u32(val, R));
86}
87
88template <>
89inline uint32x4_t RotateLeft<8>(const uint32x4_t& val)
90{
91#if defined(__aarch32__) || defined(__aarch64__)
92 const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 };
93 const uint8x16_t mask = vld1q_u8(maskb);
94
95 return vreinterpretq_u32_u8(
96 vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
97#else
98 // fallback to slower C++ rotation.
99 return vorrq_u32(vshlq_n_u32(val, 8),
100 vshrq_n_u32(val, 32 - 8));
101#endif
102}
103
104template <>
105inline uint32x4_t RotateLeft<16>(const uint32x4_t& val)
106{
107#if defined(__aarch32__) || defined(__aarch64__)
108 return vreinterpretq_u32_u16(
109 vrev32q_u16(vreinterpretq_u16_u32(val)));
110#else
111 // fallback to slower C++ rotation.
112 return vorrq_u32(vshlq_n_u32(val, 16),
113 vshrq_n_u32(val, 32 - 16));
114#endif
115}
116
117template <>
118inline uint32x4_t RotateRight<8>(const uint32x4_t& val)
119{
120#if defined(__aarch32__) || defined(__aarch64__)
121 const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,15,12 };
122 const uint8x16_t mask = vld1q_u8(maskb);
123
124 return vreinterpretq_u32_u8(
125 vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
126#else
127 // fallback to slower C++ rotation.
128 return vorrq_u32(vshrq_n_u32(val, 8),
129 vshlq_n_u32(val, 32 - 8));
130#endif
131}
132
133template <>
134inline uint32x4_t RotateRight<16>(const uint32x4_t& val)
135{
136#if defined(__aarch32__) || defined(__aarch64__)
137 return vreinterpretq_u32_u16(
138 vrev32q_u16(vreinterpretq_u16_u32(val)));
139#else
140 // fallback to slower C++ rotation.
141 return vorrq_u32(vshrq_n_u32(val, 16),
142 vshlq_n_u32(val, 32 - 16));
143#endif
144}
145
146// ChaCha's use of x86 shuffle is really a 4, 8, or 12 byte
147// rotation on the 128-bit vector word:
148// * [3,2,1,0] => [0,3,2,1] is Extract<1>(x)
149// * [3,2,1,0] => [1,0,3,2] is Extract<2>(x)
150// * [3,2,1,0] => [2,1,0,3] is Extract<3>(x)
151template <unsigned int S>
152inline uint32x4_t Extract(const uint32x4_t& val)
153{
154 return vextq_u32(val, val, S);
155}
156
157// Helper to perform 64-bit addition across two elements of 32-bit vectors
158inline uint32x4_t Add64(const uint32x4_t& a, const uint32x4_t& b)
159{
160 return vreinterpretq_u32_u64(
161 vaddq_u64(
162 vreinterpretq_u64_u32(a),
163 vreinterpretq_u64_u32(b)));
164}
165
166#endif // CRYPTOPP_ARM_NEON_AVAILABLE
167
168// ***************************** SSE2 ***************************** //
169
170#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
171
172template <unsigned int R>
173inline __m128i RotateLeft(const __m128i val)
174{
175#ifdef __XOP__
176 return _mm_roti_epi32(val, R);
177#else
178 return _mm_or_si128(_mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R));
179#endif
180}
181
182template <>
183inline __m128i RotateLeft<8>(const __m128i val)
184{
185#if defined(__XOP__)
186 return _mm_roti_epi32(val, 8);
187#elif defined(__SSSE3__)
188 const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3);
189 return _mm_shuffle_epi8(val, mask);
190#else
191 return _mm_or_si128(_mm_slli_epi32(val, 8), _mm_srli_epi32(val, 32-8));
192#endif
193}
194
195template <>
196inline __m128i RotateLeft<16>(const __m128i val)
197{
198#if defined(__XOP__)
199 return _mm_roti_epi32(val, 16);
200#elif defined(__SSSE3__)
201 const __m128i mask = _mm_set_epi8(13,12,15,14, 9,8,11,10, 5,4,7,6, 1,0,3,2);
202 return _mm_shuffle_epi8(val, mask);
203#else
204 return _mm_or_si128(_mm_slli_epi32(val, 16), _mm_srli_epi32(val, 32-16));
205#endif
206}
207
208#endif // CRYPTOPP_SSE2_INTRIN_AVAILABLE
209
210// **************************** Altivec **************************** //
211
212#if (CRYPTOPP_ALTIVEC_AVAILABLE)
213
214// ChaCha_OperateKeystream is optimized for Altivec. However, Altivec
215// is supported by using vec_ld and vec_st, and using a composite VecAdd
216// that supports 64-bit element adds. vec_ld and vec_st add significant
217// overhead when memory is not aligned. Despite the drawbacks Altivec
218// is profitable. The numbers for ChaCha8 are:
219//
220// PowerMac, C++, 2.0 GHz: 205 MB/s, 9.29 cpb
221// PowerMac, Altivec, 2.0 GHz: 471 MB/s, 4.09 cpb
222
229
230// Permutes bytes in packed 32-bit words to little endian.
231// State is already in proper endian order. Input and
232// output must be permuted during load and save.
233inline uint32x4_p VecLoad32LE(const uint8_t src[16])
234{
235#if (CRYPTOPP_BIG_ENDIAN)
236 const uint8x16_p mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};
237 const uint32x4_p val = VecLoad(src);
238 return VecPermute(val, val, mask);
239#else
240 return VecLoad(src);
241#endif
242}
243
244// Permutes bytes in packed 32-bit words to little endian.
245// State is already in proper endian order. Input and
246// output must be permuted during load and save.
