dwww Home | Manual pages | Find package

chown(2)                      System Calls Manual                     chown(2)

NAME
       chown, fchown, lchown, fchownat - change ownership of a file

LIBRARY
       Standard C library (libc, -lc)

SYNOPSIS
       #include <unistd.h>

       int chown(const char *pathname, uid_t owner, gid_t group);
       int fchown(int fd, uid_t owner, gid_t group);
       int lchown(const char *pathname, uid_t owner, gid_t group);

       #include <fcntl.h>           /* Definition of AT_* constants */
       #include <unistd.h>

       int fchownat(int dirfd, const char *pathname,
                    uid_t owner, gid_t group, int flags);

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       fchown(), lchown():
           /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
               || _XOPEN_SOURCE >= 500
               || /* glibc <= 2.19: */ _BSD_SOURCE

       fchownat():
           Since glibc 2.10:
               _POSIX_C_SOURCE >= 200809L
           Before glibc 2.10:
               _ATFILE_SOURCE

DESCRIPTION
       These  system calls change the owner and group of a file.  The chown(),
       fchown(), and lchown() system calls differ only  in  how  the  file  is
       specified:

       •  chown()  changes  the  ownership  of the file specified by pathname,
          which is dereferenced if it is a symbolic link.

       •  fchown() changes the ownership of the file referred to by  the  open
          file descriptor fd.

       •  lchown() is like chown(), but does not dereference symbolic links.

       Only  a  privileged  process (Linux: one with the CAP_CHOWN capability)
       may change the owner of a file.  The owner of a  file  may  change  the
       group  of  the  file  to  any group of which that owner is a member.  A
       privileged process (Linux: with CAP_CHOWN) may change the  group  arbi-
       trarily.

       If the owner or group is specified as -1, then that ID is not changed.

       When the owner or group of an executable file is changed by an unprivi-
       leged user, the S_ISUID and S_ISGID mode bits are cleared.  POSIX  does
       not specify whether this also should happen when root does the chown();
       the Linux behavior depends on  the  kernel  version,  and  since  Linux
       2.2.13,  root is treated like other users.  In case of a non-group-exe-
       cutable file (i.e., one for which the S_IXGRP bit is not set) the S_IS-
       GID bit indicates mandatory locking, and is not cleared by a chown().

       When the owner or group of an executable file is changed (by any user),
       all capability sets for the file are cleared.

   fchownat()
       The fchownat() system call operates in exactly the same way as chown(),
       except for the differences described here.

       If  the  pathname given in pathname is relative, then it is interpreted
       relative to the directory referred to  by  the  file  descriptor  dirfd
       (rather  than  relative to the current working directory of the calling
       process, as is done by chown() for a relative pathname).

       If pathname is relative and dirfd is the special value  AT_FDCWD,  then
       pathname  is  interpreted  relative to the current working directory of
       the calling process (like chown()).

       If pathname is absolute, then dirfd is ignored.

       The flags argument is a bit mask created by ORing together 0 or more of
       the following values;

       AT_EMPTY_PATH (since Linux 2.6.39)
              If  pathname is an empty string, operate on the file referred to
              by dirfd (which may have been obtained using the open(2)  O_PATH
              flag).   In  this case, dirfd can refer to any type of file, not
              just a directory.  If dirfd is AT_FDCWD, the  call  operates  on
              the current working directory.  This flag is Linux-specific; de-
              fine _GNU_SOURCE to obtain its definition.

       AT_SYMLINK_NOFOLLOW
              If pathname is a symbolic link, do not dereference  it:  instead
              operate  on the link itself, like lchown().  (By default, fchow-
              nat() dereferences symbolic links, like chown().)

       See openat(2) for an explanation of the need for fchownat().

RETURN VALUE
       On success, zero is returned.  On error, -1 is returned, and  errno  is
       set to indicate the error.

ERRORS
       Depending  on  the filesystem, errors other than those listed below can
       be returned.

       The more general errors for chown() are listed below.

       EACCES Search permission is denied on a component of the  path  prefix.
              (See also path_resolution(7).)

       EBADF  (fchown()) fd is not a valid open file descriptor.

       EBADF  (fchownat())  pathname is relative but dirfd is neither AT_FDCWD
              nor a valid file descriptor.

       EFAULT pathname points outside your accessible address space.

       EINVAL (fchownat()) Invalid flag specified in flags.

       EIO    (fchown()) A low-level I/O error occurred  while  modifying  the
              inode.

       ELOOP  Too many symbolic links were encountered in resolving pathname.

       ENAMETOOLONG
              pathname is too long.

       ENOENT The file does not exist.

       ENOMEM Insufficient kernel memory was available.

       ENOTDIR
              A component of the path prefix is not a directory.

       ENOTDIR
              (fchownat()) pathname is relative and dirfd is a file descriptor
              referring to a file other than a directory.

       EPERM  The calling process did not have the required  permissions  (see
              above) to change owner and/or group.

