Octave C++ Classes

Edition 1.0 for Octave version 7.3.0

The Octave Project Developers

Copyright (©) 1996-2022 The Octave Project Developers.

This is the first edition of the documentation for Octave’s C++ classes, and is consistent
with version 7.3.0 of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Table of Contents

1 Acknowledgements.............................. 1
Contributors to Octaveo e 1
GNU GENERAL PUBLIC LICENSE............. 2
2 A Brief Introduction to Octave............... 13
3 ArTayS..... . 14
3.1 Constructors and Assignment............... 14
4 Matrix and Vector Operations................ 18
5 DMatrix Factorizations.......................... 33
6 Ranges........... 37
7 Nonlinear Functions 38
8 Nonlinear Equations........................... 39
9 Optimization 40
9.1 Objective Functions 40
9.2 Bounds...... ... 40
9.3 Linear Constraints.uuiiiiiiiiieeeee i, 41
9.4 Nonlinear Constraints i, 41
9.5 Quadratic Programming........... i 41
9.6 Nonlinear Programming i, 42
10 Quadrature................., 43
10.1 Collocation Weights 43
11 Ordinary Differential Equations............. 45
12 Differential Algebraic Equations............. 46

13 Error Handling............................. ... 47

ii

1 Acknowledgements

Contributors to Octave

In addition to John W. Eaton, several people have written parts of liboctave. (This has
been removed because it is the same as what is in the Octave manual.)

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other

https://fsf.org/

GNU GENERAL PUBLIC LICENSE 3

domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular

GNU GENERAL PUBLIC LICENSE 4

programming language, one that is widely used among developers working in that
language.

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty

GNU GENERAL PUBLIC LICENSE 5

adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

GNU GENERAL PUBLIC LICENSE 6

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

GNU GENERAL PUBLIC LICENSE 7

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

GNU GENERAL PUBLIC LICENSE 8

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

GNU GENERAL PUBLIC LICENSE 9

9.

10.

11.

Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

GNU GENERAL PUBLIC LICENSE 10

12.

13.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,

GNU GENERAL PUBLIC LICENSE 11

14.

15.

16.

17.

but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with

GNU GENERAL PUBLIC LICENSE 12

the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:
program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w” and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-1gpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

13

2 A Brief Introduction to Octave

This manual documents how to run, install and port Octave’s C++ classes, and how to
report bugs.

14

3 Arrays

3.1 Constructors and Assignment

Array<T> (void) [Constructor]
Create an array with no elements.

Array<T> (int n [, const T &vall) [Constructor]
Create an array with n elements. If the optional argument val is supplied, the elements
are initialized to val; otherwise, they are left uninitialized. If n is less than zero, the
current error handler is invoked (see Chapter 13 [Error Handling], page 47).

Array<T> (const Array<T> &a) [Constructor]
Create a copy of the Array<T> object a. Memory for the Array<T> class is managed
using a reference counting scheme, so the cost of this operation is independent of the
size of the array.

Array<T>& operator = (const Array<T> &a) [Assignment on Array<T>]
Assignment operator. Memory for the Array<T> class is managed using a reference
counting scheme, so the cost of this operation is independent of the size of the array.

int capacity (void) const [Method on Array<T>]

int length (void) const [Method on Array<T>]
Return the length of the array.

T& elem (int n) [Method on Array<T>]

T& checkelem (int n) [Method on Array<T>]

If n is within the bounds of the array, return a reference to the element indexed by
n; otherwise, the current error handler is invoked (see Chapter 13 [Error Handling],

page 47).
T& operator () (int n) [Indexing on Array<T>]
T elem (int n) const [Method on Array<T>]
T checkelem (int n) const [Method on Array<T>]
If n is within the bounds of the array, return the value indexed by n; otherwise, call

the current error handler. See Chapter 13 [Error Handling], page 47.

T operator () (int n) const [Indexing on Array<T>|
T& xelem (int n) [Method on Array<T>]
T xelem (int n) const [Method on Array<T>]

Return a reference to, or the value of, the element indexed by n. These methods
never perform bounds checking.

void resize (int n [, const T &val]) [Method on Array<T>]
Change the size of the array to be n elements. All elements are unchanged, except
that if n is greater than the current size and the optional argument val is provided,

Chapter 3: Arrays

15

the additional elements are initialized to val; otherwise, any additional elements are
left uninitialized. In the current implementation, if n is less than the current size, the

length is updated but no memory is released.

const T* data (void) const

Array2<T> Array2<T> Array2 (void)
Array2<T> (int n, int m)

Array2<T> (int n, int m, const T &val)
Array2<T> (const Array2<T> &a)
Array2<T> (const DiagArray<T> &a)

Array2<T>& operator = (const Array2<T> &a)

int diml (void) const
int rows (void) const

int dim2 (void) const
int cols (void) const
int columns (void) const

T& elem (int i, int j)
T& checkelem (int i, int j)

T& operator () (int i, int j)

void resize (int n, int m)
void resize (int n, int m, const T &val)

Array3<T> (void)

Array3<T> (int n, int m, int k)

Array3<T> (int n, int m, int k, const T &val)
Array3<T> (const Array3<T> &a)

Array3<T>& operator = (const Array3<T> &a)

int diml (void) const
int dim2 (void) const
int dim3 (void) const

T& elem (int i, int j, int k)
T& checkelem (int i, int j, int k)

T& operator () (int i, int j, int k)

void resize (int n, int m, int k)
void resize (int n, int m, int k, const T &val)

DiagArray<T> (void)

DiagArray<T> (int n)

DiagArray<T> (int n, const T &val)
DiagArray<T> (int r, int c)
DiagArray<T> (int r, int c, const T &val)
DiagArray<T> (const Array<T> &a)
DiagArray<T> (const DiagArray<T> &a)

operator = (const DiagArray<T> &a)

[Method on Array<T>

[Constructor
[Constructor
[Constructor
[Constructor
[Constructor

[Assignment on Array2<T>

[Method on Array2<T>
Method on Array2<T>

[

[Method on Array2<T>
[Method on Array2<T>
[Method on Array2<T>
[
[

Method on Array2<T>
Method on Array2<T>

[Indexing on Array2<T>

[Method on Array2<T>
[Method on Array2<T>

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
[Constructor]

[Constructor]

[Constructor]

[Constructor]

[Assignment on Array3<T>|
]

]

]

]

]

]

|

]

]

]

]

]

]

]

]

]

[Method on Array3<T>
Method on Array3<T>
Method on Array3<T>

[
[
[Method on Array3<T>
[Method on Array3<T>

[Indexing on Array3<T>

[Method on Array3<T>
[Method on Array3<T>

[Constructor
[Constructor
[Constructor
[Constructor
[Constructor
[Constructor
[Constructor

[Assignment on DiagArray<T>&

Chapter 3: Arrays 16

int diml (void) const

) Method on DiagArray<T>
int rows (void) const
)

Method on DiagArray<T>

[]
[]
int dim2 (void) const [Method on DiagArray<T>|
int cols (void) const [Method on DiagArray<T>|
int columns (void) const [Method on DiagArray<T>|
[]

[]

]

]

]

T& elem (int r, int c)
T& checkelem (int r, int c)

Method on DiagArray<T>
Method on DiagArray<T>

T& operator () (int r, int c) [Indexing on DiagArray<T>
void resize (int n, int m) [Method on DiagArray<T>
void resize (int n, int m, const T &val) [Method on DiagArray<T>

The real and complex ColumnVector and RowVector classes all have the following func-
tions. These will eventually be part of an MArray<T> class, derived from the Array<T> class.
Then the ColumnVector and RowVector classes will be derived from the MArray<T> class.

Element by element vector by scalar ops.

RowVector operator + (const RowVector &a, const double &s)

RowVector operator - (const RowVector &a, const double &s)

RowVector operator * (const RowVector &a, const double &s)

RowVector operator / (const RowVector &a, const double &s)
Element by element scalar by vector ops.

RowVector operator + (const double &s, const RowVector &a)

RowVector operator - (const double &s, const RowVector &a)

RowVector operator * (const double &s, const RowVector &a)

RowVector operator / (const double &s, const Row Vector &a)
Element by element vector by vector ops.

RowVector operator + (const RowVector &a, const Row Vector &b)
RowVector operator - (const RowVector &a, const RowVector &b)

RowVector product (const RowVector &a, const Row Vector &b)
RowVector quotient (const RowVector &a, const Row Vector &b)
Unary MArray ops.

RowVector operator - (const RowVector &a)

The Matrix classes share the following functions. These will eventually be part of an
MArray2<T> class, derived from the Array2<T> class. Then the Matrix class will be derived
from the MArray<T> class.

Element by element matrix by scalar ops.

Matrix operator + (const Matrix &a, const double &s)

Matrix operator - (const Matrix &a, const double &s)

Matrix operator * (const Matrix &a, const double &s)

Matrix operator / (const Matrix &a, const double &s)
Element by element scalar by matrix ops.