247inline void VecStore32LE(uint8_t dest[16], const uint32x4_p& val)
248{
249#if (CRYPTOPP_BIG_ENDIAN)
250 const uint8x16_p mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};
251 VecStore(VecPermute(val, val, mask), dest);
252#else
253 return VecStore(val, dest);
254#endif
255}
256
257// ChaCha's use of x86 shuffle is really a 4, 8, or 12 byte
258// rotation on the 128-bit vector word:
259// * [3,2,1,0] => [0,3,2,1] is Shuffle<1>(x)
260// * [3,2,1,0] => [1,0,3,2] is Shuffle<2>(x)
261// * [3,2,1,0] => [2,1,0,3] is Shuffle<3>(x)
262template <unsigned int S>
263inline uint32x4_p Shuffle(const uint32x4_p& val)
264{
266 return val;
267}
268
269template <>
270inline uint32x4_p Shuffle<1>(const uint32x4_p& val)
271{
272 const uint8x16_p mask = {4,5,6,7, 8,9,10,11, 12,13,14,15, 0,1,2,3};
273 return VecPermute(val, val, mask);
274}
275
276template <>
277inline uint32x4_p Shuffle<2>(const uint32x4_p& val)
278{
279 const uint8x16_p mask = {8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7};
280 return VecPermute(val, val, mask);
281}
282
283template <>
284inline uint32x4_p Shuffle<3>(const uint32x4_p& val)
285{
286 const uint8x16_p mask = {12,13,14,15, 0,1,2,3, 4,5,6,7, 8,9,10,11};
287 return VecPermute(val, val, mask);
288}
289
290#endif // CRYPTOPP_ALTIVEC_AVAILABLE
291
292ANONYMOUS_NAMESPACE_END
293
294NAMESPACE_BEGIN(CryptoPP)
295
296// ***************************** NEON ***************************** //
297
298#if (CRYPTOPP_ARM_NEON_AVAILABLE)
299
300void ChaCha_OperateKeystream_NEON(const word32 *state, const byte* input, byte *output, unsigned int rounds)
301{
302 const uint32x4_t state0 = vld1q_u32(state + 0*4);
303 const uint32x4_t state1 = vld1q_u32(state + 1*4);
304 const uint32x4_t state2 = vld1q_u32(state + 2*4);
305 const uint32x4_t state3 = vld1q_u32(state + 3*4);
306
307 const unsigned int w[] = {1,0,0,0, 2,0,0,0, 3,0,0,0};
308 const uint32x4_t CTRS[3] = {
309 vld1q_u32(w+0), vld1q_u32(w+4), vld1q_u32(w+8)
310 };
311
312 uint32x4_t r0_0 = state0;
313 uint32x4_t r0_1 = state1;
314 uint32x4_t r0_2 = state2;
315 uint32x4_t r0_3 = state3;
316
317 uint32x4_t r1_0 = state0;
318 uint32x4_t r1_1 = state1;
319 uint32x4_t r1_2 = state2;
320 uint32x4_t r1_3 = Add64(r0_3, CTRS[0]);
321
322 uint32x4_t r2_0 = state0;
323 uint32x4_t r2_1 = state1;
324 uint32x4_t r2_2 = state2;
325 uint32x4_t r2_3 = Add64(r0_3, CTRS[1]);
326
327 uint32x4_t r3_0 = state0;
328 uint32x4_t r3_1 = state1;
329 uint32x4_t r3_2 = state2;
330 uint32x4_t r3_3 = Add64(r0_3, CTRS[2]);
331
332 for (int i = static_cast<int>(rounds); i > 0; i -= 2)
333 {
334 r0_0 = vaddq_u32(r0_0, r0_1);
335 r1_0 = vaddq_u32(r1_0, r1_1);
336 r2_0 = vaddq_u32(r2_0, r2_1);
337 r3_0 = vaddq_u32(r3_0, r3_1);
338
339 r0_3 = veorq_u32(r0_3, r0_0);
340 r1_3 = veorq_u32(r1_3, r1_0);
341 r2_3 = veorq_u32(r2_3, r2_0);
342 r3_3 = veorq_u32(r3_3, r3_0);
343
344 r0_3 = RotateLeft<16>(r0_3);
345 r1_3 = RotateLeft<16>(r1_3);
346 r2_3 = RotateLeft<16>(r2_3);
347 r3_3 = RotateLeft<16>(r3_3);
348
349 r0_2 = vaddq_u32(r0_2, r0_3);
350 r1_2 = vaddq_u32(r1_2, r1_3);
351 r2_2 = vaddq_u32(r2_2, r2_3);
352 r3_2 = vaddq_u32(r3_2, r3_3);
353
354 r0_1 = veorq_u32(r0_1, r0_2);
355 r1_1 = veorq_u32(r1_1, r1_2);
356 r2_1 = veorq_u32(r2_1, r2_2);
357 r3_1 = veorq_u32(r3_1, r3_2);
358
359 r0_1 = RotateLeft<12>(r0_1);
360 r1_1 = RotateLeft<12>(r1_1);
361 r2_1 = RotateLeft<12>(r2_1);
362 r3_1 = RotateLeft<12>(r3_1);
363
364 r0_0 = vaddq_u32(r0_0, r0_1);
365 r1_0 = vaddq_u32(r1_0, r1_1);
366 r2_0 = vaddq_u32(r2_0, r2_1);
367 r3_0 = vaddq_u32(r3_0, r3_1);
368
369 r0_3 = veorq_u32(r0_3, r0_0);
370 r1_3 = veorq_u32(r1_3, r1_0);
371 r2_3 = veorq_u32(r2_3, r2_0);
372 r3_3 = veorq_u32(r3_3, r3_0);
373
374 r0_3 = RotateLeft<8>(r0_3);
375 r1_3 = RotateLeft<8>(r1_3);
376 r2_3 = RotateLeft<8>(r2_3);
377 r3_3 = RotateLeft<8>(r3_3);
378
379 r0_2 = vaddq_u32(r0_2, r0_3);
380 r1_2 = vaddq_u32(r1_2, r1_3);
381 r2_2 = vaddq_u32(r2_2, r2_3);
382 r3_2 = vaddq_u32(r3_2, r3_3);
383
384 r0_1 = veorq_u32(r0_1, r0_2);
385 r1_1 = veorq_u32(r1_1, r1_2);
386 r2_1 = veorq_u32(r2_1, r2_2);
387 r3_1 = veorq_u32(r3_1, r3_2);
388
