libraw1394

version 2.0.4

libraw1394version 2.0.4
Copyright © 2001-2009 Andreas Bombe, Dan Maas, Manfred Weihs, and Christian Toegel

Table of Contents

1. Introduction 1
2. Short Introduction into IEEE 1394 2
2.1, BUS SEUCIUICeiiviieeeiii ettt ettt et eeete e eeta e e e etveeeetaeeeaeeeebeseensseeenseeesabeeeeasesesaseeeanseeans 2
2.2, BUS RESCL...oiieiiiieiiieee ettt et et e e et e e e ett e e e taeeeteeeetaeeeaaeeebeeeeateeeeareeeaaraaans 3
2.3, TTANSACHONSeiiiiviieeiiieeiieeeteeeet e e eeteeesteeeeeseeeeaseeestseeestseeesaseeesseeensssaensseesnsaeeansseeassssesssseensseaans 3
2.4. BUS MANAQZEIMENL....c...ertiriiiiiiiieiirieetenieeit et eteet ettt stt et sb e ste s bt ebtesbe s bt et esbeeatesbesaeebesbeennenbean 4
2.5. ISOChronous TranSMISSIONScccueieeiuiieiiieeerieeeteeestreeestreeestreeeetseeestseaessseessseesseeessesesseeesssesans 5
3. Data Structures and Program Flow 6
3.1 OVEIVIEW .eieuiiiieiiieeitie ettt ettt e ettt e et e e et e e e aveeesabae e ebeaesseeessaeessseeassseeasssassassaaasssseassseessseeasssesannns 6
3.2 HANAIES.....ci ettt ettt ettt e e et e e ab e e e tbee e tbee e tbeeetbeeebaaeabaeeesbaeeasbaaeanraeanns 6
TR TR o) 4 £ PSR URUU PR PSRRIt 6
3.4, The EVENT LLOOP ..ccutiiiiiiiiiieeiect ettt ettt sttt sttt e be e st s beebeesasesabeenbeenne 7
R 5 F: 1116 | 1< PSPPSRSOt 8
3.6. GENETation INUIMDETSccciuiiieiiiieiiee et eeeeceee et e et e esaee e taeeeebeesssseeessaeeassaeesssaeessseaesssesennns 8
3.7. Error and SUCCESS COUEScceeuriieiieiiriieeeeciteee e eeettee e e eeae e e e eeare e e e eeetaeeeeeeeareeeeeeeareeseeeenrreeaeans 9
4. Isochronous Transmission and Reception 10
1. OVEIVIEW .evveeiieiiiiee ettt eeette e e e ettt e e e e et eeeeeetbeeeeeeeabaaeeeesasbaseeeeasaaaeeeeesbaseeeeassaseesaansraeeeeaanees 10
4.2, INTALIZATIONvvvieiieciiiee ettt e et e e e ettt e e e e eetteeeeeeettaeeeeeesbaeeeeeeasaeeeeeeastaseaeeassaseeseansraseeeaanees 10
4.3, StOpPINg ANd STATTINZeoueeieitieiieteetiee ettt ettt e eeste st e e st e s et e eseentesaeemtesbeeneenseeseenes 11
4.4, ReCCIVING PACKELSeoiiiiieieitieiieiee ettt ettt et sbe et e b et eee s enee 11
4.5. TranSmitting PACKELSco.ceiuiiiiiieiieiee ettt sttt ebe s 12
