dwww Home | Show directory contents | Find package

% \VignetteIndexEntry{irlba Manual}
% \VignetteDepends{irlba}
% \VignettePackage{irlba}
\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage[pdftex]{graphicx}
\usepackage{color}
\usepackage{xspace}
\usepackage{fancyvrb}
\usepackage{fancyhdr}
\usepackage[
     colorlinks=true,
     linkcolor=blue,
     citecolor=blue,
     urlcolor=blue]
     {hyperref}
\usepackage{lscape}
\usepackage{Sweave}
\usepackage{tabularx}
\usepackage{listings}
\usepackage{mdwlist}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% define new colors for use
\definecolor{darkgreen}{rgb}{0,0.6,0}
\definecolor{darkred}{rgb}{0.6,0.0,0}
\definecolor{lightbrown}{rgb}{1,0.9,0.8}
\definecolor{brown}{rgb}{0.6,0.3,0.3}
\definecolor{darkblue}{rgb}{0,0,0.8}
\definecolor{darkmagenta}{rgb}{0.5,0,0.5}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\newcommand{\bld}[1]{\mbox{\boldmath $#1$}}
\newcommand{\shell}[1]{\mbox{$#1$}}
\renewcommand{\vec}[1]{\mbox{\bf {#1}}}
\newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize}
\newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize}
\def\tm{\leavevmode\hbox{$\rm {}^{TM}$}}

\newcommand{\R}{{\mathbf R}}
\newcommand{\brho}{{\color{blue}{\rho}}}
\newcommand{\Ra}{{\mathcal R}}
\newcommand{\PP}{{\mathbf P}}
\newcommand{\N}{{\mathbf N}}
\newcommand{\K}{{\mathcal K}}



\setlength{\oddsidemargin}{-.25 truein}
\setlength{\evensidemargin}{0truein}
\setlength{\topmargin}{-0.2truein}
\setlength{\textwidth}{7 truein}
\setlength{\textheight}{8.5 truein}
\setlength{\parindent}{0.20truein}
\setlength{\parskip}{0.10truein}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\pagestyle{fancy}
\lhead{}
\chead{The {\tt irlba} Package}
\rhead{}
\lfoot{}
\cfoot{}
\rfoot{\thepage}
\renewcommand{\headrulewidth}{1pt}
\renewcommand{\footrulewidth}{1pt}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{The {\tt irlba} Package}
\author{Bryan W. Lewis \\ 
blewis@illposed.net,
\\[6pt]
adapted from the work of:\\
Jim Baglama (University of Rhode Island)\\
and Lothar Reichel (Kent State University).
}

\begin{document}

\maketitle

\thispagestyle{empty}

\section{Introduction}

The {\tt irlba} package provides a fast way to compute partial singular value
decompositions (SVD) of large sparse or dense matrices. Recent additions to the
package can also compute fast partial symmetric eigenvalue decompositions and
principal components. The package is an R implementation of the {\it augmented
implicitly restarted Lanczos bidiagonalization algorithm} of Jim Baglama and
Lothar Reichel\footnote{Augmented Implicitly Restarted Lanczos
Bidiagonalization Methods, J. Baglama and L. Reichel, SIAM J. Sci. Comput.
2005.}.  Source code is maintained at
\href{https://github.com/bwlewis/irlba}{https://github.com/bwlewis/irlba}.

The {\tt irlba} package works with real- and complex-valued dense R matrices
and real-valued sparse matrices from the {\tt Matrix} package. It provides
several easy ways to define custom matrix arithmetic that works with other
matrix classes including {\tt big.matrix} from the {\tt bigmemory} package and
others.  The {\tt irlba} is both faster and more memory efficient than the
usual R {\tt svd} function for computing a few of the largest singular vectors
and corresponding singular values of a matrix. It takes advantage of available
high-performance linear algebra libraries if R is compiled to use them. In
particular, the package uses the same BLAS and LAPACK libraries that R uses
(see
\href{https://cran.r-project.org/doc/manuals/R-admin.html#BLAS}{https://cran.r-project.org/doc/manuals/R-admin.html\#BLAS}),
or the CHOLMOD library from R's Matrix package for sparse matrix problems.

A whirlwind summary of the algorithm follows, along with a few basic examples.
A much more detailed description and discussion of the algorithm may be found
in the cited Baglama-Reichel reference.


\section{Partial Singular Value Decomposition}

Let $A\in\R^{\ell\times n}$ and assume $\ell\ge n$. These notes simplify the
presentation by considering only real-valued matrices and assuming without
losing generality that there are at least as many rows as columns (the
method works more generally). A singular
value decomposition of $A$ can be expressed as:

\[
A = \sum_{j=1}^n \sigma_j u_j v_j^T,
\phantom{xxxxxxxx}
v_j^Tv_k = u_j^Tu_k = 
\left\{
\begin{array}{ll}
1 & \mbox{if}\phantom{x}  j=k,\\
0 & \mbox{o.w.,}\\
\end{array}
\right.
\]
where $u_j\in\R^\ell $, $v_j\in\R^n $,
$j=1,2,\ldots, n$, and
$ \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0 $.