389 r0_1 = RotateLeft<7>(r0_1);
390 r1_1 = RotateLeft<7>(r1_1);
391 r2_1 = RotateLeft<7>(r2_1);
392 r3_1 = RotateLeft<7>(r3_1);
393
394 r0_1 = Extract<1>(r0_1);
395 r0_2 = Extract<2>(r0_2);
396 r0_3 = Extract<3>(r0_3);
397
398 r1_1 = Extract<1>(r1_1);
399 r1_2 = Extract<2>(r1_2);
400 r1_3 = Extract<3>(r1_3);
401
402 r2_1 = Extract<1>(r2_1);
403 r2_2 = Extract<2>(r2_2);
404 r2_3 = Extract<3>(r2_3);
405
406 r3_1 = Extract<1>(r3_1);
407 r3_2 = Extract<2>(r3_2);
408 r3_3 = Extract<3>(r3_3);
409
410 r0_0 = vaddq_u32(r0_0, r0_1);
411 r1_0 = vaddq_u32(r1_0, r1_1);
412 r2_0 = vaddq_u32(r2_0, r2_1);
413 r3_0 = vaddq_u32(r3_0, r3_1);
414
415 r0_3 = veorq_u32(r0_3, r0_0);
416 r1_3 = veorq_u32(r1_3, r1_0);
417 r2_3 = veorq_u32(r2_3, r2_0);
418 r3_3 = veorq_u32(r3_3, r3_0);
419
420 r0_3 = RotateLeft<16>(r0_3);
421 r1_3 = RotateLeft<16>(r1_3);
422 r2_3 = RotateLeft<16>(r2_3);
423 r3_3 = RotateLeft<16>(r3_3);
424
425 r0_2 = vaddq_u32(r0_2, r0_3);
426 r1_2 = vaddq_u32(r1_2, r1_3);
427 r2_2 = vaddq_u32(r2_2, r2_3);
428 r3_2 = vaddq_u32(r3_2, r3_3);
429
430 r0_1 = veorq_u32(r0_1, r0_2);
431 r1_1 = veorq_u32(r1_1, r1_2);
432 r2_1 = veorq_u32(r2_1, r2_2);
433 r3_1 = veorq_u32(r3_1, r3_2);
434
435 r0_1 = RotateLeft<12>(r0_1);
436 r1_1 = RotateLeft<12>(r1_1);
437 r2_1 = RotateLeft<12>(r2_1);
438 r3_1 = RotateLeft<12>(r3_1);
439
440 r0_0 = vaddq_u32(r0_0, r0_1);
441 r1_0 = vaddq_u32(r1_0, r1_1);
442 r2_0 = vaddq_u32(r2_0, r2_1);
443 r3_0 = vaddq_u32(r3_0, r3_1);
444
445 r0_3 = veorq_u32(r0_3, r0_0);
446 r1_3 = veorq_u32(r1_3, r1_0);
447 r2_3 = veorq_u32(r2_3, r2_0);
448 r3_3 = veorq_u32(r3_3, r3_0);
449
450 r0_3 = RotateLeft<8>(r0_3);
451 r1_3 = RotateLeft<8>(r1_3);
452 r2_3 = RotateLeft<8>(r2_3);
453 r3_3 = RotateLeft<8>(r3_3);
454
455 r0_2 = vaddq_u32(r0_2, r0_3);
456 r1_2 = vaddq_u32(r1_2, r1_3);
457 r2_2 = vaddq_u32(r2_2, r2_3);
458 r3_2 = vaddq_u32(r3_2, r3_3);
459
460 r0_1 = veorq_u32(r0_1, r0_2);
461 r1_1 = veorq_u32(r1_1, r1_2);
462 r2_1 = veorq_u32(r2_1, r2_2);
463 r3_1 = veorq_u32(r3_1, r3_2);
464
465 r0_1 = RotateLeft<7>(r0_1);
466 r1_1 = RotateLeft<7>(r1_1);
467 r2_1 = RotateLeft<7>(r2_1);
468 r3_1 = RotateLeft<7>(r3_1);
469
470 r0_1 = Extract<3>(r0_1);
471 r0_2 = Extract<2>(r0_2);
472 r0_3 = Extract<1>(r0_3);
473
474 r1_1 = Extract<3>(r1_1);
475 r1_2 = Extract<2>(r1_2);
476 r1_3 = Extract<1>(r1_3);
477
478 r2_1 = Extract<3>(r2_1);
479 r2_2 = Extract<2>(r2_2);
480 r2_3 = Extract<1>(r2_3);
481
482 r3_1 = Extract<3>(r3_1);
483 r3_2 = Extract<2>(r3_2);
484 r3_3 = Extract<1>(r3_3);
485 }
486
487 r0_0 = vaddq_u32(r0_0, state0);
488 r0_1 = vaddq_u32(r0_1, state1);
489 r0_2 = vaddq_u32(r0_2, state2);
490 r0_3 = vaddq_u32(r0_3, state3);
491
492 r1_0 = vaddq_u32(r1_0, state0);
493 r1_1 = vaddq_u32(r1_1, state1);
494 r1_2 = vaddq_u32(r1_2, state2);
495 r1_3 = vaddq_u32(r1_3, state3);
496 r1_3 = Add64(r1_3, CTRS[0]);
497
498 r2_0 = vaddq_u32(r2_0, state0);
499 r2_1 = vaddq_u32(r2_1, state1);
500 r2_2 = vaddq_u32(r2_2, state2);
501 r2_3 = vaddq_u32(r2_3, state3);
502 r2_3 = Add64(r2_3, CTRS[1]);
503
504 r3_0 = vaddq_u32(r3_0, state0);
505 r3_1 = vaddq_u32(r3_1, state1);
506 r3_2 = vaddq_u32(r3_2, state2);
507 r3_3 = vaddq_u32(r3_3, state3);
508 r3_3 = Add64(r3_3, CTRS[2]);
509
510 if (input)
511 {
512 r0_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 0*16)), r0_0);
513 r0_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 1*16)), r0_1);
514 r0_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 2*16)), r0_2);
515 r0_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 3*16)), r0_3);
516 }
517
518 vst1q_u8(output + 0*16, vreinterpretq_u8_u32(r0_0));
519 vst1q_u8(output + 1*16, vreinterpretq_u8_u32(r0_1));
520 vst1q_u8(output + 2*16, vreinterpretq_u8_u32(r0_2));
521 vst1q_u8(output + 3*16, vreinterpretq_u8_u32(r0_3));
522
523 if (input)
524 {
525 r1_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 4*16)), r1_0);
526 r1_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 5*16)), r1_1);
527 r1_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 6*16)), r1_2);
528 r1_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 7*16)), r1_3);