4.0, SHULEING QOWIL ..eutitieiieie ettt ettt ettt et et s bt e e b e e st et e eaeetesbeemtenbeeaeensenseenes 12
5. Function Reference 13
TAW 1394 TS0 XITHE T c.veeeeiiiiieeeeeieeeeeee e e e ettt eeeeeeeeeeeeseseeaaaaaeeteeeeeeesessesessessesassaseaeeeeeeaees 13
TAW 1394 TS0 _TECV_ AT eeeeiiiiieiiieieeeee et ee e e e ettt eeeeeeeeeseeseae e aaaaaeeteeaeeessessesssssssssassasasseeaeeeees 14
1aw 1394 _iSo_multiChannel_TECV_IMIT......ooiviiiiieiiiiiiieeeee ettt ee e e e e e e e e e s e e s eaaaaaeeeeeeeeeeeas 15
1aw 1394 _1S0_1ecV_IIStEN_CRANNEL.......ooiiiiieeeeeeeeeeee ettt e e e e e e e ar e e e e eeeeee s 16
1aw 1394 _iso_recv_unlisten_ChanmElooooouuieiiiiiiiiiieee ettt e e vaaa e e e eeeeee s 17
1aw 1394 _iS0_recv_set_Channel MaSKcooooouueeiiiiiiiiiiie ettt et s e aaa e e e e eeeee s 18
e N IR LS L T o T 4 00 LA 7 | SRR RO RPRRRR 19
TAW 1394 1SO_TECV_STATT ..uvveveiiiiiiieieieeeee et eeeeeseceatete ettt e eeeeeeeeeesssesaataaaaateteeeeeeesessssssssnssrasssssaeeeeeeseeas 20
TAW 1394 1S0_ XIMHE_ WIIEE .. uuueueiiiiiiiieieeeee e e ettt et et e e e e e e e e s e s aaaaeeeteeeeeeesessessssnssrasssssseeeeeeseeas 21
TAW 1394 _1SO_XIMIE_SYIIC ..eeuvieiiiriieiiieniienieeteeniteste st ebeesttesateebeesstesttesabeeseesseesaseenseenseesasesnseenseesns 22
TAW 1394 _1SO_TECV_TIUSI c..eeiiiiiiiee ettt et e e b e e e aae e etbeeensaeeeaenas 22
TAW 1394 _1S0_SEOP c.vteiteeiieeiienite ettt ettt ettt st et e st e s et e e bt e bt e sbt e s bt e beesatesabeebeenbeesabeebeebee e 23
TAW 1394 _1SO_SHULAOWN......uviiiiiiieeiii ettt e ettt e et e e et e e e ta e e e sbaeesebee e sseeessaeessseeessseesnnnas 24
1AW 1394_1€ad_CYCIE_tIMET ..ccueiiiiiiiiiiiieeieeteette ettt ettt ettt sae e sttt e bt e sabeesbeenbee e 24
TAW 1394 GEL EITCOUE ...ttt et sttt et st s nesre e 25
e IR1S Sy (oo 16 SR T I & & 4 [0 N TR 26
e IR 1S A T A o V1 1 Lo | (TS 27
1aW 1394_destroy_handlecoc.ooiiiiiiiiiiiete e e 28
1aw 1394_new_handle_ON_POTT.........coviiriiriiinienierie ettt ettt ettt st sbe et e sateesaeenbee e 29
1AW 1394 DUSTESEL_NOUIY .outeiiiiiiiiiieiieeeeee ettt sttt e e b 30
e N IR < A (USSP 31
g\ IR 1S N RV TS (6 21 : U S 32

