dwww Home | Manual pages | Find package

timerfd_create(2)             System Calls Manual            timerfd_create(2)

NAME
       timerfd_create,  timerfd_settime,  timerfd_gettime - timers that notify
       via file descriptors

LIBRARY
       Standard C library (libc, -lc)

SYNOPSIS
       #include <sys/timerfd.h>

       int timerfd_create(int clockid, int flags);

       int timerfd_settime(int fd, int flags,
                           const struct itimerspec *new_value,
                           struct itimerspec *_Nullable old_value);
       int timerfd_gettime(int fd, struct itimerspec *curr_value);

DESCRIPTION
       These system calls create and operate on a timer  that  delivers  timer
       expiration notifications via a file descriptor.  They provide an alter-
       native to the use of setitimer(2) or timer_create(2), with  the  advan-
       tage  that  the file descriptor may be monitored by select(2), poll(2),
       and epoll(7).

       The use of these  three  system  calls  is  analogous  to  the  use  of
       timer_create(2),  timer_settime(2), and timer_gettime(2).  (There is no
       analog of timer_getoverrun(2), since that functionality is provided  by
       read(2), as described below.)

   timerfd_create()
       timerfd_create()  creates  a  new  timer object, and returns a file de-
       scriptor that refers to that timer.  The clockid argument specifies the
       clock  that  is used to mark the progress of the timer, and must be one
       of the following:

       CLOCK_REALTIME
              A settable system-wide real-time clock.

       CLOCK_MONOTONIC
              A nonsettable monotonically increasing clock that measures  time
              from some unspecified point in the past that does not change af-
              ter system startup.

       CLOCK_BOOTTIME (Since Linux 3.15)
              Like CLOCK_MONOTONIC, this is a monotonically increasing  clock.
              However,  whereas the CLOCK_MONOTONIC clock does not measure the
              time while a system is suspended, the CLOCK_BOOTTIME clock  does
              include  the time during which the system is suspended.  This is
              useful  for  applications  that  need   to   be   suspend-aware.
              CLOCK_REALTIME is not suitable for such applications, since that
              clock is affected by discontinuous changes to the system clock.

       CLOCK_REALTIME_ALARM (since Linux 3.11)
              This clock is like CLOCK_REALTIME, but will wake the  system  if
              it  is suspended.  The caller must have the CAP_WAKE_ALARM capa-
              bility in order to set a timer against this clock.

       CLOCK_BOOTTIME_ALARM (since Linux 3.11)
              This clock is like CLOCK_BOOTTIME, but will wake the  system  if
              it  is suspended.  The caller must have the CAP_WAKE_ALARM capa-
              bility in order to set a timer against this clock.

       See clock_getres(2) for some further details on the above clocks.

       The current value of each  of  these  clocks  can  be  retrieved  using
       clock_gettime(2).

       Starting with Linux 2.6.27, the following values may be bitwise ORed in
       flags to change the behavior of timerfd_create():

       TFD_NONBLOCK  Set the O_NONBLOCK file status flag on the open file  de-
                     scription  (see  open(2)) referred to by the new file de-
                     scriptor.  Using this flag saves extra calls to  fcntl(2)
                     to achieve the same result.

       TFD_CLOEXEC   Set  the  close-on-exec (FD_CLOEXEC) flag on the new file
                     descriptor.  See the description of the O_CLOEXEC flag in
                     open(2) for reasons why this may be useful.

       In  Linux  versions up to and including 2.6.26, flags must be specified
       as zero.

   timerfd_settime()
       timerfd_settime() arms (starts) or disarms (stops) the  timer  referred
       to by the file descriptor fd.

       The  new_value  argument  specifies the initial expiration and interval
       for the timer.  The itimerspec structure used for this argument is  de-
       scribed in itimerspec(3type).

       new_value.it_value  specifies  the  initial expiration of the timer, in
       seconds and nanoseconds.  Setting either field of new_value.it_value to
       a   nonzero   value   arms   the   timer.    Setting   both  fields  of
       new_value.it_value to zero disarms the timer.