Chapter 3: Arrays 17

Matrix operator + (const double &s, const Matrix &a)

Matrix operator - (const double &s, const Matrix &a)

Matrix operator * (const double &s, const Matrix &a)

Matrix operator / (const double &s, const Matrix &a)
Element by element matrix by matrix ops.

Matrix operator + (const Matrix &a, const Matrix &b)
Matrix operator - (const Matrix &a, const Matrix &b)

Matrix product (const Matrix &a, const Matrix &b)
Matrix quotient (const Matrix &a, const Matrix &b)
Unary matrix ops.

Matrix operator - (const Matrix &a)

The DiagMatrix classes share the following functions. These will eventually be part of
an MDiagArray<T> class, derived from the DiagArray<T> class. Then the DiagMatrix class
will be derived from the MDiagArray<T> class.

Element by element MDiagArray by scalar ops.
DiagMatrix operator * (const DiagMatrix &a, const double &s)

DiagMatrix operator / (const DiagMatrix &a, const double &s)
Element by element scalar by MDiagArray ops.

DiagMatrix operator * (const double &s, const DiagMatrix &a)
Element by element MDiagArray by MDiagArray ops.

DiagMatrix operator + (const DiagMatrix &a, const DiagMatrix &b)
DiagMatrix operator - (const DiagMatrix &a, const DiagMatrix &D)
DiagMatrix product (const DiagMatrix &a, const DiagMatrix &b)

Unary MDiagArray ops.

DiagMatrix operator - (const DiagMatrix &a)

4 Matrix and Vector Operations

Matrix (void)

Matrix (int r, int c)

Matrix (int r, int c, double val)

Matrix (const Array2<double> &a)

Matrix (const Matrix &a)

Matrix (const DiagArray<double> &a)
(

Matrix (const DiagMatrix &a)
Matrix& operator = (const Matrix &a)

int operator == (const Matrix &a) const
int operator != (const Matrix &a) const

Matrix& insert (const Matrix &a, int r, int c)
Matrix& insert (const RowVector &a, int r, int c)
Matrix& insert (const ColumnVector &a, int r, int c)
Matrix& insert (const DiagMatrix &a, int r, int c)

Matrix& fill (double val)
Matrix& fill (double val, int rl, int cl, int r2, int c2)

Matrix append (const Matrix &a) const
Matrix append (const RowVector &a) const
Matrix append (const ColumnVector &a) const
Matrix append (const DiagMatrix &a) const

Matrix stack (const Matrix &a) const
Matrix stack (const RowVector &a) const
Matrix stack (const ColumnVector &a) const
Matrix stack (const DiagMatrix &a) const

Matrix transpose (void) const
Matrix extract (int rl, int cl, int r2, int c2) const

RowVector row (int i) const
RowVector row (char *s) const

ColumnVector column (int i) const
ColumnVector column (char *s) const

Matrix inverse (void) const
Matrix inverse (int &info) const
Matrix inverse (int &info, double &rcond) const

ComplexMatrix fourier (void) const
ComplexMatrix ifourier (void) const

DET determinant (void) const
DET determinant (int &info) const
DET determinant (int &info, double &rcond) const

Matrix solve (const Matrix &b) const

18

Chapter 4: Matrix and Vector Operations 19

Matrix solve (const Matrix &b, int &info) const
Matrix solve (const Matrix &b, int &info, double &rcond) const

ComplexMatrix solve (const ComplexMatrix &b) const

ComplexMatrix solve (const ComplexMatrix &b, int &info) const

ComplexMatrix solve (const ComplexMatrix &b, int &info, double &rcond)
const

ColumnVector solve (const ColumnVector &b) const

ColumnVector solve (const ColumnVector &b, int &info) const

ColumnVector solve (const ColumnVector &b, int &info, double &rcond)
const

ComplexColumnVector solve (const ComplexColumnVector &b) const

ComplexColumnVector solve (const ComplexColumnVector &b, int &info)
const

ComplexColumnVector solve (const ComplexColumnVector &b, int &info,
double &rcond) const

Matrix lssolve (const Matrix &b) const
Matrix lssolve (const Matrix &b, int &info) const
Matrix lssolve (const Matrix &b, int &info, int &rank) const

ComplexMatrix lssolve (const ComplexMatrix &b) const

ComplexMatrix lssolve (const ComplexMatrix &b, int &info) const

ComplexMatrix lssolve (const ComplexMatrix &b, int &info, int &rank)
const

ColumnVector 1lssolve (const ColumnVector &b) const
ColumnVector lssolve (const ColumnVector &b, int &info) const
ColumnVector lssolve (const ColumnVector &b, int &info, int &rank) const

ComplexColumnVector lssolve (const ComplexColumnVector &b) const

ComplexColumnVector lssolve (const ComplexColumnVector &b, int
&info) const

ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info,
int &rank) const

Matrix& operator += (const Matrix &a)
Matrix& operator -= (const Matrix &a)

Matrix& operator += (const DiagMatrix &a)
Matrix& operator -= (const DiagMatrix &a)

Matrix operator ! (void) const

+

(const Matrix &a, const Complex &s
(const Matrix &a, const Complex &s
const Matrix &a, const Complex &s

ComplexMatrix operator)
)
()
(const Matrix &a, const Complex &s)
()
)
)

ComplexMatrix operator
ComplexMatrix operator
ComplexMatrix operator

+ N %

ComplexMatrix operator const Complex &s, const Matrix &a
ComplexMatrix operator const Complex &s, const Matrix &a

- (
ComplexMatrix operator * (const Complex &s, const Matrix &a

Chapter 4: Matrix and Vector Operations 20

ComplexMatrix operator / (const Complex &s, const Matrix &a)

ColumnVector operator * (const Matrix &a, const ColumnVector &b)
ComplexColumnVector operator * (const Matrix &a, const
ComplexColumnVector &b)

Matrix operator + (const Matrix &a, const DiagMatrix &b)
Matrix operator - (const Matrix &a, const DiagMatrix &b)
Matrix operator * (const Matrix &a, const DiagMatrix &b)

ComplexMatrix operator + (const Matrix &a, const ComplexDiagMatrix &b)
ComplexMatrix operator - (const Matrix &a, const ComplexDiagMatrix &b)
ComplexMatrix operator * (const Matrix &a, const ComplexDiagMatrix &b)

Matrix operator * (const Matrix &a, const Matrix &b)
ComplexMatrix operator * (const Matrix &a, const ComplexMatrix &b)

ComplexMatrix operator + (const Matrix &a, const ComplexMatrix &b)
ComplexMatrix operator - (const Matrix &a, const ComplexMatrix &b)

ComplexMatrix product (const Matrix &a, const ComplexMatrix &b)
ComplexMatrix quotient (const Matrix &a, const ComplexMatrix &b)

Matrix map (d-d_-Mapper f, const Matrix &a)
void map (d-d-Mapper f)

Matrix all (void) const
Matrix any (void) const

Matrix cumprod (void) const
Matrix cumsum (void) const
Matrix prod (void) const
Matrix sum (void) const
Matrix sumsq (void) const

ColumnVector diag (void) const
ColumnVector diag (int k) const

ColumnVector row_min (void) const
ColumnVector row_min_loc (void) const

—~~

const
void) const

ColumnVector row_max (void
ColumnVector row_max_loc

~~—

const
void) const

RowVector column_min (void
RowVector column_min_1loc

~~—

RowVector column_max (void) const
RowVector column_max_loc (void) const

~—

ostream& operator << (ostream &os, const Matrix &a)
istream& operator >> (istream &1is, Matrix &a)

ColumnVector (void)
ColumnVector (int n)
ColumnVector (int n, double val)

Chapter 4: Matrix and Vector Operations 21

ColumnVector (const Array<double> &a)
ColumnVector (const ColumnVector &a)

ColumnVector& operator = (const ColumnVector &a)

int operator == (const ColumnVector &a) const
int operator != (const ColumnVector &a) const

ColumnVector& insert (const ColumnVector &a, int r)

ColumnVector& fill (double val)
ColumnVector& fill (double val, int rl, int r2)

ColumnVector stack (const ColumnVector &a) const
RowVector transpose (void) const
ColumnVector extract (int rl, int r2) const

ColumnVector& operator += (const ColumnVector &a)

ColumnVector& operator -= (const ColumnVector &a)

ComplexColumnVector operator + (const ColumnVector &a, const Complex
&s)

ComplexColumnVector operator - (const ColumnVector &a, const Complex
&s)

ComplexColumnVector operator * (const ColumnVector &a, const Complex
&s)

ComplexColumnVector operator / (const ColumnVector &a, const Complex
&s)

ComplexColumnVector operator + (const Complex &s, const Column Vector
&a)

ComplexColumnVector operator - (const Complex &s, const ColumnVector
&a)

ComplexColumnVector operator * (const Complex &s, const Column Vector
&a)

ComplexColumnVector operator / (const Complex &s, const ColumnVector
&a)

Matrix operator * (const ColumnVector &a, const Row Vector &a)

ComplexMatrix operator * (const ColumnVector &a, const
ComplexRow Vector &b)