529 }
530
531 vst1q_u8(output + 4*16, vreinterpretq_u8_u32(r1_0));
532 vst1q_u8(output + 5*16, vreinterpretq_u8_u32(r1_1));
533 vst1q_u8(output + 6*16, vreinterpretq_u8_u32(r1_2));
534 vst1q_u8(output + 7*16, vreinterpretq_u8_u32(r1_3));
535
536 if (input)
537 {
538 r2_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 8*16)), r2_0);
539 r2_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 9*16)), r2_1);
540 r2_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 10*16)), r2_2);
541 r2_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 11*16)), r2_3);
542 }
543
544 vst1q_u8(output + 8*16, vreinterpretq_u8_u32(r2_0));
545 vst1q_u8(output + 9*16, vreinterpretq_u8_u32(r2_1));
546 vst1q_u8(output + 10*16, vreinterpretq_u8_u32(r2_2));
547 vst1q_u8(output + 11*16, vreinterpretq_u8_u32(r2_3));
548
549 if (input)
550 {
551 r3_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 12*16)), r3_0);
552 r3_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 13*16)), r3_1);
553 r3_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 14*16)), r3_2);
554 r3_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 15*16)), r3_3);
555 }
556
557 vst1q_u8(output + 12*16, vreinterpretq_u8_u32(r3_0));
558 vst1q_u8(output + 13*16, vreinterpretq_u8_u32(r3_1));
559 vst1q_u8(output + 14*16, vreinterpretq_u8_u32(r3_2));
560 vst1q_u8(output + 15*16, vreinterpretq_u8_u32(r3_3));
561}
562
563#endif // CRYPTOPP_ARM_NEON_AVAILABLE
564
565// ***************************** SSE2 ***************************** //
566
567#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
568
569void ChaCha_OperateKeystream_SSE2(const word32 *state, const byte* input, byte *output, unsigned int rounds)
570{
571 const __m128i state0 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+0*4));
572 const __m128i state1 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+1*4));
573 const __m128i state2 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+2*4));
574 const __m128i state3 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+3*4));
575
576 __m128i r0_0 = state0;
577 __m128i r0_1 = state1;
578 __m128i r0_2 = state2;
579 __m128i r0_3 = state3;
580
581 __m128i r1_0 = state0;
582 __m128i r1_1 = state1;
583 __m128i r1_2 = state2;
584 __m128i r1_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 1));
585
586 __m128i r2_0 = state0;
587 __m128i r2_1 = state1;
588 __m128i r2_2 = state2;
589 __m128i r2_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 2));
590
591 __m128i r3_0 = state0;
592 __m128i r3_1 = state1;
593 __m128i r3_2 = state2;
594 __m128i r3_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 3));
595
596 for (int i = static_cast<int>(rounds); i > 0; i -= 2)
597 {
598 r0_0 = _mm_add_epi32(r0_0, r0_1);
599 r1_0 = _mm_add_epi32(r1_0, r1_1);
600 r2_0 = _mm_add_epi32(r2_0, r2_1);
601 r3_0 = _mm_add_epi32(r3_0, r3_1);
602
603 r0_3 = _mm_xor_si128(r0_3, r0_0);
604 r1_3 = _mm_xor_si128(r1_3, r1_0);
605 r2_3 = _mm_xor_si128(r2_3, r2_0);
606 r3_3 = _mm_xor_si128(r3_3, r3_0);
607
608 r0_3 = RotateLeft<16>(r0_3);
609 r1_3 = RotateLeft<16>(r1_3);
610 r2_3 = RotateLeft<16>(r2_3);
611 r3_3 = RotateLeft<16>(r3_3);
612
613 r0_2 = _mm_add_epi32(r0_2, r0_3);
614 r1_2 = _mm_add_epi32(r1_2, r1_3);
615 r2_2 = _mm_add_epi32(r2_2, r2_3);
616 r3_2 = _mm_add_epi32(r3_2, r3_3);
617
618 r0_1 = _mm_xor_si128(r0_1, r0_2);
619 r1_1 = _mm_xor_si128(r1_1, r1_2);
620 r2_1 = _mm_xor_si128(r2_1, r2_2);
621 r3_1 = _mm_xor_si128(r3_1, r3_2);
622
623 r0_1 = RotateLeft<12>(r0_1);
624 r1_1 = RotateLeft<12>(r1_1);
625 r2_1 = RotateLeft<12>(r2_1);
626 r3_1 = RotateLeft<12>(r3_1);
627
628 r0_0 = _mm_add_epi32(r0_0, r0_1);
629 r1_0 = _mm_add_epi32(r1_0, r1_1);
630 r2_0 = _mm_add_epi32(r2_0, r2_1);
631 r3_0 = _mm_add_epi32(r3_0, r3_1);
632
633 r0_3 = _mm_xor_si128(r0_3, r0_0);
634 r1_3 = _mm_xor_si128(r1_3, r1_0);
635 r2_3 = _mm_xor_si128(r2_3, r2_0);
636 r3_3 = _mm_xor_si128(r3_3, r3_0);
637
638 r0_3 = RotateLeft<8>(r0_3);
639 r1_3 = RotateLeft<8>(r1_3);
640 r2_3 = RotateLeft<8>(r2_3);
641 r3_3 = RotateLeft<8>(r3_3);
642
643 r0_2 = _mm_add_epi32(r0_2, r0_3);
