dwww Home | Manual pages | Find package

open_by_handle_at(2)          System Calls Manual         open_by_handle_at(2)

NAME
       name_to_handle_at, open_by_handle_at - obtain handle for a pathname and
       open file via a handle

LIBRARY
       Standard C library (libc, -lc)

SYNOPSIS
       #define _GNU_SOURCE         /* See feature_test_macros(7) */
       #include <fcntl.h>

       int name_to_handle_at(int dirfd, const char *pathname,
                             struct file_handle *handle,
                             int *mount_id, int flags);
       int open_by_handle_at(int mount_fd, struct file_handle *handle,
                             int flags);

DESCRIPTION
       The name_to_handle_at() and open_by_handle_at() system calls split  the
       functionality  of openat(2) into two parts: name_to_handle_at() returns
       an opaque handle that corresponds to  a  specified  file;  open_by_han-
       dle_at()  opens the file corresponding to a handle returned by a previ-
       ous call to name_to_handle_at() and returns an open file descriptor.

   name_to_handle_at()
       The name_to_handle_at() system call returns a file handle and  a  mount
       ID  corresponding to the file specified by the dirfd and pathname argu-
       ments.  The file handle is returned via the argument handle, which is a
       pointer to a structure of the following form:

           struct file_handle {
               unsigned int  handle_bytes;   /* Size of f_handle [in, out] */
               int           handle_type;    /* Handle type [out] */
               unsigned char f_handle[0];    /* File identifier (sized by
                                                caller) [out] */
           };

       It is the caller's responsibility to allocate the structure with a size
       large enough to hold the handle returned in f_handle.  Before the call,
       the  handle_bytes  field should be initialized to contain the allocated
       size for f_handle.  (The constant MAX_HANDLE_SZ, defined in  <fcntl.h>,
       specifies  the  maximum  expected  size for a file handle.  It is not a
       guaranteed upper limit as future filesystems may require  more  space.)
       Upon  successful  return,  the handle_bytes field is updated to contain
       the number of bytes actually written to f_handle.

       The caller can discover the required size for the file_handle structure
       by  making  a call in which handle->handle_bytes is zero; in this case,
       the call fails with the error EOVERFLOW and handle->handle_bytes is set
       to indicate the required size; the caller can then use this information
       to allocate a structure of the correct size (see EXAMPLES below).  Some
       care  is needed here as EOVERFLOW can also indicate that no file handle
       is available for this particular name in a filesystem which  does  nor-
       mally  support  file-handle lookup.  This case can be detected when the
       EOVERFLOW error is returned without handle_bytes being increased.

       Other than the use of the handle_bytes field, the caller  should  treat
       the  file_handle  structure as an opaque data type: the handle_type and
       f_handle fields are needed only by a subsequent  call  to  open_by_han-
       dle_at().

       The  flags argument is a bit mask constructed by ORing together zero or
       more of AT_EMPTY_PATH and AT_SYMLINK_FOLLOW, described below.

       Together, the pathname and dirfd arguments identify the file for  which
       a handle is to be obtained.  There are four distinct cases:

       •  If  pathname  is  a nonempty string containing an absolute pathname,
          then a handle is returned for the file referred to by that pathname.
          In this case, dirfd is ignored.

       •  If  pathname is a nonempty string containing a relative pathname and
          dirfd has the special value AT_FDCWD, then pathname  is  interpreted
          relative  to the current working directory of the caller, and a han-
          dle is returned for the file to which it refers.

       •  If pathname is a nonempty string containing a relative pathname  and
          dirfd  is  a file descriptor referring to a directory, then pathname
          is interpreted relative to the directory referred to by dirfd, and a
          handle  is returned for the file to which it refers.  (See openat(2)
          for an explanation of why "directory file descriptors" are useful.)

       •  If pathname is  an  empty  string  and  flags  specifies  the  value
          AT_EMPTY_PATH,  then  dirfd can be an open file descriptor referring
          to any type of file, or AT_FDCWD, meaning the current working direc-
          tory, and a handle is returned for the file to which it refers.

       The  mount_id  argument  returns an identifier for the filesystem mount
       that corresponds to pathname.  This corresponds to the first  field  in
       one  of  the  records in /proc/self/mountinfo.  Opening the pathname in
       the fifth field of that record yields a file descriptor for  the  mount
       point;  that  file  descriptor  can  be  used  in  a subsequent call to
       open_by_handle_at().  mount_id is returned both for a  successful  call
       and for a call that results in the error EOVERFLOW.