ComplexColumnVector operator + (const ComplexColumnVector &a, const
ComplexColumn Vector &b)

ComplexColumnVector operator - (const ComplexColumnVector &a, const
ComplexColumn Vector &b)

ComplexColumnVector product (const ComplexColumnVector &a, const
ComplexColumnVector &b)

ComplexColumnVector quotient (const ComplexColumnVector &a, const
ComplexColumnVector &b)

ColumnVector map (d_-d_-Mapper f, const ColumnVector &a)

Chapter 4: Matrix and Vector Operations 22

void map (d-d_-Mapper f)

double min (void) const
double max (void) const

ostream& operator << (ostream &os, const ColumnVector &a)

RowVector (void)

RowVector (int n)

RowVector (int n, double val)
RowVector (const Array<double> &a)
RowVector (const RowVector &a)

RowVector& operator = (const RowVector &a)

int operator == (const RowVector &a) const
int operator != (const RowVector &a) const

RowVector& insert (const RowVector &a, int c)

RowVector& fill (double val)
RowVector& fill (double val, int cl, int c2)

RowVector append (const RowVector &a) const
ColumnVector transpose (void) const
RowVector extract (int cl, int c2) const

RowVector& operator += (const RowVector &a)
RowVector& operator -= (const RowVector &a)

ComplexRowVector operator + (const RowVector &a, const Complex &s
ComplexRowVector operator - (const RowVector &a, const Complex &s
ComplexRowVector operator * (const RowVector &a, const Complex &s
ComplexRowVector operator / (const RowVector &a, const Complex &s

+ N %

(const Complex &s, const Row Vector &a
ComplexRowVector operator - (const Complex &s, const Row Vector &a
ComplexRowVector operator * (const Complex &s, const Row Vector &a
ComplexRowVector operator / (const Complex &s, const RowVector &a

ComplexRowVector operator

*

)
)
)
)
)
)
)
)

double operator * (const RowVector &a, ColumnVector &b)
Complex operator * (const RowVector &a, const ComplexColumn Vector &b)
RowVector operator * (const RowVector &a, const Matrix &b)

ComplexRowVector operator * (const RowVector &a, const ComplexMatrix
&D)

ComplexRowVector operator + (const RowVector &a, const
ComplexRow Vector &b)

ComplexRowVector operator - (const RowVector &a, const
ComplexRow Vector &b)

ComplexRowVector product (const RowVector &a, const ComplexRow Vector

&b)

Chapter 4: Matrix and Vector Operations

ComplexRowVector quotient (const RowVector &a, const
ComplexRow Vector &b)

RowVector map (d-d_-Mapper £, const RowVector &a)
void map (d-d-Mapper f)

double min (void) const
double max (void) const

ostream& operator << (ostream &os, const Row Vector &a)

DiagMatrix (void)

DiagMatrix (int n)

DiagMatrix (int n, double val)
DiagMatrix (int r, int c)

DiagMatrix (int r, int c, double val)
DiagMatrix (const RowVector &a)
DiagMatrix (const ColumnVector &a)
DiagMatrix (const DiagArray<double> &a)
DiagMatrix (const DiagMatrix &a)

DiagMatrix& operator = (const DiagMatrix &a)

int operator == (const DiagMatrix &a) const
int operator != (const DiagMatrix &a) const

DiagMatrix& fill (double val)

DiagMatrix& fill (double val, int beg, int end)
DiagMatrix& fill (const ColumnVector &a)
DiagMatrix& fill (const RowVector &a)
DiagMatrix& fill (const ColumnVector &a, int beg)
DiagMatrix& fill (const RowVector &a, int beg)

DiagMatrix transpose (void) const
Matrix extract (int rl, int cl, int r2, int c2) const

RowVector row (int i) const
RowVector row (char *s) const

ColumnVector column (int i) const
ColumnVector column (char *s) const

DiagMatrix inverse (void) const
DiagMatrix inverse (int &info) const

DiagMatrix& operator += (const DiagMatrix &a)
DiagMatrix& operator -= (const DiagMatrix &a)

Matrix operator + (const DiagMatrix &a, double s)
Matrix operator - (const DiagMatrix &a, double s)

ComplexMatrix operator + (const DiagMatrix &a, const Complex &s)
ComplexMatrix operator - (const DiagMatrix &a, const Complex &s)

ComplexDiagMatrix operator * (const DiagMatrix &a, const Complex &s)

23

Chapter 4: Matrix and Vector Operations 24

ComplexDiagMatrix operator / (const DiagMatrix &a, const Complex &s)

Matrix operator + (double s, const DiagMatrix &a)
Matrix operator - (double s, const DiagMatrix &a)

ComplexMatrix operator + (const Complex &s, const DiagMatrix &a)
ComplexMatrix operator - (const Complex &s, const DiagMatrix &a)

ComplexDiagMatrix operator * (const Complex &s, const DiagMatrix &a)
ColumnVector operator * (const DiagMatrix &a, const Column Vector &b)

ComplexColumnVector operator * (const DiagMatrix &a, const
ComplexColumnVector &b)

ComplexDiagMatrix operator + (const DiagMatrix &a, const
ComplexDiagMatrix &b)

ComplexDiagMatrix operator - (const DiagMatrix &a, const
ComplexDiagMatrix &b)

ComplexDiagMatrix product (const DiagMatrix &a, const
ComplexDiagMatrix &b)

Matrix operator + (const DiagMatrix &a, const Matrix &b)
Matrix operator - (const DiagMatrix &a, const Matrix &b)
Matrix operator * (const DiagMatrix &a, const Matrix &b)

ComplexMatrix operator + (const DiagMatrix &a, const ComplexMatrix &b)
ComplexMatrix operator - (const DiagMatrix &a, const ComplexMatrix &b)
ComplexMatrix operator * (const DiagMatrix &a, const ComplexMatrix &b)

ColumnVector diag (void) const
ColumnVector diag (int k) const

ostream& operator << (ostream &os, const DiagMatrix &a)

ComplexMatrix (void)

ComplexMatrix (int r, int c)

ComplexMatrix (int r, int c, const Complex &val)
ComplexMatrix (const Matrix &a)

ComplexMatrix (const Array2<Complex> &a)
ComplexMatrix (const ComplexMatrix &a)
ComplexMatrix (const DiagMatrix &a)
ComplexMatrix (const DiagArray<Complex> &a)
ComplexMatrix (const ComplexDiagMatrix &a)

N N N N N A~~~

ComplexMatrix& operator = (const ComplexMatrix &a)

int operator == (const ComplexMatrix &a) const
int operator != (const ComplexMatrix &a) const

ComplexMatrix& insert (const Matrix &a, int r, int c)
ComplexMatrix& insert (const RowVector &a, int r, int c)
ComplexMatrix& insert (const ColumnVector &a, int r, int c)
ComplexMatrix& insert (const DiagMatrix &a, int r, int c)

ComplexMatrix& insert (const ComplexMatrix &a, int r, int c)

Chapter 4: Matrix and Vector Operations 25

ComplexMatrix&
ComplexMatrix&
ComplexMatrix&

ComplexMatrix&
ComplexMatrix&
ComplexMatrix&
ComplexMatrix&

ComplexMatrix
ComplexMatrix
ComplexMatrix
ComplexMatrix

ComplexMatrix
ComplexMatrix
ComplexMatrix
ComplexMatrix

ComplexMatrix
ComplexMatrix
ComplexMatrix
ComplexMatrix

ComplexMatrix
ComplexMatrix
ComplexMatrix
ComplexMatrix

ComplexMatrix

insert (const ComplexRow Vector &a, int r, int c)
insert (const ComplexColumnVector &a, int r, int c)
insert (const ComplexDiagMatrix &a, int r, int c)

f£ill (double val)

£ill (const Complex &val)

f£i11 (double val, int rl, int cl, int r2, int c2)

f£ill (const Complex &val, int rl, int cl, int r2, int c2)

append (const Matrix &a) const
append (const RowVector &a) const
append (const Column Vector &a) const
append (const DiagMatrix &a) const

append (const ComplexRow Vector &a) const
append (const ComplexColumn Vector &a) const

(
(
(
(
append (const ComplexMatrix &a) const
(
(
append (const ComplexDiagMatrix &a) const

stack (const Matrix &a) const

stack (const RowVector &a) const
stack (const ColumnVector &a) const
stack (const DiagMatrix &a) const
(
(
(

stack (const ComplexMatrix &a) const

stack (const ComplexRow Vector &a) const
stack (const ComplexColumnVector &a) const
stack (const ComplexDiagMatrix &a) const

transpose (void) const

Matrix real (const ComplexMatrix &a)
Matrix imag (const ComplexMatrix &a)