Let $1 \le k<n$. A rank $k$ partial SVD of $A$ is defined as:
\begin{eqnarray*}
A_k &:=& \sum_{j=1}^k \sigma_j u_j v_j^T.\\
\end{eqnarray*}



The following simple example shows how to use {\tt irlba} to compute the five
largest singular values and corresponding singular vectors of a
$5000\times5000$ matrix. We compare to the usual R {\tt svd} function and
report timings for our test machine, a 4-CPU core, 3.0\, GHz AMD  A10-7850K
personal computer with 16\,GB RAM, using R version 3.3.1 using the high
performance AMD ACML core math library BLAS and LAPACK.
\lstset{columns=flexible, basicstyle={\ttfamily\slshape}}
\begin{lstlisting}
> library('irlba')
> set.seed(1)
> A <- matrix(rnorm(5000*5000), 5000)
> t1 <- proc.time()
> L <- irlba(A, 5)
> print(proc.time() - t1)
   user  system elapsed
 17.440   0.192   4.417
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1096734  58.6    1770749  94.6  1442291  77.1
Vcells 26685618 203.6   62229965 474.8 52110704 397.6

\end{lstlisting}
Compare with the standard {\tt svd} function:\newpage
\begin{lstlisting}
> t1 <- proc.time()
> S <- svd(A, nu=5, nv=5)
> print(proc.time() - t1)
   user  system elapsed
277.092  11.552  74.425
> gc()
           used  (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells  1097441  58.7    1770749   94.6   1442291   77.1
Vcells 26741910 204.1  169891972 1296.2 176827295 1349.1
\end{lstlisting}
The {\tt irlba} method uses about 1/20 elapsed time as the
{\tt svd} method in this example and less than one third the peak memory.
The defalut tolerance value yields the following relative error
in the estimated singular values:
\begin{lstlisting}
> sqrt (crossprod(S$d[1:5]-L$d)/crossprod(S$d[1:5]))
            [,1]
[1,] 4.352641e-10
\end{lstlisting}

\subsection{Convergence tolerance}

IRLBA is an iterative method that estimates a few singular values
and associated singular vectors. A sketch of the algorithm is outlined
in Section \ref{sketch} below. The R {\tt tol} and {\tt svtol} arguments control
when the algorithm converges with {\tt tol} specifying
subspace convergence, and {\tt svtol} specifying convergence of estimated
singular values.

Subspace convergence occurs when the algorithm iterations find
estimated singular vectors that satisfy
\[
\|AV_k - US_k\| < \mbox{tol} \cdot \|A\|,
\]
where $\|\cdot\|$ means spectral matrix norm, $A$ is the matrix, $V_k$ and $U_k$
are the {\it estimated} right and left $k$ singular vectors computed by the
algorithm, and $\|A\|$ is the {\it estimated} spectral norm of the matrix defined
by the largest singular value computed by the algorithm. Using R notation,
the algorithm stops when
\begin{lstlisting}
L <- irlba(A, k, tol)
svd(A %*% L$v - L$u %*% diag(L$d))$d[1] < tol * L$d[1]
\end{lstlisting}
It's possible to encounter problems that fail to converge before
the maximum number of algorithm iterations specified by the {\tt maxit}
argument.

When the largest singular values are clustered together it can be hard to
detect subspace convergence. More recent versions of the IRLBA implementation
include the {\tt svtol} argument that specifies a maximum for the relative
change in each estimated singular value from one iteration to the next.

The convergence tolerance values together help improve correct subspace
detection in difficult settings when the singular values are clustered.
But in the worst cases, block methods can perform better as shown in
the documentation for the {\tt svdr} method.

Also see the related {\tt rsvd} function by N. Benjamin Erichson,
\href{https://cran.r-project.org/package=rsvd}{https://cran.r-project.org/package=rsvd}.


\subsection{Differences with {\tt svd}}
The {\tt irlba} function is designed to compute a {\it partial} singular
value decomposition. It is largely compatible with the usual R {\tt svd}
function but there are some differences. In particular:
\begin{enumerate}
\item The {\tt irlba} function only computes the number of singular values
corresponding to the maximum of the desired singular vectors,
{\tt max(nu, nv)}. For example, if 5
singular vectors are desired ({\tt nu=nv=5}), then only the five corresponding
singular values are computed. The standard R {\tt svd} function always
returns the {\it total} set of singular values for the matrix, regardless of how
many singular vectors are specified.
\item The {\tt irlba} function is an iterative method that continues until
either a tolerance or maximum number of iterations is reached.
Problems with difficult convergence properties are not likely to be
encountered, but the method will fail with an error after the iteration limit
is reached in those cases.
\end{enumerate}
Watch out especially for the first difference noted above!