       Setting one or both fields of new_value.it_interval to  nonzero  values
       specifies  the  period,  in seconds and nanoseconds, for repeated timer
       expirations  after  the  initial  expiration.   If   both   fields   of
       new_value.it_interval  are  zero,  the  timer expires just once, at the
       time specified by new_value.it_value.

       By default, the initial expiration time specified in new_value  is  in-
       terpreted relative to the current time on the timer's clock at the time
       of the call (i.e., new_value.it_value specifies a time relative to  the
       current  value of the clock specified by clockid).  An absolute timeout
       can be selected via the flags argument.

       The flags argument is a bit mask that can include the following values:

       TFD_TIMER_ABSTIME
              Interpret new_value.it_value as an absolute value on the timer's
              clock.   The  timer  will  expire  when the value of the timer's
              clock reaches the value specified in new_value.it_value.

       TFD_TIMER_CANCEL_ON_SET
              If this flag is specified along with TFD_TIMER_ABSTIME  and  the
              clock  for this timer is CLOCK_REALTIME or CLOCK_REALTIME_ALARM,
              then mark this timer as cancelable if the real-time clock under-
              goes  a discontinuous change (settimeofday(2), clock_settime(2),
              or similar).  When such  changes  occur,  a  current  or  future
              read(2)  from the file descriptor will fail with the error ECAN-
              CELED.

       If the old_value argument is not NULL, then  the  itimerspec  structure
       that  it  points to is used to return the setting of the timer that was
       current at the time of the call; see the  description  of  timerfd_get-
       time() following.

   timerfd_gettime()
       timerfd_gettime()  returns, in curr_value, an itimerspec structure that
       contains the current setting of the timer referred to by the  file  de-
       scriptor fd.

       The it_value field returns the amount of time until the timer will next
       expire.  If both fields of this structure are zero, then the  timer  is
       currently  disarmed.   This field always contains a relative value, re-
       gardless of whether the TFD_TIMER_ABSTIME flag was specified when  set-
       ting the timer.

       The  it_interval  field  returns  the  interval  of the timer.  If both
       fields of this structure are zero, then the timer is set to expire just
       once, at the time specified by curr_value.it_value.

   Operating on a timer file descriptor
       The file descriptor returned by timerfd_create() supports the following
       additional operations:

       read(2)
              If the timer has already expired one or  more  times  since  its
              settings  were  last  modified using timerfd_settime(), or since
              the last successful read(2), then the buffer  given  to  read(2)
              returns  an  unsigned  8-byte  integer (uint64_t) containing the
              number of expirations that have occurred.  (The  returned  value
              is  in  host byte order—that is, the native byte order for inte-
              gers on the host machine.)

              If no timer  expirations  have  occurred  at  the  time  of  the
              read(2),  then the call either blocks until the next timer expi-
              ration, or fails with the error EAGAIN if  the  file  descriptor
              has  been  made nonblocking (via the use of the fcntl(2) F_SETFL
              operation to set the O_NONBLOCK flag).

              A read(2) fails with the error EINVAL if the size  of  the  sup-
              plied buffer is less than 8 bytes.

              If  the associated clock is either CLOCK_REALTIME or CLOCK_REAL-
              TIME_ALARM, the timer is absolute (TFD_TIMER_ABSTIME),  and  the
              flag   TFD_TIMER_CANCEL_ON_SET   was   specified   when  calling
              timerfd_settime(), then read(2) fails with the  error  ECANCELED
              if  the real-time clock undergoes a discontinuous change.  (This
              allows the reading application to  discover  such  discontinuous
              changes to the clock.)

              If  the associated clock is either CLOCK_REALTIME or CLOCK_REAL-
              TIME_ALARM, the timer is absolute (TFD_TIMER_ABSTIME),  and  the
              flag  TFD_TIMER_CANCEL_ON_SET  was  not  specified  when calling
              timerfd_settime(), then a discontinuous negative change  to  the
              clock (e.g., clock_settime(2)) may cause read(2) to unblock, but
              return a value of 0 (i.e., no bytes read), if the  clock  change
              occurs  after  the  time  expired, but before the read(2) on the
              file descriptor.

       poll(2), select(2) (and similar)
              The file descriptor is readable (the select(2) readfds argument;
              the  poll(2)  POLLIN flag) if one or more timer expirations have
              occurred.