ComplexMatrix
ComplexMatrix

ComplexRowVect
ComplexRowVect

ComplexColumnV
ComplexColumnV

ComplexMatrix
ComplexMatrix
ComplexMatrix

ComplexMatrix
ComplexMatrix

ComplexDET det
ComplexDET det
ComplexDET det

ComplexMatrix

conj (const ComplexMatrix &a)
extract (int rl, int cl, int r2, int c2) const

or row (int i) const
or row (char *s) const

ector column (int i) const
ector column (char *s) const

inverse (void) const
inverse (int &info) const
inverse (int &info, double &rcond) const

fourier (void) const
ifourier (void) const

erminant (void) const
erminant (int &info) const
erminant (int &info, double &rcond) const

solve (const Matrix &b) const

Chapter 4: Matrix and Vector Operations 26

ComplexMatrix solve (const Matrix &b, int &info) const

ComplexMatrix solve (const Matrix &b, int &info, double &rcond) const

ComplexMatrix solve (const ComplexMatrix &b) const

ComplexMatrix solve (const ComplexMatrix &b, int &info) const

ComplexMatrix solve (const ComplexMatrix &b, int &info, double &rcond)
const

ComplexColumnVector
ComplexColumnVector
const
ComplexColumnVector solve (const ComplexColumnVector &b, int &info,

double &rcond) const

solve (const ComplexColumnVector &b) const
solve (const ComplexColumnVector &b, int &info)

ComplexMatrix lssolve (const ComplexMatrix &b) const

ComplexMatrix lssolve (const ComplexMatrix &b, int &info) const

ComplexMatrix lssolve (const ComplexMatrix &b, int &info, int &rank)
const

ComplexColumnVector lssolve (const ComplexColumnVector &b) const

ComplexColumnVector lssolve (const ComplexColumnVector &b, int
&info) const

ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info,
int &rank) const

ComplexMatrix& operator += (const DiagMatrix &a)
ComplexMatrix& operator -= (const DiagMatrix &a)
ComplexMatrix& operator += (const ComplexDiagMatrix &a)
ComplexMatrix& operator -= (const ComplexDiagMatrix &a)
ComplexMatrix& operator += (const Matrix &a)
ComplexMatrix& operator -= (const Matrix &a)
ComplexMatrix& operator += (const ComplexMatrix &a)
ComplexMatrix& operator -= (const ComplexMatrix &a)

Matrix operator ! (void) const

+

ComplexMatrix
ComplexMatrix
ComplexMatrix
ComplexMatrix

ComplexMatrix
ComplexMatrix
ComplexMatrix
ComplexMatrix

operator
operator
operator
operator

operator
operator
operator
operator

(const ComplexMatrix &a, double s)
(const ComplexMatrix &a, double s)
(const ComplexMatrix &a, double s)
(const ComplexMatrix &a, double s)
()
)
)

+ N %

double s, const ComplexMatrix &a
- (double s, const ComplexMatrix &a
* (double s, const ComplexMatrix &a
/ (double s, const ComplexMatrix &a)

ComplexColumnVector operator * (const ComplexMatrix &a, const
Column Vector &b)

ComplexColumnVector operator * (const ComplexMatrix &a, const
ComplexColumn Vector &b)

ComplexMatrix operator + (const ComplexMatrix &a, const DiagMatrix &b)

Chapter 4: Matrix and Vector Operations 27

ComplexMatrix operator - (const ComplexMatrix &a,
ComplexMatrix operator * (const ComplexMatrix &a,

const DiagMatrix &b)
const DiagMatrix &b)

ComplexMatrix operator + (const ComplexMatrix &a, const
ComplexDiagMatrix &b)

ComplexMatrix operator - (const ComplexMatrix &a,
ComplexDiagMatrix &b)

ComplexMatrix operator * (const ComplexMatrix &a,

ComplexDiagMatrix &b)

const

const

const ComplexMatrix &a,
const ComplexMatrix &a,

ComplexMatrix
ComplexMatrix

operator +
operator -

const Matrix &b)
const Matrix &b)

const Matrix &b)
const ComplexMatrix

*

const ComplexMatrix &a,
const ComplexMatrix &a,

ComplexMatrix
ComplexMatrix

&b)

operator
operator

(
(
(
(

*

ComplexMatrix
ComplexMatrix

ComplexMatrix

product (const ComplexMatrix &a, const Matrix &b)
quotient (const ComplexMatrix &a, const Matrix &b)

map (c.c_Mapper f, const ComplexMatrix &a)

Matrix map (d_-c_Mapper f, const ComplexMatrix &a)
void map (c_c_Mapper f)

Matrix all (void) const
Matrix any (void) const

ComplexMatrix
ComplexMatrix
ComplexMatrix
ComplexMatrix
ComplexMatrix

cumprod (void) const
cumsum (void) const
prod (void) const
sum (void) const
sumsq (void) const

ComplexColumnVector
ComplexColumnVector

diag (void) const
diag (int k) const

ComplexColumnVector
ComplexColumnVector

row_min (void) const
row_min_loc (void) const

—~~

const
void) const

ComplexColumnVector
ComplexColumnVector

row_max (void
row_max_1loc

~~—

const
void) const

ComplexRowVector
ComplexRowVector

column_min (void
column_min_loc

~~—

ComplexRowVector
ComplexRowVector

column_max (void) const
column_max_loc (void) const

~—

ostream& operator << (ostream &os, const ComplexMatrix &a)
istream& operator >> (istream &is, ComplexMatrix &a)

void)

int n)

int n, const Complex &val)
const ColumnVector &a)

ComplexColumnVector
ComplexColumnVector
ComplexColumnVector
ComplexColumnVector

~ A~~~

Chapter 4: Matrix and Vector Operations 28

ComplexColumnVector (const Array<Complex> &a)
ComplexColumnVector (const ComplexColumnVector &a)

ComplexColumnVector& operator = (const ComplexColumnVector &a)

int operator == (const ComplexColumnVector &a) const
int operator != (const ComplexColumnVector &a) const

ComplexColumnVector& insert (const ColumnVector &a, int r)
ComplexColumnVector& insert (const ComplexColumnVector &a, int r)

ComplexColumnVector& fill (double val)
ComplexColumnVector& fill (const Complex &val)
ComplexColumnVector& fill (double val, int rl, int r2)
ComplexColumnVector& fill (const Complex &val, int rl, int r2)
(
(

ComplexColumnVector stack (const ColumnVector &a) const
ComplexColumnVector stack (const ComplexColumnVector &a) const

ComplexRowVector transpose (void) const

ColumnVector real (const ComplexColumn Vector &a)
ColumnVector imag (const ComplexColumn Vector &a)
ComplexColumnVector conj (const ComplexColumn Vector &a)

ComplexColumnVector extract (int rl, int r2) const

ComplexColumnVector& operator += (const ColumnVector &a)
ComplexColumnVector& operator -= (const ColumnVector &a)

ComplexColumnVector& operator += (const ComplexColumn Vector &a)
ComplexColumnVector& operator -= (const ComplexColumnVector &a)

ComplexColumnVector operator + (const ComplexColumnVector &a, double

s)

ComplexColumnVector operator

)

ComplexColumnVector operator

s)

ComplexColumnVector operator / (const ComplexColumnVector &a, double

s)

(const ComplexColumnVector &a, double

*

(const ComplexColumnVector &a, double

ComplexColumnVector operator + (double s, const ComplexColumn Vector

Complefol?mnVector operator - (double s, const ComplexColumn Vector

CompleXszle:zmnVector operator * (double s, const ComplexColumn Vector

ComplexcglatzmnVector operator / (double s, const ComplexColumn Vector
a)

ComplexMatrix operator * (const ComplexColumnVector &a, const
ComplexRow Vector &b)

Chapter 4: Matrix and Vector Operations

ComplexColumnVector operator + (const ComplexColumnVector &a, const
Column Vector &b)

ComplexColumnVector operator - (const ComplexColumnVector &a, const
Column Vector &b)

ComplexColumnVector product (const ComplexColumn Vector &a, const
Column Vector &b)

ComplexColumnVector quotient (const ComplexColumnVector &a, const
Column Vector &b)

ComplexColumnVector map (c.c-Mapper f, const ComplexColumnVector &a)
ColumnVector map (d_-c_Mapper £, const ComplexColumnVector &a)
void map (c-c_Mapper f)

Complex min (void) const
Complex max (void) const

ostream& operator << (ostream &os, const ComplexColumnVector &a)

ComplexRowVector (void)

ComplexRowVector (int n)

ComplexRowVector (int n, const Complex &val)
ComplexRowVector (const Row Vector &a)
ComplexRowVector (const Array<Complex> &a)
ComplexRowVector (const ComplexRow Vector &a)

ComplexRowVector& operator = (const ComplexRowVector &a)

int operator == (const ComplexRow Vector &a) const
int operator != (const ComplexRow Vector &a) const

ComplexRowVector& insert (const RowVector &a, int c)
ComplexRowVector& insert (const ComplexRow Vector &a, int c)

ComplexRowVector& fill (double val)

ComplexRowVector& fill (const Complex &val)
ComplexRowVector& fill (double val, int cl, int c2)
ComplexRowVector& fill (const Complex &val, int cl, int c2)

ComplexRowVector append (const RowVector &a) const
ComplexRowVector append (const ComplexRow Vector &a) const