\subsection{Principal Components}

Version 2.1.0 of the package introduces optional arguments and {\tt prcomp}-like
function syntax for efficiently computing partial SVDs of matrices after
centering and scaling their columns and other adjustments.
Use the following arguments to the {\tt irlba} function, or the new
{\tt irlba\_prcomp} function for PCA:
\begin{itemize}
\item {\tt center}: if {\tt center} is a numeric vector with length equal to
     the number of columns of the matrix, then each column of the matrix has the
     corresponding value from {\tt center} subtracted from it.
\item {\tt scale}: if 'scale' is a numeric vector with length
     equal to the number of columns of the matrix, then each column is
     divided by the corresponding value from {\tt scale}.
\end{itemize}
Both centering and scaling options are performed implicitly in the algorithm
and, for instance, do not affect sparsity of the input matrix or increase
storage requirements.
The following
example compares the output of the usual {\tt prcomp} function with
output from {\tt irlba}.
Note that in general, singular vectors and principal component vectors
are only unique up to sign!

\begin{lstlisting}
>      set.seed(1)
>      x  <- matrix(rnorm(200), nrow=20)
>      p1 <- prcomp_irlba(x, n=3)
>      summary(p1)
Importance of components%s:
                          PC1    PC2    PC3
Standard deviation     1.5411 1.2513 1.1916
Proportion of Variance 0.2806 0.1850 0.1678
Cumulative Proportion  0.2806 0.4656 0.6334

>      # Compare with
>      p2 <- prcomp(x, tol=0.7)
>      summary(p2)
Importance of components:
                          PC1    PC2    PC3
Standard deviation     1.5411 1.2513 1.1916
Proportion of Variance 0.2806 0.1850 0.1678
Cumulative Proportion  0.2806 0.4656 0.6334
\end{lstlisting}
Alternatively, you can compute principal components directly using the
singular value decomposition and the {\tt center} option:
\begin{lstlisting}
> p3 <- svd(scale(x, center=colMeans(x), scale=FALSE))
> p4 <- irlba(x, 3, center=colMeans(x))

> # compare with prcomp
> sqrt(crossprod(p1$rotation[,1] - p3$v[,1]))
             [,1]
[1,] 9.773228e-13
> sqrt(crossprod(p1$rotation[,1] + p4$v[,1]))
             [,1]
[1,] 1.652423e-12
\end{lstlisting}


\subsection{Truncated symmetric eigenvalue decomposition}

Use the {\tt partial\_eigen} function to estimate a subset of the largest (most
positive) eigenvalues and corresponding eigenvectors of a symmetric dense or
sparse real-valued matrix. The function is particularly well-suited to
estimating the largest eigenvalues and corresponding eigenvectors of symmetric
positive semi-definite matrices of the form $A^T A$.



\subsection{User-Defined Matrix Multiplication}

The {\tt irlba} function only uses matrix vector products with the input data
matrix to compute its solution. It's easy to use R's native object model to
define custom matrix classes with user-defined matrix multiplication functions.
Such functions can be used to support special matrix objects, out of core
computation of large problems, or matrix-free operators.

Here is a simple example that defines a matrix product that scales the
columns of the matrix to have unit norm (cf the {\tt scale} option).

\begin{lstlisting}
> A <- matrix(runif(400), nrow=20)
> col_scale <- sqrt(apply(A, 2, crossprod))
> setClass("scaled_matrix", contains="matrix", slots=c(scale="numeric"))
> setMethod("%*%", signature(x="scaled_matrix", y="numeric"),
+       function(x ,y) x@.Data %*% (y / x@scale))
> setMethod("%*%", signature(x="numeric", y="scaled_matrix"),
+       function(x ,y) (x %*% y@.Data) / y@scale)
> a <- new("scaled_matrix", A, scale=col_scale)
> irlba(a, 3)$d

[1] 3.9298391 0.9565016 0.8266859

# Compare with
> svd(sweep(A, 2, col_scale, FUN=`/`))$d[1:3]

[1] 3.9298391 0.9565016 0.8266859
\end{lstlisting}

See the following link for an example that uses large-scale out of core computation:
\href{https://bwlewis.github.io/1000_genomes_examples/PCA_whole_genome.html}{http://bwlewis.github.io/1000\_genomes\_examples/PCA\_whole\_genome.html}

NOTE! The reference R algorithm implementation is used whenever user-defined
matrix multiplication is specified (instead of the faster C code path).