       EPERM  The   file   is   marked   immutable   or   append-only.    (See
              ioctl_iflags(2).)

       EROFS  The named file resides on a read-only filesystem.

VERSIONS
       fchownat() was added in Linux 2.6.16;  library  support  was  added  in
       glibc 2.4.

STANDARDS
       chown(), fchown(), lchown(): 4.4BSD, SVr4, POSIX.1-2001, POSIX.1-2008.

       The 4.4BSD version can be used only by the superuser (that is, ordinary
       users cannot give away files).

       fchownat(): POSIX.1-2008.

NOTES
   Ownership of new files
       When a new file is created (by, for example, open(2) or mkdir(2)),  its
       owner  is  made  the  same  as  the  filesystem user ID of the creating
       process.  The group of the file depends on a range of factors,  includ-
       ing  the  type of filesystem, the options used to mount the filesystem,
       and whether or not the set-group-ID mode bit is enabled on  the  parent
       directory.   If  the filesystem supports the -o grpid (or, synonymously
       -o bsdgroups) and -o nogrpid (or, synonymously -o sysvgroups)  mount(8)
       options, then the rules are as follows:

       •  If  the filesystem is mounted with -o grpid, then the group of a new
          file is made the same as that of the parent directory.

       •  If the filesystem is mounted with -o nogrpid  and  the  set-group-ID
          bit  is  disabled  on  the parent directory, then the group of a new
          file is made the same as the process's filesystem GID.

       •  If the filesystem is mounted with -o nogrpid  and  the  set-group-ID
          bit is enabled on the parent directory, then the group of a new file
          is made the same as that of the parent directory.

       As at Linux 4.12, the -o grpid and -o nogrpid mount  options  are  sup-
       ported  by  ext2,  ext3, ext4, and XFS.  Filesystems that don't support
       these mount options follow the -o nogrpid rules.

   glibc notes
       On older kernels where fchownat() is  unavailable,  the  glibc  wrapper
       function  falls back to the use of chown() and lchown().  When pathname
       is a relative pathname, glibc constructs a pathname based on  the  sym-
       bolic link in /proc/self/fd that corresponds to the dirfd argument.

   NFS
       The  chown()  semantics  are  deliberately  violated on NFS filesystems
       which have UID mapping enabled.  Additionally,  the  semantics  of  all
       system  calls  which  access  the  file  contents are violated, because
       chown() may cause immediate access revocation on  already  open  files.
       Client  side  caching may lead to a delay between the time where owner-
       ship have been changed to allow access for a user and  the  time  where
       the file can actually be accessed by the user on other clients.

   Historical details
       The  original  Linux  chown(), fchown(), and lchown() system calls sup-
       ported only 16-bit user and group IDs.  Subsequently, Linux  2.4  added
       chown32(),  fchown32(),  and  lchown32(),  supporting  32-bit IDs.  The
       glibc chown(), fchown(), and lchown() wrapper  functions  transparently
       deal with the variations across kernel versions.

       Before  Linux  2.1.81  (except 2.1.46), chown() did not follow symbolic
       links.  Since Linux 2.1.81, chown() does  follow  symbolic  links,  and
       there  is  a  new  system  call  lchown() that does not follow symbolic
       links.  Since Linux 2.1.86, this new call (that has the same  semantics
       as  the  old  chown()) has got the same syscall number, and chown() got
       the newly introduced number.

EXAMPLES
       The following program changes the ownership of the file  named  in  its
       second  command-line  argument to the value specified in its first com-
       mand-line argument.  The new owner can be specified either as a numeric
       user  ID,  or  as  a username (which is converted to a user ID by using
       getpwnam(3) to perform a lookup in the system password file).

   Program source
       #include <pwd.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <unistd.h>

       int
       main(int argc, char *argv[])
       {
           char           *endptr;
           uid_t          uid;
           struct passwd  *pwd;

           if (argc != 3 || argv[1][0] == '\0') {
               fprintf(stderr, "%s <owner> <file>\n", argv[0]);
               exit(EXIT_FAILURE);
           }

           uid = strtol(argv[1], &endptr, 10);  /* Allow a numeric string */

           if (*endptr != '\0') {         /* Was not pure numeric string */
               pwd = getpwnam(argv[1]);   /* Try getting UID for username */
               if (pwd == NULL) {
                   perror("getpwnam");
                   exit(EXIT_FAILURE);
               }

               uid = pwd->pw_uid;
           }

           if (chown(argv[2], uid, -1) == -1) {
               perror("chown");
               exit(EXIT_FAILURE);
           }

           exit(EXIT_SUCCESS);
       }

SEE ALSO
       chgrp(1), chown(1), chmod(2), flock(2), path_resolution(7), symlink(7)

Linux man-pages 6.03              2023-02-05                          chown(2)

Generated by dwww version 1.15 on Sat Jun 1 22:55:01 CEST 2024.