ComplexColumnVector transpose (void) const

RowVector real (const ComplexRow Vector &a)
RowVector imag (const ComplexRow Vector &a)
ComplexRowVector conj (const ComplexRow Vector &a)

ComplexRowVector extract (int cl, int c2) const

ComplexRowVector& operator += (const RowVector &a)
ComplexRowVector& operator -= (const RowVector &a)
(

ComplexRowVector& operator += (const ComplexRow Vector &a)
ComplexRowVector& operator -= (const ComplexRow Vector &a)

ComplexRowVector operator + (const ComplexRow Vector &a, double s)

Chapter 4: Matrix and Vector Operations 30

ComplexRowVector operator - (const ComplexRowVector &a, double s)
ComplexRowVector operator * (const ComplexRowVector &a, double s)
ComplexRowVector operator / (const ComplexRow Vector &a, double s)
+ ()

()

)

double s, const ComplexRow Vector &a
ComplexRowVector operator double s, const ComplexRow Vector &a
ComplexRowVector operator * (double s, const ComplexRowVector &a
ComplexRowVector operator / (double s, const ComplexRow Vector &a)

ComplexRowVector operator

*

Complex operator * (const ComplexRow Vector &a, const ColumnVector &b)

Complex operator * (const ComplexRowVector &a, const
ComplexColumnVector &b)

ComplexRowVector operator * (const ComplexRow Vector &a, const
ComplexMatrix &b)

ComplexRowVector operator + (const ComplexRow Vector &a, const
RowVector &b)

ComplexRowVector operator - (const ComplexRow Vector &a, const
Row Vector &b)

ComplexRowVector product (const ComplexRow Vector &a, const Row Vector
&Db)

ComplexRowVector quotient (const ComplexRow Vector &a, const
RowVector &b)

ComplexRowVector map (c_c_Mapper £, const ComplexRow Vector &a)
RowVector map (d_c_Mapper f, const ComplexRow Vector &a)
void map (c-c-Mapper f)

Complex min (void) const
Complex max (void) const

ostream& operator << (ostream &os, const ComplexRow Vector &a)

ComplexDiagMatrix (void)

ComplexDiagMatrix (int n)

ComplexDiagMatrix (int n, const Complex &val)
ComplexDiagMatrix (int r, int c)

ComplexDiagMatrix (int r, int ¢, const Complex &val)
ComplexDiagMatrix (const RowVector &a)
ComplexDiagMatrix (const ComplexRow Vector &a)
ComplexDiagMatrix (const ColumnVector &a)
ComplexDiagMatrix (const ComplexColumn Vector &a)
ComplexDiagMatrix (const DiagMatrix &a)
ComplexDiagMatrix (const DiagArray<Complex> &a)
ComplexDiagMatrix (const ComplexDiagMatrix &a)

ComplexDiagMatrix& operator = (const ComplexDiagMatrix &a)

int operator == (const ComplexDiagMatrix &a) const
int operator != (const ComplexDiagMatrix &a) const

ComplexDiagMatrix& fill (double val)

Chapter 4: Matrix and Vector Operations 31

ComplexDiagMatrix& fill
ComplexDiagMatrix& fill

(const Complex &val)

(double val, int beg, int end)
ComplexDiagMatrix& fill (const Complex &val, int beg, int end)
ComplexDiagMatrix& fill (const ColumnVector &a)
ComplexDiagMatrix& fill (const ComplexColumn Vector &a)
ComplexDiagMatrix& fill (const Row Vector &a)
ComplexDiagMatrix& f£ill (const ComplexRow Vector &a)
ComplexDiagMatrix& f£ill (const ColumnVector &a, int beg)
ComplexDiagMatrix& fill (const ComplexColumnVector &a, int beg)
ComplexDiagMatrix& fill (const RowVector &a, int beg)
ComplexDiagMatrix& fill (const ComplexRow Vector &a, int beg)

ComplexDiagMatrix transpose (void) const

DiagMatrix real (const ComplexDiagMatrix &a)
DiagMatrix imag (const ComplexDiagMatrix &a)
ComplexDiagMatrix conj (const ComplexDiagMatrix &a)

ComplexMatrix extract (int rl, int cl, int r2, int c2) const

ComplexRowVector row (int i) const
ComplexRowVector row (char *s) const

ComplexColumnVector column (int i) const
ComplexColumnVector column (char *s) const

ComplexDiagMatrix inverse (int &info) const
ComplexDiagMatrix inverse (void) const

ComplexDiagMatrix& operator += (const DiagMatrix &a)
ComplexDiagMatrix& operator -= (const DiagMatrix &a)
(

ComplexDiagMatrix& operator += (const ComplexDiagMatrix &a)
ComplexDiagMatrix& operator -= (const ComplexDiagMatrix &a)

ComplexMatrix operator + (const ComplexDiagMatrix &a, double s)
ComplexMatrix operator - (const ComplexDiagMatrix &a, double s)

ComplexMatrix operator + (const ComplexDiagMatrix &a, const Complex
&s)
ComplexMatrix operator - (const ComplexDiagMatrix &a, const Complex

&s)

ComplexDiagMatrix operator * (const ComplexDiagMatrix &a, double s)
ComplexDiagMatrix operator / (const ComplexDiagMatrix &a, double s)

ComplexMatrix operator + (double s, const ComplexDiagMatrix &a)
ComplexMatrix operator - (double s, const ComplexDiagMatrix &a)

ComplexMatrix operator + (const Complex &s, const ComplexDiagMatrix
&a)

ComplexMatrix operator - (const Complex &s, const ComplexDiagMatrix
&a)

ComplexDiagMatrix operator * (double s, const ComplexDiagMatrix &a)

Chapter 4: Matrix and Vector Operations 32

ComplexColumnVector operator * (const ComplexDiagMatrix &a, const
Column Vector &b)

ComplexColumnVector operator * (const ComplexDiagMatrix &a, const
ComplexColumnVector &b)

ComplexDiagMatrix operator + (const ComplexDiagMatrix &a, const
DiagMatrix &b)

ComplexDiagMatrix operator - (const ComplexDiagMatrix &a, const
DiagMatrix &D)

ComplexDiagMatrix product (const ComplexDiagMatrix &a, const
DiagMatrix &b)

ComplexMatrix operator + (const ComplexDiagMatrix &a, const Matrix &b)

ComplexMatrix operator - (const ComplexDiagMatrix &a, const Matrix &b)

ComplexMatrix operator * (const ComplexDiagMatrix &a, const Matrix &b)
(

ComplexMatrix operator +
ComplexMatrix &b)

ComplexMatrix operator - (const ComplexDiagMatrix &a, const
ComplexMatrix &b)

ComplexMatrix operator * (const ComplexDiagMatrix &a, const
ComplexMatrix &b)

const ComplexDiagMatrix &a, const

ComplexColumnVector diag (void) const
ComplexColumnVector diag (int k) const

ostream& operator << (ostream &os, const ComplexDiagMatrix &a)

33

5 Matrix Factorizations

AEPBALANCE (void)
AEPBALANCE (const Matrix &a, const char *balance_job)
AEPBALANCE (const AEPBALANCE &a)

AEPBALANCE& operator = (const AEPBALANCE &a)

Matrix balanced_matrix (void) const
Matrix balancing_matrix (void) const

ostream& operator << (ostream &os, const AEPBALANCE &a)

ComplexAEPBALANCE (void)
ComplexAEPBALANCE (const ComplexMatrix &a, const char *balance_job)
ComplexAEPBALANCE (const ComplexAEPBALANCE &a)

ComplexAEPBALANCE& operator = (const ComplexAEPBALANCE &a)

ComplexMatrix balanced_matrix (void) const
ComplexMatrix balancing_matrix (void) const

ostream& operator << (ostream &os, const ComplexAEPBALANCE &a)

DET (void)
DET (const DET &a)

DET& operator = (const DET &a)

int value_will_overflow (void) const
int value_will_underflow (void) const

double coefficient (void) const
int exponent (void) const
double value (void) const

ostream& operator << (ostream &os, const DET &a)

ComplexDET (void)
ComplexDET (const ComplexDET &a)

ComplexDET& operator = (const ComplexDET &a)

int value_will_overflow (void) const
int value_will_underflow (void) const

Complex coefficient (void) const
int exponent (void) const
Complex value (void) const

ostream& operator << (ostream &os, const ComplexDET &a)

GEPBALANCE (void)
GEPBALANCE (const Matrix &a, const Matrix &, const char *balance_job)
GEPBALANCE (const GEPBALANCE &a)

GEPBALANCE& operator = (const GEPBALANCE &a)

Chapter 5: Matrix Factorizations 34

Matrix balanced_a_matrix (void) const
Matrix balanced_b_matrix (void) const
Matrix left_balancing matrix (void) const
Matrix right_balancing matrix (void) const

ostream& operator << (ostream &os, const GEPBALANCE &a)

CHOL (void)

CHOL (const Matrix &a)

CHOL (const Matrix &a, int &info)
CHOL (const CHOL &a)

CHOL& operator = (const CHOL &a)
Matrix chol_matrix (void) const
ostream& operator << (ostream &os, const CHOL &a)