              The file descriptor also supports the other file-descriptor mul-
              tiplexing APIs: pselect(2), ppoll(2), and epoll(7).

       ioctl(2)
              The following timerfd-specific command is supported:

              TFD_IOC_SET_TICKS (since Linux 3.17)
                     Adjust  the  number  of  timer  expirations that have oc-
                     curred.  The argument is a pointer to  a  nonzero  8-byte
                     integer  (uint64_t*) containing the new number of expira-
                     tions.  Once the number is set, any waiter on  the  timer
                     is  woken up.  The only purpose of this command is to re-
                     store the expirations for the purpose  of  checkpoint/re-
                     store.   This  operation  is available only if the kernel
                     was configured with the CONFIG_CHECKPOINT_RESTORE option.

       close(2)
              When the file descriptor is no  longer  required  it  should  be
              closed.   When  all  file  descriptors  associated with the same
              timer object have been closed, the timer is disarmed and its re-
              sources are freed by the kernel.

   fork(2) semantics
       After  a fork(2), the child inherits a copy of the file descriptor cre-
       ated by timerfd_create().  The file descriptor refers to the  same  un-
       derlying  timer object as the corresponding file descriptor in the par-
       ent, and read(2)s in the child will return  information  about  expira-
       tions of the timer.

   execve(2) semantics
       A  file  descriptor created by timerfd_create() is preserved across ex-
       ecve(2), and continues to generate timer expirations if the  timer  was
       armed.

RETURN VALUE
       On  success, timerfd_create() returns a new file descriptor.  On error,
       -1 is returned and errno is set to indicate the error.

       timerfd_settime() and timerfd_gettime() return 0 on success;  on  error
       they return -1, and set errno to indicate the error.

ERRORS
       timerfd_create() can fail with the following errors:

       EINVAL The clockid is not valid.

       EINVAL flags  is invalid; or, in Linux 2.6.26 or earlier, flags is non-
              zero.

       EMFILE The per-process limit on the number of open file descriptors has
              been reached.

       ENFILE The system-wide limit on the total number of open files has been
              reached.

       ENODEV Could not mount (internal) anonymous inode device.

       ENOMEM There was insufficient kernel memory to create the timer.

       EPERM  clockid was CLOCK_REALTIME_ALARM or CLOCK_BOOTTIME_ALARM but the
              caller did not have the CAP_WAKE_ALARM capability.

       timerfd_settime() and timerfd_gettime() can fail with the following er-
       rors:

       EBADF  fd is not a valid file descriptor.

       EFAULT new_value, old_value, or curr_value is not a valid pointer.

       EINVAL fd is not a valid timerfd file descriptor.

       timerfd_settime() can also fail with the following errors:

       ECANCELED
              See NOTES.

       EINVAL new_value is not properly initialized (one of the tv_nsec  falls
              outside the range zero to 999,999,999).

       EINVAL flags is invalid.

VERSIONS
       These  system  calls are available since Linux 2.6.25.  Library support
       is provided since glibc 2.8.

STANDARDS
       These system calls are Linux-specific.

NOTES
       Suppose  the  following  scenario  for  CLOCK_REALTIME  or  CLOCK_REAL-
       TIME_ALARM timer that was created with timerfd_create():

       (1)  The   timer   has   been   started  (timerfd_settime())  with  the
            TFD_TIMER_ABSTIME and TFD_TIMER_CANCEL_ON_SET flags;

       (2)  A discontinuous change  (e.g.,  settimeofday(2))  is  subsequently
            made to the CLOCK_REALTIME clock; and

       (3)  the  caller  once  more calls timerfd_settime() to rearm the timer
            (without first doing a read(2) on the file descriptor).

       In this case the following occurs:

       •  The timerfd_settime() returns -1 with errno set to ECANCELED.  (This
          enables the caller to know that the previous timer was affected by a
          discontinuous change to the clock.)

       •  The timer is successfully rearmed with the settings provided in  the
          second timerfd_settime() call.  (This was probably an implementation
          accident, but won't be fixed now, in  case  there  are  applications
          that depend on this behaviour.)