644 r1_2 = _mm_add_epi32(r1_2, r1_3);
645 r2_2 = _mm_add_epi32(r2_2, r2_3);
646 r3_2 = _mm_add_epi32(r3_2, r3_3);
647
648 r0_1 = _mm_xor_si128(r0_1, r0_2);
649 r1_1 = _mm_xor_si128(r1_1, r1_2);
650 r2_1 = _mm_xor_si128(r2_1, r2_2);
651 r3_1 = _mm_xor_si128(r3_1, r3_2);
652
653 r0_1 = RotateLeft<7>(r0_1);
654 r1_1 = RotateLeft<7>(r1_1);
655 r2_1 = RotateLeft<7>(r2_1);
656 r3_1 = RotateLeft<7>(r3_1);
657
658 r0_1 = _mm_shuffle_epi32(r0_1, _MM_SHUFFLE(0, 3, 2, 1));
659 r0_2 = _mm_shuffle_epi32(r0_2, _MM_SHUFFLE(1, 0, 3, 2));
660 r0_3 = _mm_shuffle_epi32(r0_3, _MM_SHUFFLE(2, 1, 0, 3));
661
662 r1_1 = _mm_shuffle_epi32(r1_1, _MM_SHUFFLE(0, 3, 2, 1));
663 r1_2 = _mm_shuffle_epi32(r1_2, _MM_SHUFFLE(1, 0, 3, 2));
664 r1_3 = _mm_shuffle_epi32(r1_3, _MM_SHUFFLE(2, 1, 0, 3));
665
666 r2_1 = _mm_shuffle_epi32(r2_1, _MM_SHUFFLE(0, 3, 2, 1));
667 r2_2 = _mm_shuffle_epi32(r2_2, _MM_SHUFFLE(1, 0, 3, 2));
668 r2_3 = _mm_shuffle_epi32(r2_3, _MM_SHUFFLE(2, 1, 0, 3));
669
670 r3_1 = _mm_shuffle_epi32(r3_1, _MM_SHUFFLE(0, 3, 2, 1));
671 r3_2 = _mm_shuffle_epi32(r3_2, _MM_SHUFFLE(1, 0, 3, 2));
672 r3_3 = _mm_shuffle_epi32(r3_3, _MM_SHUFFLE(2, 1, 0, 3));
673
674 r0_0 = _mm_add_epi32(r0_0, r0_1);
675 r1_0 = _mm_add_epi32(r1_0, r1_1);
676 r2_0 = _mm_add_epi32(r2_0, r2_1);
677 r3_0 = _mm_add_epi32(r3_0, r3_1);
678
679 r0_3 = _mm_xor_si128(r0_3, r0_0);
680 r1_3 = _mm_xor_si128(r1_3, r1_0);
681 r2_3 = _mm_xor_si128(r2_3, r2_0);
682 r3_3 = _mm_xor_si128(r3_3, r3_0);
683
684 r0_3 = RotateLeft<16>(r0_3);
685 r1_3 = RotateLeft<16>(r1_3);
686 r2_3 = RotateLeft<16>(r2_3);
687 r3_3 = RotateLeft<16>(r3_3);
688
689 r0_2 = _mm_add_epi32(r0_2, r0_3);
690 r1_2 = _mm_add_epi32(r1_2, r1_3);
691 r2_2 = _mm_add_epi32(r2_2, r2_3);
692 r3_2 = _mm_add_epi32(r3_2, r3_3);
693
694 r0_1 = _mm_xor_si128(r0_1, r0_2);
695 r1_1 = _mm_xor_si128(r1_1, r1_2);
696 r2_1 = _mm_xor_si128(r2_1, r2_2);
697 r3_1 = _mm_xor_si128(r3_1, r3_2);
698
699 r0_1 = RotateLeft<12>(r0_1);
700 r1_1 = RotateLeft<12>(r1_1);
701 r2_1 = RotateLeft<12>(r2_1);
702 r3_1 = RotateLeft<12>(r3_1);
703
704 r0_0 = _mm_add_epi32(r0_0, r0_1);
705 r1_0 = _mm_add_epi32(r1_0, r1_1);
706 r2_0 = _mm_add_epi32(r2_0, r2_1);
707 r3_0 = _mm_add_epi32(r3_0, r3_1);
708
709 r0_3 = _mm_xor_si128(r0_3, r0_0);
710 r1_3 = _mm_xor_si128(r1_3, r1_0);
711 r2_3 = _mm_xor_si128(r2_3, r2_0);
712 r3_3 = _mm_xor_si128(r3_3, r3_0);
713
714 r0_3 = RotateLeft<8>(r0_3);
715 r1_3 = RotateLeft<8>(r1_3);
716 r2_3 = RotateLeft<8>(r2_3);
717 r3_3 = RotateLeft<8>(r3_3);
718
719 r0_2 = _mm_add_epi32(r0_2, r0_3);
720 r1_2 = _mm_add_epi32(r1_2, r1_3);
721 r2_2 = _mm_add_epi32(r2_2, r2_3);
722 r3_2 = _mm_add_epi32(r3_2, r3_3);
723
724 r0_1 = _mm_xor_si128(r0_1, r0_2);
725 r1_1 = _mm_xor_si128(r1_1, r1_2);
726 r2_1 = _mm_xor_si128(r2_1, r2_2);
727 r3_1 = _mm_xor_si128(r3_1, r3_2);
728
729 r0_1 = RotateLeft<7>(r0_1);
730 r1_1 = RotateLeft<7>(r1_1);
731 r2_1 = RotateLeft<7>(r2_1);
732 r3_1 = RotateLeft<7>(r3_1);
733
734 r0_1 = _mm_shuffle_epi32(r0_1, _MM_SHUFFLE(2, 1, 0, 3));
735 r0_2 = _mm_shuffle_epi32(r0_2, _MM_SHUFFLE(1, 0, 3, 2));
736 r0_3 = _mm_shuffle_epi32(r0_3, _MM_SHUFFLE(0, 3, 2, 1));
737
738 r1_1 = _mm_shuffle_epi32(r1_1, _MM_SHUFFLE(2, 1, 0, 3));
739 r1_2 = _mm_shuffle_epi32(r1_2, _MM_SHUFFLE(1, 0, 3, 2));
740 r1_3 = _mm_shuffle_epi32(r1_3, _MM_SHUFFLE(0, 3, 2, 1));
741
742 r2_1 = _mm_shuffle_epi32(r2_1, _MM_SHUFFLE(2, 1, 0, 3));
743 r2_2 = _mm_shuffle_epi32(r2_2, _MM_SHUFFLE(1, 0, 3, 2));
744 r2_3 = _mm_shuffle_epi32(r2_3, _MM_SHUFFLE(0, 3, 2, 1));
745
746 r3_1 = _mm_shuffle_epi32(r3_1, _MM_SHUFFLE(2, 1, 0, 3));
747 r3_2 = _mm_shuffle_epi32(r3_2, _MM_SHUFFLE(1, 0, 3, 2));
748 r3_3 = _mm_shuffle_epi32(r3_3, _MM_SHUFFLE(0, 3, 2, 1));
749 }
750
751 r0_0 = _mm_add_epi32(r0_0, state0);
752 r0_1 = _mm_add_epi32(r0_1, state1);
753 r0_2 = _mm_add_epi32(r0_2, state2);
754 r0_3 = _mm_add_epi32(r0_3, state3);
755
756 r1_0 = _mm_add_epi32(r1_0, state0);
757 r1_1 = _mm_add_epi32(r1_1, state1);
758 r1_2 = _mm_add_epi32(r1_2, state2);
759 r1_3 = _mm_add_epi32(r1_3, state3);
760 r1_3 = _mm_add_epi64(r1_3, _mm_set_epi32(0, 0, 0, 1));
761
762 r2_0 = _mm_add_epi32(r2_0, state0);