ComplexCHOL (void)

ComplexCHOL (const ComplexMatrix &a)
ComplexCHOL (const ComplexMatrix &a, int &info)
ComplexCHOL (const ComplexCHOL &a)

ComplexCHOL& operator = (const ComplexCHOL &a)
ComplexMatrix chol_matrix (void) const
ostream& operator << (ostream &os, const ComplexCHOL &a)

HESS (void)

HESS (const Matrix &a)

HESS (const Matrix&a, int &info)
HESS (const HESS &a)

HESS& operator = (const HESS &a)

Matrix hess_matrix (void) const
Matrix unitary_hess_matrix (void) const

ostream& operator << (ostream &os, const HESS &a)

ComplexHESS (void)

ComplexHESS (const ComplexMatrix &a)
ComplexHESS (const ComplexMatrix &a, int &info)
ComplexHESS (const ComplexHESS &a)

ComplexHESS& operator = (const ComplexHESS &a)

ComplexMatrix hess_matrix (void) const
ComplexMatrix unitary_hess_matrix (void) const

ostream& operator << (ostream &os, const ComplexHESS &a)

SCHUR (void)

SCHUR (const Matrix &a, const char *ord)

SCHUR (const Matrix &a, const char *ord, int &info)
SCHUR (const SCHUR &a, const char *ord)

SCHUR& operator = (const SCHUR &a)

Chapter 5: Matrix Factorizations

Matrix schur_matrix (void) const
Matrix unitary_matrix (void) const

ostream& operator << (ostream &os, const SCHUR &a)

ComplexSCHUR (void)

ComplexSCHUR (const ComplexMatrix &a, const char *ord)
ComplexSCHUR (const ComplexMatrix &a, const char *ord, int &info)
ComplexSCHUR (const ComplexSCHUR &a, const char *ord)

ComplexSCHUR& operator = (const ComplexSCHUR &a)

ComplexMatrix schur_matrix (void) const
ComplexMatrix unitary_matrix (void) const

ostream& operator << (ostream &os, const ComplexSCHUR &a)

SVD (void)

SVD (const Matrix &a)

SVD (const Matrix &a, int &info)
SVD (const SVD &a)

SVD& operator = (const SVD &a)

DiagMatrix singular_values (void) const
Matrix left_singular_matrix (void) const
Matrix right_singular_matrix (void) const

ostream& operator << (ostream &os, const SVD &a)

ComplexSVD (void)

ComplexSVD (const ComplexMatrix &a)
ComplexSVD (const ComplexMatrix &a, int &info)
ComplexSVD (const ComplexSVD &a)

ComplexSVD& operator = (const ComplexSVD &a)

DiagMatrix singular_values (void) const
ComplexMatrix left_singular_matrix (void) const
ComplexMatrix right_singular_matrix (void) const

ostream& operator << (ostream &os, const ComplexSVD &a)

EIG (void)

EIG (const Matrix &a)

EIG (const Matrix &a, int &info)

EIG (const ComplexMatrix &a)

EIG (const ComplexMatrix &a, int &info)
EIG (const EIG &a)

EIG& operator = (const EIG &a)
ComplexColumnVector eigenvalues (void) const
ComplexMatrix eigenvectors (void) const

ostream& operator << (ostream &os, const EIG &a)

Chapter 5: Matrix Factorizations 36

LU (void)
LU (const Matrix &a)
LU (const LU &a)

LU& operator = (const LU &a)

Matrix L (void) const
Matrix U (void) const
Matrix P (void) const

ostream& operator << (ostream &os, const LU &a)

ComplexLU (void)
ComplexLU (const ComplexMatrix &a)
ComplexLU (const ComplexLU &a)

ComplexLU& operator = (const ComplexLU &a)

)
)

const
const

ComplexMatrix L (void
ComplexMatrix U (void
Matrix P (void) const

ostream& operator << (ostream &os, const ComplexLU &a)

QR (void)
QR (const Matrix &A)
QR (const QR &a)

QR& operator = (const QR &a)

Matrix Q (void) const
Matrix R (void) const

ostream& operator << (ostream &os, const QR &a)

ComplexQR (void)
ComplexQR (const ComplexMatrix &A)
ComplexQR (const ComplexQR &a)

ComplexQR& operator = (const ComplexQR &a)

ComplexMatrix Q (void) const
ComplexMatrix R (void) const

ostream& operator << (ostream &os, const ComplexQR &a)

6 Ranges

Range (
Range (const Range &r)

Range (double b, double 1)

Range (double b, double 1, double 1)

void)

double base (void) const
double limit (void) const
double inc (void) const

void set_base (double b)
void set_limit (double 1)
void set_inc (double i)

int nelem (void) const

double min (void) const
double max (void) const

void sort (void)

ostream& operator << (ostream &os, const Range &r)
istream& operator >> (istream &1is, Range &r)

void print_range (void)

7 Nonlinear Functions

NLFunc (void)

NLFunc (const nonlinear_fcn)

NLFunc (const nonlinear_fcn, const jacobian_fcn)
NLFunc (const NLFunc &a)

NLFunc& operator = (const NLFunc &a)
nonlinear_fcn function (void) const;

NLFunc& set_function (const nonlinear_fcn f)
jacobian_fcn jacobian_function (void) const;

NLFunc& set_jacobian_function (const jacobian_fcn j)

38

8 Nonlinear Equations

NLEqn_options (void)
NLEqn_options (const NLEqn_options &opt)

NLEgn_options& operator = (const NLEqn_options &opt)
void init (void)

void copy (const NLEqn_options &opt)

void set_default_options (void)

void set_tolerance (double val)

double tolerance (void)

NLEqn (void)
NLEgn (const ColumnVector&s, const NLFunc)
NLEqn (const NLEqn &a)

NLEqn& operator = (const NLEqn &a)
void resize (int n)

void set_states (const ColumnVector &x)
ColumnVector states (void) const

int size (void) const

ColumnVector solve (void)

ColumnVector solve (const ColumnVector &x)
(
(

ColumnVector solve (int &info)
ColumnVector solve (const ColumnVector &x, int &info)

39

40

9 Optimization

9.1 Objective Functions

Objective (void)

Objective (const objective_fcn)

Objective (const objective_fcn, const gradient_fcn)
(

Objective (const Objective &a)

Objective& operator = (const Objective &a)
objective_fcn objective_function (void) const;
Objective& set_objective_function (const objective_fcn)
gradient_fcn gradient_function (void) const;

Objective& set_gradient_function (const gradient_fcn)

9.2 Bounds

Bounds (void)
Bounds (int n)
Bounds (const ColumnVector 1b, const ColumnVector ub)
Bounds (const Bounds &a)

Bounds& operator = (const Bounds &a)
Bounds& resize (int n)

double lower_bound (int index) const;
double upper_bound (int index) const;

ColumnVector lower_bounds (void) const;
ColumnVector upper_bounds (void) const;

int size (void) const;
Bounds& set_bound (int index, double low, double high)

Bounds& set_bounds (double low, double high)
Bounds& set_bounds (const ColumnVector 1b, const ColumnVector ub)

Bounds& set_lower_bound (int index, double low)
Bounds& set_upper_bound (int index, double high)

Bounds& set_lower_bounds (double low)
Bounds& set_upper_bounds (double high)

Bounds& set_lower_bounds (const ColumnVector 1b)
Bounds& set_upper_bounds (const ColumnVector ub)

ostream& operator << (ostream &os, const Bounds &b)

Chapter 9: Optimization

9.3 Linear Constraints

LinConst (void)

LinConst (int nclin, int nx)

LinConst (int nclin_eq, int nclin_ineq, int nx)

LinConst (const ColumnVector &1b, const Matrix &A, const Column Vector
&ub)

LinConst (const Matrix &A_eq, const ColumnVector &b_eq, const Matrix
&A_ineq, const ColumnVector &b_ineq)

LinConst (const LinConst &a)

LinConst& operator = (const LinConst &a)
LinConst& resize (int nclin, int n)

Matrix constraint_matrix (void) const;

LinConst& set_constraint_matrix (const Matrix &A4)

Matrix eq_constraint_matrix (void) const;
Matrix ineq_constraint_matrix (void) const;

ColumnVector eq_constraint_vector (void) const;
ColumnVector ineq_constraint_vector (void) const;

ostream& operator << (ostream &os, const LinConst &b)

9.4 Nonlinear Constraints

NLConst (void)

NLConst (int n)

NLConst (const ColumnVector 1b, const NLFunc f, const Column Vector ub)
NLConst (const NLConst &a)

NLConst& operator = (const NLConst &a)

9.5 Quadratic Programming

QP (void)

QP (const ColumnVector &x, const Matrix &H)

QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c)

QP (const ColumnVector &x, const Matrix &H, const Bounds &b)

QP (const ColumnVector &x, const Matrix &H, const LinConst &1c)

QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c, const
Bounds &b)

QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c, const
LinConst &1c)

QP (const ColumnVector &x, const Matrix &H, const Bounds &b, const
LinConst &1c)

QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c, const
Bounds &b, const LinConst &1c)

virtual ColumnVector minimize (void)

41

Chapter 9: Optimization

virtual
virtual
virtual

virtual
virtual
virtual

virtual

ColumnVector minimize (double &objf)
ColumnVector minimize (double &objf, int &inform)
ColumnVector minimize (double &objf, int &inform,
Column Vector &lambda) = 0;

—

ColumnVector minimize (const ColumnVector &x)
ColumnVector minimize (const ColumnVector &x, double &objf)
ColumnVector minimize (const ColumnVector &x, double &objf,
int &inform)

ColumnVector minimize (const ColumnVector &x, double &objf,
int &inform, Column Vector &lambda)

ColumnVector minimize (double &objf, int &inform, Column Vector

&lambda)

9.6 Nonlinear Programming

NLP
NLP

voi

NLP

d)

(

(const ColumnVector &x, const Objective &phi)

NLP (const ColumnVector &x, const Objective &phi, const Bounds &b)
(const ColumnVector &x, const Objective &phi, const Bounds &b, const

LinConst &1c)

NLP (const ColumnVector &x, const Objective &phi, const Bounds &b, const

LinConst &1c, const NLConst &nlc)

NLP (const ColumnVector &x, const Objective &phi, const LinConst &1c)
NLP (const ColumnVector &x, const Objective &phi, const LinConst &lc,

const NLConst &nlc)

NLP (const ColumnVector &x, const Objective &phi, const NLConst &nlc)
NLP (const ColumnVector &x, const Objective &phi, const Bounds &b, const

NLConst &nlc)

NLP& operator = (const NLP &a)

int size (void) const

ColumnVector minimize (void)

ColumnVector minimize (double &objf)

ColumnVector minimize (double &objf, int &inform)
ColumnVector minimize (double &objf, int &inform, ColumnVector

&lambda)

ColumnVector minimize (const ColumnVector &x)
ColumnVector minimize (const ColumnVector &x, double &objf)
ColumnVector minimize (const ColumnVector &x, double &objf, int

&inform)

ColumnVector minimize (const ColumnVector &x, double &objf, int

&inform, Column Vector &1lambda)

43

10 Quadrature

Quad (integrand_fcn fcn)
Quad (integrand_fcn fcn, double abs, double rel)

virtual double integrate (void)

virtual double integrate (int &ier)

virtual double integrate (int &ier, int &neval)

virtual double integrate (int &ier, int &neval, double &abserr) = 0

Quad_options (void)
Quad_options (const Quad_options &opt)

Quad_options& operator = (const Quad_options &opt)
void init (void)

void copy (const Quad_options &opt)

void set_default_options (void)

void set_absolute_tolerance (double val)

void set_relative_tolerance (double val)

double absolute_tolerance (void)
double relative_tolerance (void)

DefQuad (integrand_fcn fcn)

DefQuad (integrand_fcn fcn, double 11, double ul)

DefQuad (integrand_fcn fcn, double 11, double ul, double abs, double rel)

DefQuad (integrand_fcn fcn, double 11, double ul, const Column Vector
&sing)

DefQuad (integrand_fcn fcn, const ColumnVector &sing, double abs, double
rel)

DefQuad (integrand_fcn fcn, const ColumnVector &sing)

DefQuad (integrand_fcn fcn, double 11, double ul, const Column Vector
&sing, double abs, double rel)

IndefQuad (integrand_fcn fcn)

IndefQuad (integrand_fcn fcn, double b, IntegralType t)

IndefQuad (integrand_fcn fcn, double b, IntegralType t, double abs, double
rel)

IndefQuad (integrand-fcn fcn, double abs, double rel)

10.1 Collocation Weights

CollocWt (void)

CollocWt (int n, int inc_1, int inc_r)

CollocWt (int n, int inc_1, int inc_r, double 1, double r)
CollocWt (int n, double a, double b, int inc_1, int inc_r)
CollocWt (int n, int inc_1, int inc_r, double 1, double r)
CollocWt (const CollocWt&)

CollocWt& operator = (const CollocWt&)

Chapter 10: Quadrature

CollocWt& resize (int ncol)

CollocWt& add_left (void)
CollocWt& add_right (void)

CollocWt& delete_left (void)
CollocWt& delete_right (void)

CollocWt& set_left (double val)
CollocWt& set_right (double val)

CollocWt& set_alpha (double val)
CollocWt& set_beta (double val)

int ncol (void) const

int left_included (void) const
int right_included (void) const

double left (void) const
double right (void) const
double width (void) const

double alpha (void) const
double beta (void) const

ColumnVector roots (void)
ColumnVector quad (void)
ColumnVector quad_weights (void)

Matrix first (void)
Matrix second (void)

ostream& operator << (ostream &os, const CollocWt &c)

44

11 Ordinary Differential Equations

ODE_options (void)
ODE_options (const ODE_options &opt)

ODE_options& operator = (const ODE_options &opt)
void init (void)

void copy (const ODE_options &opt)

void set_default_options (void)

void set_absolute_tolerance (double val)

void set_initial_step_size (double val)

void set_maximum_step_size (double val)

void set_minimum_step_size (double val)

void set_relative_tolerance (double val)

double absolute_tolerance (void)
double initial_step_size (void)
double maximum_step_size (void)
double minimum_step_size (void)
double relative_tolerance (void)

ODE (void)
ODE (int n)
ODE (const ColumnVector &state, double time, const ODEFunc &f)

virtual int size (void) const

virtual ColumnVector state (void) const

virtual double time (void) const

virtual void force_restart (void)

virtual void initialize (const ColumnVector &x, double t)
virtual void set_stop_time (double t)

virtual void clear_stop_time (void)

virtual ColumnVector integrate (double t)

void integrate (int nsteps, double tstep, ostream &s)

Matrix integrate (const ColumnVector &tout)
Matrix integrate (const ColumnVector &tout, const ColumnVector
&terit)

45

46

12 Differential Algebraic Equations

DAE (void)

DAE (int n)

DAE (const ColumnVector &x, double time, DAEFunc &f)

DAE (const ColumnVector &x, ColumnVector &xdot, double time, DAEFunc
&f)

ColumnVector deriv (void)

virtual void initialize (const ColumnVector &x, double t)
virtual void initialize (const ColumnVector &x, ColumnVector &xdot,
double t)

ColumnVector integrate (double t)

Matrix integrate (const ColumnVector &tout, Matrix &xdot_out)
Matrix integrate (const ColumnVector &tout, Matrix &xdot_out, const
ColumnVector &tcrit)

13 Error Handling

47

14 Installation

48

15 Bugs

49

Concept Index

A

acknowledgements............... 1
ATTAYS « o v vttt ettt 14

C

collocation weights........... 43
contributors.o i 1
copyright o 1

factorizations 33

I

installation 48
installation trouble............................. 49
integration..............o oo 43
introduction i 13

K

known causes of trouble........................ 49

L

linear Constraints.......................oou... 41

50

M

matrix factorizations................ 33
matrix manipulations........... 18

NLP . 42
nonlinear Constraints 41
nonlinear equations 39
nonlinear functions............. 38
nonlinear programming 42
numerical integrationo L 43

O

objective functions.............. ... oL 40
ODE .o 45
optimization.......... i 40
orthogonal collocation.......................... 43
Q

QP 41
quadratic programming 41
quadrature. ... 43

R

TATIZES « v vt vvettee et 37

T

troubleshooting L 49

v

vector manipulations............ ol 18

A%

Warranty 1

Function Index

A

absolute_tolerance....................... 43, 45
add_left ... 44
add_righto il 44
AEPBALANCE 33
all . 20, 27
ALPRA. et 44
AN e 20, 27
append. ... 18, 22, 25, 29
Array<T> 14
Array2<T> 15
Array3<T> 15

B

balanced_a matriX...........coviiiiiiniinin... 34
balanced_b_matrix..............cciiiiiiiiin.. 34
balanced_matrixcoiiiiiiiiian.. 33
balancing matrix.................. ... 33
DASE . ot e 37
Deta . 44
Bounds...........co i 40

C

capacity on Array<T>..............cccoouven... 14
checkelem on Array<T>................ccouun. 14
checkelem on Array2<T>.............ccovvuinnn. 15
checkelem on Array3<T>....................... 15
checkelem on DiagArray<T> 16
chol _matrixX....... ..ot 34
CHOL . ..o 34
clear_stop_time...........l 45
coefficient......... ..., 33
CoLlLoCWE oo 43
colson Array2<T>............ 15
cols on DiagArray<T>...........ccoiiiiinnnnnn. 16
COLUMI. .. v vttt 18, 23, 25, 31
COLUMM_MAX « .\ ottt et et e e eeenn 20, 27
column_max_1oOC......oviuiininreninnann. 20, 27
column_minoviiiiiinniiinnnn.n. 20, 27
column_min_loC..........oiuiiiiiirinenann. 20, 27
columns on Array2<T>...........c.ccvuuinnnnnn. 15
columns on DiagArray<T>...................... 16
ColumnVector..............cooiiiiiiinnnn. 20, 21
ComplexAEPBALANCE............................ 33
ComplexCHOL ..., 34
ComplexColumnVectorcovnunn. 27, 28
ComplexDET................ooiiiiiiiiiiiiinn.. 33
ComplexDiagMatrix............................ 30
ComplexHESS........., 34
ComplexLU............ 36
ComplexMatrixooooiiiiiiiiiiiiit, 24

