
Solving Paint-By-Numbers Puzzles with GLPK

Andrew Makhorin <mao@gnu.org>

August 2011

1 Introduction1

A paint-by-numbers puzzle consists of an m × n grid of pixels (the canvas)
together with m + n cluster-size sequences, one for each row and column.
The goal is to paint the canvas with a picture that satisfies the following
constraints:

1. Each pixel must be blank or white.
2. If a row or column has cluster-size sequence s1, s2, . . . , sk, then it

must contain k clusters of black pixels—the first with s1 black pixels, the
second with s2 black pixels, and so on.

It should be noted that “first” means “leftmost” for rows and “topmost”
for columns, and that rows and columns need not begin or end with black
pixels.

Example

1 1
1 1

2 1 1 1 1 1 2 3
3 2 1 2 1 2 3 4 8 9

3 6 � � � � � � � � � �
1 4 � � � � � � � � � �

1 1 3 � � � � � � � � � �
2 � � � � � � � � � �

3 3 � � � � � � � � � �
1 4 � � � � � � � � � �
2 5 � � � � � � � � � �
2 5 � � � � � � � � � �
1 1 � � � � � � � � � �

3 � � � � � � � � � �
1This section is based on the material from [1].

1



2 Solving a puzzle

The Paint-By-Numbers puzzle can be formulated as a 0-1 integer feasibility
problem. The formulation used in GLPK was proposed in [1].

For solving puzzles there are used two components, which both are coded
in the GNU MathProg modeling language [2]: the model section and the
data section. The model section is common for all puzzles and placed in file
pbn.mod. This file is included in the GLPK distribution and can be found
in subdirectory examples/pbn.

To solve a particular puzzle the user only needs to prepare the data
section, which defines input data to the puzzle. The data section for the
example puzzle from the previous section may look like follows (here m is
the number of rows, and n is the number of columns):

data;

param m := 10;

param n := 10;

param row : 1 2 3 :=

1 3 6 .

2 1 4 .

3 1 1 3

4 2 . .

5 3 3 .

6 1 4 .

7 2 5 .

8 2 5 .

9 1 1 .

10 3 . .

;

param col : 1 2 3 4 :=

1 2 3 . .

2 1 2 . .

3 1 1 1 1

4 1 2 . .

5 1 1 1 1

6 1 2 . .

7 2 3 . .

8 3 4 . .

9 8 . . .

10 9 . . .

;

end;

2



Let the data section for a puzzle be placed in file foo.dat. Then to solve
the puzzle the user should enter the following command:

glpsol --minisat -m pbn.mod -d foo.dat

This command invokes glpsol, the GLPK LP/MIP stand-alone solver,
which reads the model section from file pbn.mod, the data section from
file foo.dat, translates them to an internal representation, and solves the
resulting 0-1 integer feasibility problem. The option --minisat tells glpsol
to translate the feasibility problem to a CNF satisfiability problem and then
use the MiniSat solver [3] to solve it.

If a solution to the puzzle has been found, that is indicated by the
message SATISFIABLE, glpsol prints the solution to the standard output
(terminal), writes it to file solution.ps in the PostScript format, and also
writes it to file solution.dat in the form of MathProg data section, which
can be used later to check for multiple solutions, if necessary (for details see
the next section). The message UNSATISFIABLE means that the puzzle has
no solution.

Usually the time taken to solve a puzzle of moderate size (up to 50 rows
and columns) varies from several seconds to several minutes. However, hard
or large puzzles may require much more time.

Data sections for some example puzzles included in the GLPK distribu-
tion can be found in subdirectory examples/pbn.

3 Checking for multiple solutions

Sometimes the user may be interested to know if the puzzle has exactly one
(unique) solution or it has multiple solutions. To check that the user should
solve the puzzle as explained above in the previous section and then enter
the following command:

glpsol --minisat -m pbn.mod -d foo.dat -d solution.dat

In this case glpsol reads an additional data section from file solution.dat,
which contains the previously found solution, activates an additional con-
straint in the model section to forbid finding the solution specified in the
additional data section, and attempts to find another solution. The message
UNSATISFIABLE reported by glpsol will mean that the puzzle has a unique
solution, while the message SATISFIABLE will mean that the puzzle has at
least two different solutions.

3



4 Solution times

The table on the next page shows solution times on a sample set of the
paint-by-numbers puzzles from the <webpbn.com> website. This sample set
was used in the survey [4] to compare efficiency of existing PBN solvers.

The authors of some puzzles from the sample set have given permission
for their puzzles to be freely redistributed as long as the original attribution
and copyright statement are retained. In the table these puzzles are marked
by an asterisk (*). The files containing the MathProg data sections for
these puzzles are included in the GLPK distribution and can be found in
subdirectory examples/pbn.

All runs were performed on Intel Pentium 4 (CPU 3GHz, 2GB of RAM).
The C compiler used was GCC 3.4.4 with default optimization options.

The column ‘Sol.Time’ shows the time, in seconds, taken by the glpsol
solver to find a solution to corresponding puzzle. The column ‘Chk.Time’
shows the time, in seconds, taken by glpsol to check for multiple solutions,
i.e. either to prove that the puzzle has a unique solution or find another
solution to the puzzle. Both these times do not include the time used to
translate the MathProg model and data sections into an internal MIP repre-
sentation, but include the time used to translate the 0-1 feasibility problem
to a CNF satisfiability problem.

References

[1] Robert A. Bosch, “Painting by Numbers”, 2000.
<http://www.oberlin.edu/~math/faculty/bosch/pbn-page.html>.

[2] GLPK: Modeling Language GNU MathProg. Language Reference.
(This document is included in the GLPK distribution and can be found
in subdirectory doc.)

[3] Niklas Eén, Niklas Sörensson, “An Extensible SAT-solver”, Chalmers
University of Technology, Sweden. <http://minisat.se/>.

[4] Jan Wolter, “Survey of Paint-by-Number Puzzle Solvers”.
<http://webpbn.com/survey/>.

4



Table 1: Solution times on the sample set of puzzles from [4]

Puzzle Size Notes Sol.Time, s Chk.Time, s

#1 Dancer* 10× 5 L < 1 < 1
#6 Cat* 20× 20 L < 1 < 1
#21 Skid* 25× 14 L, B < 1 < 1
#27 Bucks* 23× 27 B < 1 < 1
#23 Edge* 11× 10 < 1 < 1
#2413 Smoke 20× 20 < 1 < 1
#16 Knot* 34× 34 L 1 1
#529 Swing* 45× 45 L 1 1
#65 Mum* 40× 34 1 1
#7604 DiCap 55× 55 10 10
#1694 Tragic 50× 45 3 3
#1611 Merka 60× 55 B 4 4
#436 Petro* 35× 40 1 1
#4645 M&M 70× 50 B 5 6
#3541 Signed 50× 60 7 7
#803 Light* 45× 50 B 1 1
#6574 Forever* 25× 25 1 1
#2040 Hot 60× 55 6 6
#6739 Karate 40× 40 M 2 2
#8098 9-Dom* 19× 19 1 2
#2556 Flag 45× 65 M, B 2 2
#2712 Lion 47× 47 M 11 12
#10088 Marley 63× 52 M 135 226
#9892 Nature 40× 50 M 850 1053

* Puzzle designer has given permission to redistribute the puz-
zle.

L Puzzle is line solvable. That is, it can be solved one line at a
time.

B Puzzle contains blank rows or columns.
M Puzzle has multiple solutions.

5