       By  default, name_to_handle_at() does not dereference pathname if it is
       a symbolic link, and thus returns a handle for  the  link  itself.   If
       AT_SYMLINK_FOLLOW is specified in flags, pathname is dereferenced if it
       is a symbolic link (so that the call returns a handle for the file  re-
       ferred to by the link).

       name_to_handle_at()  does  not trigger a mount when the final component
       of the pathname is an automount point.  When a filesystem supports both
       file handles and automount points, a name_to_handle_at() call on an au-
       tomount point will return with error EOVERFLOW without having increased
       handle_bytes.  This can happen since Linux 4.13 with NFS when accessing
       a directory which is on a separate filesystem on the server.   In  this
       case,  the automount can be triggered by adding a "/" to the end of the
       pathname.

   open_by_handle_at()
       The open_by_handle_at() system call opens the file referred to by  han-
       dle, a file handle returned by a previous call to name_to_handle_at().

       The mount_fd argument is a file descriptor for any object (file, direc-
       tory, etc.)  in the mounted filesystem with  respect  to  which  handle
       should  be  interpreted.   The special value AT_FDCWD can be specified,
       meaning the current working directory of the caller.

       The flags argument is as for open(2).  If handle refers to  a  symbolic
       link, the caller must specify the O_PATH flag, and the symbolic link is
       not dereferenced; the O_NOFOLLOW flag, if specified, is ignored.

       The caller must  have  the  CAP_DAC_READ_SEARCH  capability  to  invoke
       open_by_handle_at().

RETURN VALUE
       On  success, name_to_handle_at() returns 0, and open_by_handle_at() re-
       turns a file descriptor (a nonnegative integer).

       In the event of an error, both system calls return -1 and set errno  to
       indicate the error.

ERRORS
       name_to_handle_at()  and  open_by_handle_at() can fail for the same er-
       rors as openat(2).  In addition, they can fail with  the  errors  noted
       below.

       name_to_handle_at() can fail with the following errors:

       EFAULT pathname, mount_id, or handle points outside your accessible ad-
              dress space.

       EINVAL flags includes an invalid bit value.

       EINVAL handle->handle_bytes is greater than MAX_HANDLE_SZ.

       ENOENT pathname is an empty string, but AT_EMPTY_PATH was not specified
              in flags.

       ENOTDIR
              The file descriptor supplied in dirfd does not refer to a direc-
              tory,  and  it  is  not  the  case  that  both  flags   includes
              AT_EMPTY_PATH and pathname is an empty string.

       EOPNOTSUPP
              The filesystem does not support decoding of a pathname to a file
              handle.

       EOVERFLOW
              The handle->handle_bytes value passed  into  the  call  was  too
              small.   When this error occurs, handle->handle_bytes is updated
              to indicate the required size for the handle.

       open_by_handle_at() can fail with the following errors:

       EBADF  mount_fd is not an open file descriptor.

       EBADF  pathname is relative but dirfd is neither AT_FDCWD nor  a  valid
              file descriptor.

       EFAULT handle points outside your accessible address space.

       EINVAL handle->handle_bytes  is  greater than MAX_HANDLE_SZ or is equal
              to zero.

       ELOOP  handle refers to a symbolic link, but O_PATH was  not  specified
              in flags.

       EPERM  The caller does not have the CAP_DAC_READ_SEARCH capability.

       ESTALE The  specified  handle  is not valid.  This error will occur if,
              for example, the file has been deleted.

VERSIONS
       These system calls first appeared in Linux 2.6.39.  Library support  is
       provided since glibc 2.14.

STANDARDS
       These system calls are nonstandard Linux extensions.

       FreeBSD  has  a  broadly  similar  pair  of system calls in the form of
       getfh() and openfh().

NOTES
       A file handle can be generated in one process using name_to_handle_at()
       and later used in a different process that calls open_by_handle_at().

       Some filesystem don't support the translation of pathnames to file han-
       dles, for example, /proc, /sys, and various network filesystems.

       A file handle may become invalid ("stale") if a file is deleted, or for
       other  filesystem-specific reasons.  Invalid handles are notified by an
       ESTALE error from open_by_handle_at().

       These system calls are designed for use  by  user-space  file  servers.
       For  example,  a user-space NFS server might generate a file handle and
       pass it to an NFS client.  Later, when the client  wants  to  open  the
       file,  it could pass the handle back to the server.  This sort of func-
       tionality allows a user-space file server to  operate  in  a  stateless
       fashion with respect to the files it serves.

       If  pathname  refers  to  a  symbolic  link  and flags does not specify
       AT_SYMLINK_FOLLOW, then name_to_handle_at() returns a  handle  for  the
       link  (rather than the file to which it refers).  The process receiving
       the handle can later perform operations on the symbolic  link  by  con-
       verting  the handle to a file descriptor using open_by_handle_at() with
       the O_PATH flag, and then passing the file descriptor as the dirfd  ar-
       gument in system calls such as readlinkat(2) and fchownat(2).