ComplexQR 36

o1

ComplexRowVector............cooviiiiiiiii., 29
ComplexSCHUR. ...t 35
ComplexSVD 35
o3« Ty 25, 28, 29, 31
constraint_matrix............. 41
COPY .+ v vttt e 39, 43, 45
CUMPTOQ . .t 20, 27
Lo F= L 20, 27

DAE . . 46
dataon Array<T>.............coiiiiiiinnannn. 15
DefQuadooviiie i 43
delete_left. ... 44
delete_right.......... ..o, 44
deriv...... ... 46
determinant o ool 18, 25
DET . 33
diag........oooiiiiiiii i 20, 24, 27, 32
DiagArray<T>.ot 15
DiagMatrix............ ... i, 23
diml on Array2<T>..........ccoiiiiiiiiiii 15
diml on Array3<T>. ...ttt 15
diml on DiagArray<T>.................ccounnn 16
dim2 on Array2<T>. ...t 15
dim2 on Array3<T>. ...ttt 15
dim2 on DiagArray<T>..................c.ouunn 16
dim3 on Array3<T>....... ... 15

E

eigenvalues.................. ... 35
eigenvectors............. il 35
EIG. .. 35
elemon Array<T>........... 14
elemon Array2<T>...........coiiiiiiiiin. 15
elemon Array3<T>........ ...t 15
elem on DiagArray<T>...................oouun. 16
eqg_constraint_matrix.............. 41
eq_constraint_vector 41
@XPONENtttt 33
extract.............. 18, 21, 22, 23, 25, 28, 29, 31

fill.............. 18, 21, 22, 23, 25, 28, 29, 30, 31
Farst. 44
force_restart 45
fourder......... il 18, 25
function....... 38

Function Index

G

GEPBALANCE e 33
gradient_function............. 40

H

ifourdier...... ... i 18, 25
IMAE . et 25, 28, 29, 31
AT ettt e 37
IndefQuad..........ciiiiiii i 43
ineq_constraint_matrix...................... 41
ineq_constraint_vector...................... 41
Indt. .o 39, 43, 45
initial_step_size........... 45
initializZeoviiiiiiiii 45, 46
insert.........c.ooiie... 18, 21, 22, 24, 25, 28, 29
integrate........... il 43, 45, 46
inversel 18, 23, 25, 31

J

left . o 44
left_balancing matrix....................... 34
left_includedccivviiiiiinnennnnnn. 44
left_singular _matrix........................ 35
length on Array<T>oiiiiinneennnnn. 14
1imit. . 37
lower_bound.............oiiiiiiiiiiin,. 40
lower_bounds...........coiiiiiiiii i 40
1sS0lvVe . .. 19, 26
Lo 36
LinConst ..ot s 41
LU oo 36

1 1E-Y o TP 20, 21, 23, 27, 29, 30
U= v e 1 18
MAX oo ettt et 22, 23, 29, 30, 37
maximum_step_size.............. 45
min ... 22, 23, 29, 30, 37
minimize........ooiiiiinniiiiii . 41, 42
minimum_step_size............................ 45

52
N
neol. ..o 44
NELeM. ..\ttt 37
NLCOMST .. vvittt i 41
NLEQD. ..ot 39
NLEgn_optionsc.ccviiiiiiiiiininnnnnnnn. 39
NLEUDC. ..ot 38
NLP o 42
@)
Objective ... 40
objective_function..............ol 40
ODE . 45
ODE_options..........cooiiiiiiiiiii .. 45
operator !.........l 19, 26
operator !=.......... 18, 21, 22, 23, 24, 28, 29, 30
operator () on Array<T>...................... 14
operator () on Array2<T>..................... 15
operator () on Array3<T>..............c.onn. 15
operator () on DiagArray<T> 16

operator *... 16, 17, 19, 20, 21, 22, 23, 24, 26, 27
28, 30, 31, 32

operator +... 16, 17, 19, 20, 21, 22, 23, 24, 26, 27
28, 29, 30, 31, 32

operator +=.......... 19, 21, 22, 23, 26, 28, 29, 31
operator -... 16, 17, 19, 20, 21, 22, 23, 24, 26, 27
28, 29, 30, 31, 32

operator -=.......... 19, 21, 22, 23, 26, 28, 29, 31
operator /.... 16, 17, 19, 21, 22, 23, 26, 28, 30, 31
operator <<.. 20, 22, 23, 24, 27, 29, 30, 32, 33, 34
35, 36, 37, 40, 41, 44

operator =... 18, 21, 22, 23, 24, 28, 29, 30, 33, 34
35, 36, 38, 39, 40, 41, 42, 43, 45

operator = on Array<T>ccoovvunn.. 14
operator = on Array2<T>...................... 15
operator = on Array3<T>...................... 15
operator = on DiagArray<T>& 15
operator ==.......... 18, 21, 22, 23, 24, 28, 29, 30
OpPerator >>t 20, 27, 37

P

print_range.............. ... L 37
PTOQ .ot 20, 27
product....... 16, 17, 20, 21, 22, 24, 27, 29, 30, 32
P o 36
Q

Qo 36
QP 41
QR 36
Quad 43
QUAA . e oot 44
Quad_optionS.....oviutiiiiiii i 43
quad_weights............. .o 44

Function Index

R 36
Range.......... 37
real ... 25, 28, 29, 31
relative_tolerance 43, 45
resize......... ...l 39, 40, 41, 44
resize on Array<T> i 14
resize on Array2<T>.......................... 15
resize on Array3<T>........... ...t 15
resize on DiagArray<T>....................... 16
right. 44
right_balancing matrix...................... 34
right_includedccoviiiiiiinnnn... 44
right_singular_matrix....................... 35
a0 Yo) 7T 44
LOW ottt ettt e et 18, 23, 25, 31
FOW_MAXK e v e ettt et et ettt 20, 27
FOW_MAX_1OC .ottt ie it et 20, 27
TOW_MATL. .ottt ettt iee e 20, 27
row_min_loCcoiiiii i 20, 27
rows ON Array2<T>.t 15
rows on DiagArray<T>.................coiinnn. 16
RowVectorooiiiii i, 22
S

schur_matrix......... ..o, 35
SCHUR . . .ot e e e 34
SECONA. ..ttt 44
set_absolute_tolerance 43, 45
set_alpha..........ooiiiiiiiiiii 44
set_base ... 37
set_betat 44
set_bound 40
set_bounds......... 40
set_constraint_matrix....................... 41
set_default_options.................. 39, 43, 45
set_function........., 38
set_gradient_function....................... 40
Set_dAMC .. 37
set_initial_step_size....................... 45
set_jacobian_function.............. 38
set_deft ..ot 44
set_limit 37
set_lower_bound, 40
set_lower_bounds.............. ... 40

set_maximum_step_size....................... 45

93
set_minimum_step_size................. 45
set_objective_function...................... 40
set_relative_tolerance 43, 45
set_right.......... ool 44
set_states....... ... 39
set_stop_time il 45
set_toleranceiiiiiiii 39
set_upper_bound............. ... 40
set_upper_bounds.................l 40
singular_valuescooiuuinnnnnnnnnnn. 35
SiZe ... 39, 40, 42, 45
SOLVE v 18, 19, 25, 26, 39
SOTE et 37
StACK. .. 18, 21, 25, 28
State. ..o 45
States. ... 39
SUM & o ettt et et e 20, 27
SUMST - oot vt ettt ettt 20, 27
S D 35
T
time . .. 45
TOLlerancCe ..o ii et e 39
transpose............ 18, 21, 22, 23, 25, 28, 29, 31
U
unitary_hess_matrix............... 34
unitary_matrix........... oo 35
upper_bound................. il 40
UPPEer_bounds. ...t 40
U 36
.\/
7= 1 P 33
value_will_overflow...........cvvviuneennnnn. 33
value_will_underflow 33
W
Width.o 44
X
xelem on Array<T>.........coiiiiiiiennnnn... 14

	1 Acknowledgements
	Contributors to Octave

	GNU GENERAL PUBLIC LICENSE
	2 A Brief Introduction to Octave
	3 Arrays
	Constructors and Assignment

	4 Matrix and Vector Operations
	5 Matrix Factorizations
	6 Ranges
	7 Nonlinear Functions
	8 Nonlinear Equations
	9 Optimization
	Objective Functions
	Bounds
	Linear Constraints
	Nonlinear Constraints
	Quadratic Programming
	Nonlinear Programming

	10 Quadrature
	Collocation Weights

	11 Ordinary Differential Equations
	12 Differential Algebraic Equations
	13 Error Handling
	14 Installation
	15 Bugs
	Concept Index
	Function Index

