dwww Home | Manual pages | Find package

Stdlib.Bigarray(3o)              OCaml library             Stdlib.Bigarray(3o)

NAME
       Stdlib.Bigarray - no description

Module
       Module   Stdlib.Bigarray

Documentation
       Module Bigarray
        : (module Stdlib__Bigarray)

   Element kinds
       Bigarrays can contain elements of the following kinds:

       -IEEE  single  precision  (32  bits)  floating-point  numbers  ( Bigar-
       ray.float32_elt ),

       -IEEE double  precision  (64  bits)  floating-point  numbers  (  Bigar-
       ray.float64_elt ),

       -IEEE  single  precision (2 * 32 bits) floating-point complex numbers (
       Bigarray.complex32_elt ),

       -IEEE double precision (2 * 64 bits) floating-point complex  numbers  (
       Bigarray.complex64_elt ),

       -8-bit  integers (signed or unsigned) ( Bigarray.int8_signed_elt or Bi-
       garray.int8_unsigned_elt ),

       -16-bit integers (signed or unsigned)  (  Bigarray.int16_signed_elt  or
       Bigarray.int16_unsigned_elt ),

       -OCaml  integers  (signed,  31 bits on 32-bit architectures, 63 bits on
       64-bit architectures) ( Bigarray.int_elt ),

       -32-bit signed integers ( Bigarray.int32_elt ),

       -64-bit signed integers ( Bigarray.int64_elt ),

       -platform-native signed integers (32 bits on 32-bit  architectures,  64
       bits on 64-bit architectures) ( Bigarray.nativeint_elt ).

       Each  element kind is represented at the type level by one of the *_elt
       types defined below (defined with a single constructor instead  of  ab-
       stract types for technical injectivity reasons).

       type float32_elt =
        | Float32_elt

       type float64_elt =
        | Float64_elt

       type int8_signed_elt =
        | Int8_signed_elt

       type int8_unsigned_elt =
        | Int8_unsigned_elt

       type int16_signed_elt =
        | Int16_signed_elt

       type int16_unsigned_elt =
        | Int16_unsigned_elt

       type int32_elt =
        | Int32_elt

       type int64_elt =
        | Int64_elt

       type int_elt =
        | Int_elt

       type nativeint_elt =
        | Nativeint_elt

       type complex32_elt =
        | Complex32_elt

       type complex64_elt =
        | Complex64_elt

       type ('a, 'b) kind =
        | Float32 : (float, float32_elt) kind
        | Float64 : (float, float64_elt) kind
        | Int8_signed : (int, int8_signed_elt) kind
        | Int8_unsigned : (int, int8_unsigned_elt) kind
        | Int16_signed : (int, int16_signed_elt) kind
        | Int16_unsigned : (int, int16_unsigned_elt) kind
        | Int32 : (int32, int32_elt) kind
        | Int64 : (int64, int64_elt) kind
        | Int : (int, int_elt) kind
        | Nativeint : (nativeint, nativeint_elt) kind
        | Complex32 : (Complex.t, complex32_elt) kind
        | Complex64 : (Complex.t, complex64_elt) kind
        | Char : (char, int8_unsigned_elt) kind

       To  each element kind is associated an OCaml type, which is the type of
       OCaml values that can be stored in the Bigarray or read back  from  it.
       This type is not necessarily the same as the type of the array elements
       proper: for instance, a Bigarray whose elements are of kind float32_elt
       contains  32-bit single precision floats, but reading or writing one of
       its elements from OCaml uses the OCaml type float  ,  which  is  64-bit
       double precision floats.

       The  GADT type ('a, 'b) kind captures this association of an OCaml type
       'a for values read or written in the Bigarray, and of an  element  kind
       'b  which represents the actual contents of the Bigarray. Its construc-
       tors list all possible associations of OCaml types with element  kinds,
       and are re-exported below for backward-compatibility reasons.