BUGS
       Currently,  timerfd_create()  supports  fewer  types  of clock IDs than
       timer_create(2).

EXAMPLES
       The following program creates a timer and then monitors  its  progress.
       The  program accepts up to three command-line arguments.  The first ar-
       gument specifies the number of seconds for the  initial  expiration  of
       the  timer.   The second argument specifies the interval for the timer,
       in seconds.  The third argument specifies the number of times the  pro-
       gram  should  allow the timer to expire before terminating.  The second
       and third command-line arguments are optional.

       The following shell session demonstrates the use of the program:

           $ a.out 3 1 100
           0.000: timer started
           3.000: read: 1; total=1
           4.000: read: 1; total=2
           ^Z                  # type control-Z to suspend the program
           [1]+  Stopped                 ./timerfd3_demo 3 1 100
           $ fg                # Resume execution after a few seconds
           a.out 3 1 100
           9.660: read: 5; total=7
           10.000: read: 1; total=8
           11.000: read: 1; total=9
           ^C                  # type control-C to suspend the program

   Program source

       #include <err.h>
       #include <inttypes.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <sys/timerfd.h>
       #include <time.h>
       #include <unistd.h>

       static void
       print_elapsed_time(void)
       {
           int                     secs, nsecs;
           static int              first_call = 1;
           struct timespec         curr;
           static struct timespec  start;

           if (first_call) {
               first_call = 0;
               if (clock_gettime(CLOCK_MONOTONIC, &start) == -1)
                   err(EXIT_FAILURE, "clock_gettime");
           }

           if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1)
               err(EXIT_FAILURE, "clock_gettime");

           secs = curr.tv_sec - start.tv_sec;
           nsecs = curr.tv_nsec - start.tv_nsec;
           if (nsecs < 0) {
               secs--;
               nsecs += 1000000000;
           }
           printf("%d.%03d: ", secs, (nsecs + 500000) / 1000000);
       }

       int
       main(int argc, char *argv[])
       {
           int                fd;
           ssize_t            s;
           uint64_t           exp, tot_exp, max_exp;
           struct timespec    now;
           struct itimerspec  new_value;

           if (argc != 2 && argc != 4) {
               fprintf(stderr, "%s init-secs [interval-secs max-exp]\n",
                       argv[0]);
               exit(EXIT_FAILURE);
           }

           if (clock_gettime(CLOCK_REALTIME, &now) == -1)
               err(EXIT_FAILURE, "clock_gettime");

           /* Create a CLOCK_REALTIME absolute timer with initial
              expiration and interval as specified in command line. */

           new_value.it_value.tv_sec = now.tv_sec + atoi(argv[1]);
           new_value.it_value.tv_nsec = now.tv_nsec;
           if (argc == 2) {
               new_value.it_interval.tv_sec = 0;
               max_exp = 1;
           } else {
               new_value.it_interval.tv_sec = atoi(argv[2]);
               max_exp = atoi(argv[3]);
           }
           new_value.it_interval.tv_nsec = 0;

           fd = timerfd_create(CLOCK_REALTIME, 0);
           if (fd == -1)
               err(EXIT_FAILURE, "timerfd_create");

           if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -1)
               err(EXIT_FAILURE, "timerfd_settime");

           print_elapsed_time();
           printf("timer started\n");

           for (tot_exp = 0; tot_exp < max_exp;) {
               s = read(fd, &exp, sizeof(uint64_t));
               if (s != sizeof(uint64_t))
                   err(EXIT_FAILURE, "read");

               tot_exp += exp;
               print_elapsed_time();
               printf("read: %" PRIu64 "; total=%" PRIu64 "\n", exp, tot_exp);
           }

           exit(EXIT_SUCCESS);
       }

SEE ALSO
       eventfd(2), poll(2),  read(2),  select(2),  setitimer(2),  signalfd(2),
       timer_create(2),   timer_gettime(2),   timer_settime(2),   timespec(3),
       epoll(7), time(7)

Linux man-pages 6.03              2023-02-05                 timerfd_create(2)

Generated by dwww version 1.15 on Sun Jun 23 04:47:04 CEST 2024.