763 r2_1 = _mm_add_epi32(r2_1, state1);
764 r2_2 = _mm_add_epi32(r2_2, state2);
765 r2_3 = _mm_add_epi32(r2_3, state3);
766 r2_3 = _mm_add_epi64(r2_3, _mm_set_epi32(0, 0, 0, 2));
767
768 r3_0 = _mm_add_epi32(r3_0, state0);
769 r3_1 = _mm_add_epi32(r3_1, state1);
770 r3_2 = _mm_add_epi32(r3_2, state2);
771 r3_3 = _mm_add_epi32(r3_3, state3);
772 r3_3 = _mm_add_epi64(r3_3, _mm_set_epi32(0, 0, 0, 3));
773
774 if (input)
775 {
776 r0_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+0*16)), r0_0);
777 r0_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+1*16)), r0_1);
778 r0_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+2*16)), r0_2);
779 r0_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+3*16)), r0_3);
780 }
781
782 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+0*16), r0_0);
783 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+1*16), r0_1);
784 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+2*16), r0_2);
785 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+3*16), r0_3);
786
787 if (input)
788 {
789 r1_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+4*16)), r1_0);
790 r1_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+5*16)), r1_1);
791 r1_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+6*16)), r1_2);
792 r1_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+7*16)), r1_3);
793 }
794
795 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+4*16), r1_0);
796 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+5*16), r1_1);
797 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+6*16), r1_2);
798 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+7*16), r1_3);
799
800 if (input)
801 {
802 r2_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+ 8*16)), r2_0);
803 r2_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+ 9*16)), r2_1);
804 r2_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+10*16)), r2_2);
805 r2_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+11*16)), r2_3);
806 }
807
808 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+ 8*16), r2_0);
809 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+ 9*16), r2_1);
810 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+10*16), r2_2);
811 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+11*16), r2_3);
812
813 if (input)
814 {
815 r3_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+12*16)), r3_0);
816 r3_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+13*16)), r3_1);
817 r3_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+14*16)), r3_2);
818 r3_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+15*16)), r3_3);
819 }
820
821 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+12*16), r3_0);
822 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+13*16), r3_1);
823 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+14*16), r3_2);
824 _mm_storeu_si128(reinterpret_cast<__m128i*>(output+15*16), r3_3);
825}
826
827#endif // CRYPTOPP_SSE2_INTRIN_AVAILABLE
828
829#if (CRYPTOPP_ALTIVEC_AVAILABLE)
830
831// ChaCha_OperateKeystream_CORE will use either POWER7 or ALTIVEC,
832// depending on the flags used to compile this source file. The
833// abstractions are handled in VecLoad, VecStore and friends. In
834// the future we may to provide both POWER7 or ALTIVEC at the same
835// time to better support distros.
836inline void ChaCha_OperateKeystream_CORE(const word32 *state, const byte* input, byte *output, unsigned int rounds)
837{
838 const uint32x4_p state0 = VecLoadAligned(state + 0*4);
839 const uint32x4_p state1 = VecLoadAligned(state + 1*4);
840 const uint32x4_p state2 = VecLoadAligned(state + 2*4);
841 const uint32x4_p state3 = VecLoadAligned(state + 3*4);
842
843 const uint32x4_p CTRS[3] = {
844 {1,0,0,0}, {2,0,0,0}, {3,0,0,0}
845 };
846
847 uint32x4_p r0_0 = state0;
848 uint32x4_p r0_1 = state1;
849 uint32x4_p r0_2 = state2;
850 uint32x4_p r0_3 = state3;
851
852 uint32x4_p r1_0 = state0;
853 uint32x4_p r1_1 = state1;
854 uint32x4_p r1_2 = state2;
855 uint32x4_p r1_3 = VecAdd64(r0_3, CTRS[0]);
856
857 uint32x4_p r2_0 = state0;