       Using  a  generalized  algebraic  datatype  (GADT)  here allows writing
       well-typed polymorphic functions whose return type depend on the  argu-
       ment type, such as:

         let zero : type a b. (a, b) kind -> a = function
           | Float32 -> 0.0 | Complex32 -> Complex.zero
           | Float64 -> 0.0 | Complex64 -> Complex.zero
           | Int8_signed -> 0 | Int8_unsigned -> 0
           | Int16_signed -> 0 | Int16_unsigned -> 0
           | Int32 -> 0l | Int64 -> 0L
           | Int -> 0 | Nativeint -> 0n
           | Char -> '\000'

       val float32 : (float, float32_elt) kind

       See Bigarray.char .

       val float64 : (float, float64_elt) kind

       See Bigarray.char .

       val complex32 : (Complex.t, complex32_elt) kind

       See Bigarray.char .

       val complex64 : (Complex.t, complex64_elt) kind

       See Bigarray.char .

       val int8_signed : (int, int8_signed_elt) kind

       See Bigarray.char .

       val int8_unsigned : (int, int8_unsigned_elt) kind

       See Bigarray.char .

       val int16_signed : (int, int16_signed_elt) kind

       See Bigarray.char .

       val int16_unsigned : (int, int16_unsigned_elt) kind

       See Bigarray.char .

       val int : (int, int_elt) kind

       See Bigarray.char .

       val int32 : (int32, int32_elt) kind

       See Bigarray.char .

       val int64 : (int64, int64_elt) kind

       See Bigarray.char .

       val nativeint : (nativeint, nativeint_elt) kind

       See Bigarray.char .

       val char : (char, int8_unsigned_elt) kind

       As  shown  by  the  types  of  the  values  above,  Bigarrays  of  kind
       float32_elt and float64_elt are accessed using the OCaml type  float  .
       Bigarrays  of  complex kinds complex32_elt , complex64_elt are accessed
       with the OCaml type Complex.t . Bigarrays of integer kinds are accessed
       using the smallest OCaml integer type large enough to represent the ar-
       ray elements: int for 8- and  16-bit  integer  Bigarrays,  as  well  as
       OCaml-integer  Bigarrays; int32 for 32-bit integer Bigarrays; int64 for
       64-bit integer Bigarrays; and nativeint for platform-native integer Bi-
       garrays.   Finally, Bigarrays of kind int8_unsigned_elt can also be ac-
       cessed as arrays of characters instead of arrays of small integers,  by
       using the kind value char instead of int8_unsigned .

       val kind_size_in_bytes : ('a, 'b) kind -> int

       kind_size_in_bytes k is the number of bytes used to store an element of
       type k .

       Since 4.03.0

   Array layouts
       type c_layout =
        | C_layout_typ

       See Bigarray.fortran_layout .

       type fortran_layout =
        | Fortran_layout_typ

       To facilitate interoperability with existing C and Fortran  code,  this
       library  supports  two different memory layouts for Bigarrays, one com-
       patible with the C conventions, the other compatible with  the  Fortran
       conventions.

       In  the C-style layout, array indices start at 0, and multi-dimensional
       arrays are laid out in row-major format.  That  is,  for  a  two-dimen-
       sional  array, all elements of row 0 are contiguous in memory, followed
       by all elements of row 1, etc.  In other terms, the array  elements  at
       (x,y) and (x, y+1) are adjacent in memory.

       In the Fortran-style layout, array indices start at 1, and multi-dimen-
       sional arrays are laid out in column-major  format.   That  is,  for  a
       two-dimensional  array, all elements of column 0 are contiguous in mem-
       ory, followed by all elements of column 1, etc.  In  other  terms,  the
       array elements at (x,y) and (x+1, y) are adjacent in memory.

       Each  layout style is identified at the type level by the phantom types
       Bigarray.c_layout and Bigarray.fortran_layout respectively.

   Supported layouts
       The GADT type 'a layout represents one of the two supported memory lay-
       outs:  C-style  or  Fortran-style.  Its constructors are re-exported as
       values below for backward-compatibility reasons.

       type 'a layout =
        | C_layout : c_layout layout
        | Fortran_layout : fortran_layout layout

       val c_layout : c_layout layout

       val fortran_layout : fortran_layout layout

   Generic arrays (of arbitrarily many dimensions)
       module Genarray : sig end

   Zero-dimensional arrays
       module Array0 : sig end

       Zero-dimensional arrays. The Array0 structure provides operations simi-
       lar  to  those  of  Bigarray.Genarray  , but specialized to the case of
       zero-dimensional arrays that only contain a single scalar value.  Stat-
       ically  knowing the number of dimensions of the array allows faster op-
       erations, and more precise static type-checking.