\section{A Quick Summary of the IRLBA Method}\label{sketch}
\subsection{Partial Lanczos Bidiagonalization}

Start with a given vector $p_1$. Compute $m$ steps of the Lanczos process:

\begin{eqnarray*}
A P_m &=& Q_m B_m \\
A^T Q_m &=& P_m B_m^T + r_m e_m^T,\\
\end{eqnarray*}

$B_m\in\R^{m\times m}, P_m \in \R^{n\times m}, $ 
$Q_m \in \R^{\ell \times m},$ 

$P_m^TP_m=Q_m^TQ_m=I_m, $ 

$r_m\in\R^n,  P_m^Tr_m=0,$

$P_m = [p_1, p_2, \ldots, p_m]$.

\subsection{Approximating Partial SVD with A Partial Lanczos bidiagonalization}
\begin{eqnarray*}
A^TA P_m &=& A^TQ_m B_m \\
         &=& P_m {\color{blue}{B_m^TB_m}} + r_m e_m^TB_m,\\
\end{eqnarray*}
\begin{eqnarray*}
AA^T Q_m &=& AP_m B_m^T + Ar_m e_m^T,\\
&=& Q_m{\color{blue}{B_mB_m^T}} + Ar_me_m^T.
\end{eqnarray*}

Compute the SVD of $B_m$:
\[
B_m = \sum_{j=1}^m\sigma^B_ju^B_j\left(v_j^B\right)^T.
\] 
\\[6pt]
\[
\left(\mbox{i.e., }  B_mv_j^B = \sigma_j^Bu_j^B,  \mbox{ and }  
B_m^Tu_j^b = \sigma_j^Bv_j^B.\right)
\]

Define:
$
\tilde{\sigma_j} := \sigma_j^B, \phantom{xxx}
\tilde{u}_j := Q_m u_j^B, \phantom{xxx}
\tilde{v}_j := P_m v_j^B.
$

Then:
\begin{eqnarray*}
A\tilde{v}_j &=& AP_mv_j^B \\
&=& Q_mB_mv_j^B \\
&=& \sigma^B_jQ_mu_j^B \\
&=& \tilde{\sigma}_j \tilde{u}_j,
\end{eqnarray*}
and
\begin{eqnarray*}
A^T\tilde{u}_j &=& A^TQ_mu_j^B \\
&=& P_mB^T_mu_j^B + r_me_m^Tu_j^B \\
&=& \sigma^B_jP_mv_j^B + r_me_m^Tu_j^B\\
&=& \tilde{\sigma}_j \tilde{v}_j + {\color{red} {r_me_m^Tu_j^B}}.
\end{eqnarray*}
The part in red above represents the error with respect to the exact SVD.
The IRLBA strategy is to iteratively reduce the norm of that error term
by augmenting and restarting.

Here is the overall method:
\begin{enumerate}
\item Compute the Lanczos process up to step $m$.
\item Compute $k<m$ approximate singular vectors.
\item Orthogonalize against the approximate singular vectors to get a new 
      starting vector.
\item Continue the Lanczos process with the new starting vector 
      for $m$ more steps.
\item Check for convergence tolerance and exit if met.
\item GOTO 1.
\end{enumerate}


\subsection{Sketch of the augmented process...}
\begin{eqnarray*}
\bar{P}_{k+1} &:=& [\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_k, p_{m+1}],\\
A\bar{P}_{k+1} &=& [\tilde{\sigma}_1\tilde{u}_1, \tilde{\sigma}_1\tilde{u}_2, \ldots, \tilde{\sigma}_k\tilde{u}_k, Ap_{m+1}]
\end{eqnarray*}

Orthogonalize $Ap_{m+1}$ against $\{\tilde{u}_j\}_{j=1}^k$:   
$
Ap_{m+1} = \sum_{j=1}^k {\color{blue}{\rho_j}}\tilde{u}_j + {\color{blue}{r_k}}.
$
\begin{eqnarray*}
\bar{Q}_{k+1} &:=& [\tilde{u}_1, \tilde{u}_2, \ldots, \tilde{u}_k, 
{\color{blue}{r_k}}/\|{\color{blue}{r_k}}\|],\\
\bar{B}_{k+1} &:=&
\left[
\begin{array}{ccccc}
\tilde{\sigma}_1 & & & \brho_1 \\
& \tilde{\sigma}_2 & & \brho_2 \\
& & \ddots & \brho_k \\
& & & \|\color{blue}{r_k}\|
\end{array}
\right].
\end{eqnarray*}
\[
A\bar{P}_{k+1} = \bar{Q}_{k+1}\bar{B}_{k+1}.
\]




\end{document}

Generated by dwww version 1.15 on Thu Jun 27 23:04:34 CEST 2024.