858 uint32x4_p r2_1 = state1;
859 uint32x4_p r2_2 = state2;
860 uint32x4_p r2_3 = VecAdd64(r0_3, CTRS[1]);
861
862 uint32x4_p r3_0 = state0;
863 uint32x4_p r3_1 = state1;
864 uint32x4_p r3_2 = state2;
865 uint32x4_p r3_3 = VecAdd64(r0_3, CTRS[2]);
866
867 for (int i = static_cast<int>(rounds); i > 0; i -= 2)
868 {
869 r0_0 = VecAdd(r0_0, r0_1);
870 r1_0 = VecAdd(r1_0, r1_1);
871 r2_0 = VecAdd(r2_0, r2_1);
872 r3_0 = VecAdd(r3_0, r3_1);
873
874 r0_3 = VecXor(r0_3, r0_0);
875 r1_3 = VecXor(r1_3, r1_0);
876 r2_3 = VecXor(r2_3, r2_0);
877 r3_3 = VecXor(r3_3, r3_0);
878
879 r0_3 = VecRotateLeft<16>(r0_3);
880 r1_3 = VecRotateLeft<16>(r1_3);
881 r2_3 = VecRotateLeft<16>(r2_3);
882 r3_3 = VecRotateLeft<16>(r3_3);
883
884 r0_2 = VecAdd(r0_2, r0_3);
885 r1_2 = VecAdd(r1_2, r1_3);
886 r2_2 = VecAdd(r2_2, r2_3);
887 r3_2 = VecAdd(r3_2, r3_3);
888
889 r0_1 = VecXor(r0_1, r0_2);
890 r1_1 = VecXor(r1_1, r1_2);
891 r2_1 = VecXor(r2_1, r2_2);
892 r3_1 = VecXor(r3_1, r3_2);
893
894 r0_1 = VecRotateLeft<12>(r0_1);
895 r1_1 = VecRotateLeft<12>(r1_1);
896 r2_1 = VecRotateLeft<12>(r2_1);
897 r3_1 = VecRotateLeft<12>(r3_1);
898
899 r0_0 = VecAdd(r0_0, r0_1);
900 r1_0 = VecAdd(r1_0, r1_1);
901 r2_0 = VecAdd(r2_0, r2_1);
902 r3_0 = VecAdd(r3_0, r3_1);
903
904 r0_3 = VecXor(r0_3, r0_0);
905 r1_3 = VecXor(r1_3, r1_0);
906 r2_3 = VecXor(r2_3, r2_0);
907 r3_3 = VecXor(r3_3, r3_0);
908
909 r0_3 = VecRotateLeft<8>(r0_3);
910 r1_3 = VecRotateLeft<8>(r1_3);
911 r2_3 = VecRotateLeft<8>(r2_3);
912 r3_3 = VecRotateLeft<8>(r3_3);
913
914 r0_2 = VecAdd(r0_2, r0_3);
915 r1_2 = VecAdd(r1_2, r1_3);
916 r2_2 = VecAdd(r2_2, r2_3);
917 r3_2 = VecAdd(r3_2, r3_3);
918
919 r0_1 = VecXor(r0_1, r0_2);
920 r1_1 = VecXor(r1_1, r1_2);
921 r2_1 = VecXor(r2_1, r2_2);
922 r3_1 = VecXor(r3_1, r3_2);
923
924 r0_1 = VecRotateLeft<7>(r0_1);
925 r1_1 = VecRotateLeft<7>(r1_1);
926 r2_1 = VecRotateLeft<7>(r2_1);
927 r3_1 = VecRotateLeft<7>(r3_1);
928
929 r0_1 = Shuffle<1>(r0_1);
930 r0_2 = Shuffle<2>(r0_2);
931 r0_3 = Shuffle<3>(r0_3);
932
933 r1_1 = Shuffle<1>(r1_1);
934 r1_2 = Shuffle<2>(r1_2);
935 r1_3 = Shuffle<3>(r1_3);
936
937 r2_1 = Shuffle<1>(r2_1);
938 r2_2 = Shuffle<2>(r2_2);
939 r2_3 = Shuffle<3>(r2_3);
940
941 r3_1 = Shuffle<1>(r3_1);
942 r3_2 = Shuffle<2>(r3_2);
943 r3_3 = Shuffle<3>(r3_3);
944
945 r0_0 = VecAdd(r0_0, r0_1);
946 r1_0 = VecAdd(r1_0, r1_1);
947 r2_0 = VecAdd(r2_0, r2_1);
948 r3_0 = VecAdd(r3_0, r3_1);
949
950 r0_3 = VecXor(r0_3, r0_0);
951 r1_3 = VecXor(r1_3, r1_0);
952 r2_3 = VecXor(r2_3, r2_0);
953 r3_3 = VecXor(r3_3, r3_0);
954
955 r0_3 = VecRotateLeft<16>(r0_3);
956 r1_3 = VecRotateLeft<16>(r1_3);
957 r2_3 = VecRotateLeft<16>(r2_3);
958 r3_3 = VecRotateLeft<16>(r3_3);
959
960 r0_2 = VecAdd(r0_2, r0_3);
961 r1_2 = VecAdd(r1_2, r1_3);
962 r2_2 = VecAdd(r2_2, r2_3);
963 r3_2 = VecAdd(r3_2, r3_3);
964
965 r0_1 = VecXor(r0_1, r0_2);
966 r1_1 = VecXor(r1_1, r1_2);
967 r2_1 = VecXor(r2_1, r2_2);
968 r3_1 = VecXor(r3_1, r3_2);
969
970 r0_1 = VecRotateLeft<12>(r0_1);
971 r1_1 = VecRotateLeft<12>(r1_1);
972 r2_1 = VecRotateLeft<12>(r2_1);
973 r3_1 = VecRotateLeft<12>(r3_1);
974
975 r0_0 = VecAdd(r0_0, r0_1);
976 r1_0 = VecAdd(r1_0, r1_1);
977 r2_0 = VecAdd(r2_0, r2_1);
978 r3_0 = VecAdd(r3_0, r3_1);
979
980 r0_3 = VecXor(r0_3, r0_0);
981 r1_3 = VecXor(r1_3, r1_0);
982 r2_3 = VecXor(r2_3, r2_0);
983 r3_3 = VecXor(r3_3, r3_0);
984
985 r0_3 = VecRotateLeft<8>(r0_3);
986 r1_3 = VecRotateLeft<8>(r1_3);
987 r2_3 = VecRotateLeft<8>(r2_3);
988 r3_3 = VecRotateLeft<8>(r3_3);
989
990 r0_2 = VecAdd(r0_2, r0_3);
991 r1_2 = VecAdd(r1_2, r1_3);
992 r2_2 = VecAdd(r2_2, r2_3);
993 r3_2 = VecAdd(r3_2, r3_3);
994
995 r0_1 = VecXor(r0_1, r0_2);
996 r1_1 = VecXor(r1_1, r1_2);
997 r2_1 = VecXor(r2_1, r2_2);
998 r3_1 = VecXor(r3_1, r3_2);
999
1000 r0_1 = VecRotateLeft<7>(r0_1);
1001 r1_1 = VecRotateLeft<7>(r1_1);
1002 r2_1 = VecRotateLeft<7>(r2_1);
1003 r3_1 = VecRotateLeft<7>(r3_1);
1004
1005 r0_1 = Shuffle<3>(r0_1);
1006 r0_2 = Shuffle<2>(r0_2);
1007 r0_3 = Shuffle<1>(r0_3);
1008
1009 r1_1 = Shuffle<3>(r1_1);
1010 r1_2 = Shuffle<2>(r1_2);
1011 r1_3 = Shuffle<1>(r1_3);
1012