   Obtaining a persistent filesystem ID
       The  mount IDs in /proc/self/mountinfo can be reused as filesystems are
       unmounted  and  mounted.   Therefore,  the   mount   ID   returned   by
       name_to_handle_at()  (in  *mount_id) should not be treated as a persis-
       tent identifier for the corresponding mounted filesystem.  However,  an
       application can use the information in the mountinfo record that corre-
       sponds to the mount ID to derive a persistent identifier.

       For example, one can use the device name in  the  fifth  field  of  the
       mountinfo  record  to  search for the corresponding device UUID via the
       symbolic links in /dev/disks/by-uuid.  (A more comfortable way  of  ob-
       taining  the UUID is to use the libblkid(3) library.)  That process can
       then be reversed, using the UUID to look up the device name,  and  then
       obtaining  the  corresponding  mount  point,  in  order  to produce the
       mount_fd argument used by open_by_handle_at().

EXAMPLES
       The two programs below demonstrate the use of  name_to_handle_at()  and
       open_by_handle_at().   The  first  program (t_name_to_handle_at.c) uses
       name_to_handle_at() to obtain the file handle and mount ID for the file
       specified  in  its  command-line  argument; the handle and mount ID are
       written to standard output.

       The second program (t_open_by_handle_at.c) reads a mount  ID  and  file
       handle  from  standard  input.   The  program then employs open_by_han-
       dle_at() to open the file using that handle.  If an  optional  command-
       line  argument is supplied, then the mount_fd argument for open_by_han-
       dle_at() is obtained by opening the directory named in  that  argument.
       Otherwise,  mount_fd  is  obtained  by scanning /proc/self/mountinfo to
       find a record whose mount ID matches the mount ID  read  from  standard
       input,  and  the  mount  directory  specified in that record is opened.
       (These programs do not deal with the fact that mount IDs are  not  per-
       sistent.)

       The following shell session demonstrates the use of these two programs:

           $ echo 'Can you please think about it?' > cecilia.txt
           $ ./t_name_to_handle_at cecilia.txt > fh
           $ ./t_open_by_handle_at < fh
           open_by_handle_at: Operation not permitted
           $ sudo ./t_open_by_handle_at < fh      # Need CAP_SYS_ADMIN
           Read 31 bytes
           $ rm cecilia.txt

       Now  we delete and (quickly) re-create the file so that it has the same
       content and (by chance) the  same  inode.   Nevertheless,  open_by_han-
       dle_at() recognizes that the original file referred to by the file han-
       dle no longer exists.

           $ stat --printf="%i\n" cecilia.txt     # Display inode number
           4072121
           $ rm cecilia.txt
           $ echo 'Can you please think about it?' > cecilia.txt
           $ stat --printf="%i\n" cecilia.txt     # Check inode number
           4072121
           $ sudo ./t_open_by_handle_at < fh
           open_by_handle_at: Stale NFS file handle

   Program source: t_name_to_handle_at.c

       #define _GNU_SOURCE
       #include <err.h>
       #include <errno.h>
       #include <fcntl.h>
       #include <stdio.h>
       #include <stdlib.h>

       int
       main(int argc, char *argv[])
       {
           int                 mount_id, fhsize, flags, dirfd;
           char                *pathname;
           struct file_handle  *fhp;

           if (argc != 2) {
               fprintf(stderr, "Usage: %s pathname\n", argv[0]);
               exit(EXIT_FAILURE);
           }

           pathname = argv[1];

           /* Allocate file_handle structure. */

           fhsize = sizeof(*fhp);
           fhp = malloc(fhsize);
           if (fhp == NULL)
               err(EXIT_FAILURE, "malloc");

           /* Make an initial call to name_to_handle_at() to discover
              the size required for file handle. */

           dirfd = AT_FDCWD;           /* For name_to_handle_at() calls */
           flags = 0;                  /* For name_to_handle_at() calls */
           fhp->handle_bytes = 0;
           if (name_to_handle_at(dirfd, pathname, fhp,
                                 &mount_id, flags) != -1
               || errno != EOVERFLOW)
           {
               fprintf(stderr, "Unexpected result from name_to_handle_at()\n");
               exit(EXIT_FAILURE);
           }

           /* Reallocate file_handle structure with correct size. */

           fhsize = sizeof(*fhp) + fhp->handle_bytes;
           fhp = realloc(fhp, fhsize);         /* Copies fhp->handle_bytes */
           if (fhp == NULL)
               err(EXIT_FAILURE, "realloc");

           /* Get file handle from pathname supplied on command line. */

           if (name_to_handle_at(dirfd, pathname, fhp, &mount_id, flags) == -1)
               err(EXIT_FAILURE, "name_to_handle_at");