       Since 4.05.0

   One-dimensional arrays
       module Array1 : sig end

       One-dimensional arrays. The Array1 structure provides operations  simi-
       lar  to  those  of  Bigarray.Genarray  , but specialized to the case of
       one-dimensional  arrays.   (The  Bigarray.Array2  and   Bigarray.Array3
       structures  below provide operations specialized for two- and three-di-
       mensional arrays.)  Statically knowing the number of dimensions of  the
       array allows faster operations, and more precise static type-checking.

   Two-dimensional arrays
       module Array2 : sig end

       Two-dimensional  arrays. The Array2 structure provides operations simi-
       lar to those of Bigarray.Genarray , but  specialized  to  the  case  of
       two-dimensional arrays.

   Three-dimensional arrays
       module Array3 : sig end

       Three-dimensional arrays. The Array3 structure provides operations sim-
       ilar to those of Bigarray.Genarray , but specialized  to  the  case  of
       three-dimensional arrays.

   Coercions between generic Bigarrays and fixed-dimension Bigarrays
       val  genarray_of_array0  : ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genar-
       ray.t

       Return the generic Bigarray corresponding to the given zero-dimensional
       Bigarray.

       Since 4.05.0

       val  genarray_of_array1  : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genar-
       ray.t

       Return the generic Bigarray corresponding to the given  one-dimensional
       Bigarray.

       val  genarray_of_array2  : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genar-
       ray.t

       Return the generic Bigarray corresponding to the given  two-dimensional
       Bigarray.

       val  genarray_of_array3  : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genar-
       ray.t

       Return the generic Bigarray corresponding  to  the  given  three-dimen-
       sional Bigarray.

       val  array0_of_genarray  :  ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Ar-
       ray0.t

       Return the zero-dimensional Bigarray corresponding to the given generic
       Bigarray.

       Since 4.05.0

       Raises  Invalid_argument  if the generic Bigarray does not have exactly
       zero dimension.

       val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a,  'b,  'c)  Ar-
       ray1.t

       Return  the one-dimensional Bigarray corresponding to the given generic
       Bigarray.

       Raises Invalid_argument if the generic Bigarray does not  have  exactly
       one dimension.

       val  array2_of_genarray  :  ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Ar-
       ray2.t

       Return the two-dimensional Bigarray corresponding to the given  generic
       Bigarray.

       Raises  Invalid_argument  if the generic Bigarray does not have exactly
       two dimensions.

       val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a,  'b,  'c)  Ar-
       ray3.t

       Return  the  three-dimensional  Bigarray  corresponding  to  the  given
       generic Bigarray.

       Raises Invalid_argument if the generic Bigarray does not  have  exactly
       three dimensions.

   Re-shaping Bigarrays
       val  reshape  :  ('a,  'b,  'c) Genarray.t -> int array -> ('a, 'b, 'c)
       Genarray.t

       reshape b [|d1;...;dN|] converts the Bigarray b to a N -dimensional ar-
       ray of dimensions d1 ...  dN .  The returned array and the original ar-
       ray b share their data and have the same layout.  For instance,  assum-
       ing  that  b  is  a  one-dimensional  array  of dimension 12, reshape b
       [|3;4|] returns a two-dimensional array b' of dimensions 3 and 4.  If b
       has  C layout, the element (x,y) of b' corresponds to the element x * 3
       + y of b .  If b has Fortran layout, the element  (x,y)  of  b'  corre-
       sponds  to  the  element  x + (y - 1) * 4 of b .  The returned Bigarray
       must have exactly the same number of elements as the original  Bigarray
       b  .  That is, the product of the dimensions of b must be equal to i1 *
       ... * iN .  Otherwise, Invalid_argument is raised.

       val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t

       Specialized version of Bigarray.reshape for  reshaping  to  zero-dimen-
       sional arrays.

       Since 4.05.0

       val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t

       Specialized  version  of  Bigarray.reshape  for reshaping to one-dimen-
       sional arrays.

       val reshape_2 : ('a, 'b, 'c) Genarray.t -> int -> int -> ('a,  'b,  'c)
       Array2.t

       Specialized  version  of  Bigarray.reshape  for reshaping to two-dimen-
       sional arrays.

       val reshape_3 : ('a, 'b, 'c) Genarray.t -> int -> int ->  int  ->  ('a,
       'b, 'c) Array3.t

       Specialized  version  of Bigarray.reshape for reshaping to three-dimen-
       sional arrays.

OCamldoc                          2023-02-12               Stdlib.Bigarray(3o)

Generated by dwww version 1.15 on Sun Jun 23 03:46:41 CEST 2024.