1013 r2_1 = Shuffle<3>(r2_1);
1014 r2_2 = Shuffle<2>(r2_2);
1015 r2_3 = Shuffle<1>(r2_3);
1016
1017 r3_1 = Shuffle<3>(r3_1);
1018 r3_2 = Shuffle<2>(r3_2);
1019 r3_3 = Shuffle<1>(r3_3);
1020 }
1021
1022 r0_0 = VecAdd(r0_0, state0);
1023 r0_1 = VecAdd(r0_1, state1);
1024 r0_2 = VecAdd(r0_2, state2);
1025 r0_3 = VecAdd(r0_3, state3);
1026
1027 r1_0 = VecAdd(r1_0, state0);
1028 r1_1 = VecAdd(r1_1, state1);
1029 r1_2 = VecAdd(r1_2, state2);
1030 r1_3 = VecAdd(r1_3, state3);
1031 r1_3 = VecAdd64(r1_3, CTRS[0]);
1032
1033 r2_0 = VecAdd(r2_0, state0);
1034 r2_1 = VecAdd(r2_1, state1);
1035 r2_2 = VecAdd(r2_2, state2);
1036 r2_3 = VecAdd(r2_3, state3);
1037 r2_3 = VecAdd64(r2_3, CTRS[1]);
1038
1039 r3_0 = VecAdd(r3_0, state0);
1040 r3_1 = VecAdd(r3_1, state1);
1041 r3_2 = VecAdd(r3_2, state2);
1042 r3_3 = VecAdd(r3_3, state3);
1043 r3_3 = VecAdd64(r3_3, CTRS[2]);
1044
1045 if (input)
1046 {
1047 r0_0 = VecXor(VecLoad32LE(input + 0*16), r0_0);
1048 r0_1 = VecXor(VecLoad32LE(input + 1*16), r0_1);
1049 r0_2 = VecXor(VecLoad32LE(input + 2*16), r0_2);
1050 r0_3 = VecXor(VecLoad32LE(input + 3*16), r0_3);
1051 }
1052
1053 VecStore32LE(output + 0*16, r0_0);
1054 VecStore32LE(output + 1*16, r0_1);
1055 VecStore32LE(output + 2*16, r0_2);
1056 VecStore32LE(output + 3*16, r0_3);
1057
1058 if (input)
1059 {
1060 r1_0 = VecXor(VecLoad32LE(input + 4*16), r1_0);
1061 r1_1 = VecXor(VecLoad32LE(input + 5*16), r1_1);
1062 r1_2 = VecXor(VecLoad32LE(input + 6*16), r1_2);
1063 r1_3 = VecXor(VecLoad32LE(input + 7*16), r1_3);
1064 }
1065
1066 VecStore32LE(output + 4*16, r1_0);
1067 VecStore32LE(output + 5*16, r1_1);
1068 VecStore32LE(output + 6*16, r1_2);
1069 VecStore32LE(output + 7*16, r1_3);
1070
1071 if (input)
1072 {
1073 r2_0 = VecXor(VecLoad32LE(input + 8*16), r2_0);
1074 r2_1 = VecXor(VecLoad32LE(input + 9*16), r2_1);
1075 r2_2 = VecXor(VecLoad32LE(input + 10*16), r2_2);
1076 r2_3 = VecXor(VecLoad32LE(input + 11*16), r2_3);
1077 }
1078
1079 VecStore32LE(output + 8*16, r2_0);
1080 VecStore32LE(output + 9*16, r2_1);
1081 VecStore32LE(output + 10*16, r2_2);
1082 VecStore32LE(output + 11*16, r2_3);
1083
1084 if (input)
1085 {
1086 r3_0 = VecXor(VecLoad32LE(input + 12*16), r3_0);
1087 r3_1 = VecXor(VecLoad32LE(input + 13*16), r3_1);
1088 r3_2 = VecXor(VecLoad32LE(input + 14*16), r3_2);
1089 r3_3 = VecXor(VecLoad32LE(input + 15*16), r3_3);
1090 }
1091
1092 VecStore32LE(output + 12*16, r3_0);
1093 VecStore32LE(output + 13*16, r3_1);
1094 VecStore32LE(output + 14*16, r3_2);
1095 VecStore32LE(output + 15*16, r3_3);
1096}
1097
1098#endif // CRYPTOPP_ALTIVEC_AVAILABLE
1099
1100#if (CRYPTOPP_ALTIVEC_AVAILABLE)
1101
1102void ChaCha_OperateKeystream_ALTIVEC(const word32 *state, const byte* input, byte *output, unsigned int rounds)
1103{
1104 ChaCha_OperateKeystream_CORE(state, input, output, rounds);
1105}
1106
1107#endif
1108
1109NAMESPACE_END
Classes for ChaCha8, ChaCha12 and ChaCha20 stream ciphers.
Library configuration file.
unsigned int word32
32-bit unsigned datatype
Definition: config_int.h:62
Utility functions for the Crypto++ library.
Crypto++ library namespace.
Precompiled header file.
Support functions for PowerPC and vector operations.
uint32x4_p VecLoadAligned(const byte src[16])
Loads a vector from an aligned byte array.
Definition: ppc_simd.h:560
__vector unsigned int uint32x4_p
Vector of 32-bit elements.
Definition: ppc_simd.h:202
T1 VecPermute(const T1 vec, const T2 mask)
Permutes a vector.
Definition: ppc_simd.h:1478
__vector unsigned char uint8x16_p
Vector of 8-bit elements.
Definition: ppc_simd.h:192
T1 VecXor(const T1 vec1, const T2 vec2)
XOR two vectors.
Definition: ppc_simd.h:1414
T1 VecAdd(const T1 vec1, const T2 vec2)
Add two vectors.
Definition: ppc_simd.h:1438
void VecStore(const T data, byte dest[16])
Stores a vector to a byte array.
Definition: ppc_simd.h:895
uint32x4_p VecAdd64(const uint32x4_p &vec1, const uint32x4_p &vec2)
Add two vectors as if uint64x2_p.
Definition: ppc_simd.h:2014
uint32x4_p VecLoad(const byte src[16])
Loads a vector from a byte array.
Definition: ppc_simd.h:369
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:68