           /* Write mount ID, file handle size, and file handle to stdout,
              for later reuse by t_open_by_handle_at.c. */

           printf("%d\n", mount_id);
           printf("%u %d   ", fhp->handle_bytes, fhp->handle_type);
           for (size_t j = 0; j < fhp->handle_bytes; j++)
               printf(" %02x", fhp->f_handle[j]);
           printf("\n");

           exit(EXIT_SUCCESS);
       }

   Program source: t_open_by_handle_at.c

       #define _GNU_SOURCE
       #include <err.h>
       #include <fcntl.h>
       #include <limits.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <string.h>
       #include <unistd.h>

       /* Scan /proc/self/mountinfo to find the line whose mount ID matches
          'mount_id'. (An easier way to do this is to install and use the
          'libmount' library provided by the 'util-linux' project.)
          Open the corresponding mount path and return the resulting file
          descriptor. */

       static int
       open_mount_path_by_id(int mount_id)
       {
           int      mi_mount_id, found;
           char     mount_path[PATH_MAX];
           char     *linep;
           FILE     *fp;
           size_t   lsize;
           ssize_t  nread;

           fp = fopen("/proc/self/mountinfo", "r");
           if (fp == NULL)
               err(EXIT_FAILURE, "fopen");

           found = 0;
           linep = NULL;
           while (!found) {
               nread = getline(&linep, &lsize, fp);
               if (nread == -1)
                   break;

               nread = sscanf(linep, "%d %*d %*s %*s %s",
                              &mi_mount_id, mount_path);
               if (nread != 2) {
                   fprintf(stderr, "Bad sscanf()\n");
                   exit(EXIT_FAILURE);
               }

               if (mi_mount_id == mount_id)
                   found = 1;
           }
           free(linep);

           fclose(fp);

           if (!found) {
               fprintf(stderr, "Could not find mount point\n");
               exit(EXIT_FAILURE);
           }

           return open(mount_path, O_RDONLY);
       }

       int
       main(int argc, char *argv[])
       {
           int                 mount_id, fd, mount_fd, handle_bytes;
           char                buf[1000];
       #define LINE_SIZE 100
           char                line1[LINE_SIZE], line2[LINE_SIZE];
           char                *nextp;
           ssize_t             nread;
           struct file_handle  *fhp;

           if ((argc > 1 && strcmp(argv[1], "--help") == 0) || argc > 2) {
               fprintf(stderr, "Usage: %s [mount-path]\n", argv[0]);
               exit(EXIT_FAILURE);
           }

           /* Standard input contains mount ID and file handle information:

                Line 1: <mount_id>
                Line 2: <handle_bytes> <handle_type>   <bytes of handle in hex>
           */

           if (fgets(line1, sizeof(line1), stdin) == NULL ||
               fgets(line2, sizeof(line2), stdin) == NULL)
           {
               fprintf(stderr, "Missing mount_id / file handle\n");
               exit(EXIT_FAILURE);
           }

           mount_id = atoi(line1);

           handle_bytes = strtoul(line2, &nextp, 0);

           /* Given handle_bytes, we can now allocate file_handle structure. */

           fhp = malloc(sizeof(*fhp) + handle_bytes);
           if (fhp == NULL)
               err(EXIT_FAILURE, "malloc");

           fhp->handle_bytes = handle_bytes;

           fhp->handle_type = strtoul(nextp, &nextp, 0);

           for (size_t j = 0; j < fhp->handle_bytes; j++)
               fhp->f_handle[j] = strtoul(nextp, &nextp, 16);

           /* Obtain file descriptor for mount point, either by opening
              the pathname specified on the command line, or by scanning
              /proc/self/mounts to find a mount that matches the 'mount_id'
              that we received from stdin. */

           if (argc > 1)
               mount_fd = open(argv[1], O_RDONLY);
           else
               mount_fd = open_mount_path_by_id(mount_id);

           if (mount_fd == -1)
               err(EXIT_FAILURE, "opening mount fd");

           /* Open file using handle and mount point. */

           fd = open_by_handle_at(mount_fd, fhp, O_RDONLY);
           if (fd == -1)
               err(EXIT_FAILURE, "open_by_handle_at");

           /* Try reading a few bytes from the file. */

           nread = read(fd, buf, sizeof(buf));
           if (nread == -1)
               err(EXIT_FAILURE, "read");

           printf("Read %zd bytes\n", nread);

           exit(EXIT_SUCCESS);
       }

SEE ALSO
       open(2), libblkid(3), blkid(8), findfs(8), mount(8)

       The libblkid and libmount documentation in the  latest  util-linux  re-
       lease at ⟨https://www.kernel.org/pub/linux/utils/util-linux/⟩

Linux man-pages 6.03              2023-02-05              open_by_handle_at(2)

Generated by dwww version 1.15 on Thu Jun 27 09:46:43 CEST 2024.