iii

TAW 1394 Gt USETAALA.eeutieiieeiieeieerteete ettt ettt sttt et esat e e bt e bt e satesabeenbeesbeesaseenseenseenas 32

1AW 1394 gt 10CAL_I0 ..euiiiiiiiiiiie ettt sttt ettt et et st eae e b e 33
TAW 1394 Gt TN T c.eeiiiiiiieiieee ettt sttt sbt e st e st sttt e bt e st e beenbee e 34
TAW 1394 _ Gt NOAECOUNLeeuiiiiiieiieiteeite ettt ettt ettt et e bt esbt e s bt e bt e sate s be e bt esbeesabeeseenseesas 35
1AW 1394 _ gt POTE_INTO c..eiiitiiiiiiie ettt ettt sttt sbe e st e b b e 35
TAW L1394 SEE_POTT.c..eiuiiiieiieiiiieiestceeet ettt ettt ettt et ae st e et eb e eaeen e sae s e nesanenesneenne 36
g IR 1S L A (T Al o)) O STTS 37
e IR 1S B (oI A o)) I 4 (=) AU 38
TAW 1304 _ 100D _ILETALE ...cueeeutieiieeite ettt ettt ettt ettt sbt e et e bt e sbe e sabe e bt e bt e sateebeebeenas 39
1aw1394_set_bus_1eSet_NANAIEToooiiiiiiieeeeeeee e e e e 40
TAW 1394 Gt GENETALION ..c...eiiiiiiiiieeiteeite ettt ettt sttt et sat e st e bt e sbee st e e bt e sbeesaneebeenbee e 41
1aW 1394_Update_ ZENETAIONcceeiiiiieiiriiieiieiteete ettt ettt et sbt e st e bt e sbeesabeesbeesbeesaneeseenbee e 42
1aW 1394 _set_tag NaAnAIETcooveiiiiiiiiie ettt s 42
raw1394_set_arm_tag handlerocooieiiiiiiiiie e e 43
raw1394_set_fep_handIercoouoiuiiiiiiieiee e et 44
IIME oottt et e oot e e et e e eetteeeteeeeeteeeeaeeeeteeeeteeeateeeateseeataeeeaaeaeeteseeteeeetaeeatteseaaseeenaeaann 45
TIME oottt ettt et eett e e e ettt e et e e eetteeeteeeeteeeetaeeeteeeetteeeaataeeateeeeataeeeateaeeteseateeeareeeatteeeaaaeeenreaaan 46
TAW 1394 AN T@EISTOT c..eeeeuiiitieiieiteeitete ettt ettt ettt et e st s bt et e s bt e st et e ebeenaesbe et enbesaeebesbeenee 47
TAW 1394 AIM_UNTEZISTOT ...ccuviteeuietieiieteeteete sttt ettt ettt ettt s bt et e bt e st e bt ebeesaesbeestenbesaeesenbeenee 48
TAW 1394 AT SEE DU ...ttt ettt e et et e eeeeeesseseesesaaaaaaeeeeaeeaeeas 49
1aW1394_arm_get DU ...co.ooiiiii et et 50
TAW 1394 @CHO_TEQUEST......eeiiiiiiiiieiteieeteete ettt ettt st ettt be et bt et e b sbeebe b eaee 51
TAW 1394 WAKE_UD ..evteiieiieieiieetest ettt ettt ettt ettt st b e bttt e bt e e sbe et e s b e ebe et sbeenee 52
1AW 1394 _PIY_PACKEL_WIILE ...veeeeeeeiiesiienieeiteriteete et et e siteseteebeesaeesabessbeesseessnesnseenseenseesnseeseenseenns 53
1aw 1394 _start_phy_Packet_WIILeccveeiiiiieiieiie ettt ettt ettt e s st sbeesaeesbeeseenaee e 54
TAW 1394 STATT_TEAA ..ottt e e e e e et e e e e et a et et et eeeeeeeesessssssassassassaeeeeeeeeeas 55
TAW 1394 STATT WITEE ...ceeeeeiiiiiieieieeeeeee e e ettt et et e e e eeeeeesss s abaaaaateteeeeeeesessessssnsssassaseseeeeeeeeeas 56
TAW 1394 STATT_LOCK ..coiieeiieteee ettt e e e e e e e e s e st bt et et e eeeeeessesssssssasaasaaeaeeeeeeseeas 57
TAW 1394 SLArt_1OCKOAc..eiiiieiieeee et ettt e et e e et e e e te e e eabaeesabae e abeeeabaeensseeensseenaseas 59
1AW 1394 _Start_aSYNC_SIIEAIMN c..eeruverutieriieriieeieetieete st eieesttestteebeesttesttesbeesseesseesnseeseesseesaseenseenseesns 60
1AW 1394 _Start_aSYNC_SEIIA ...cueiruiiiiiiriieeieeitetteete ettt ettt et e sttt s be e bt e saeesabeebeesbeesateenseenbeesas 61
A IR L i (. T PRSP 63
LA IR L T o L TSP 64
A IR L i U To] PRSP 65
e IR 1S A (o o) (o OO S 66
TAW 1394 _ASYNC_SITEAIMNeuvieniiiiieiiieiteeit ettt ettt ettt sttt e bt e sbt e s bt e bt e sbeesabe e bt esbeesabeeseenbeenas 68
TAW 1394 _aSYNC_SENA ...cuviiuiiiiiieiiiiieeiteete ettt sttt et sbt e st e bt e sbe e sabe e bt e sbeesabeeaeenbee e 69
1AW 1394 _Start_fOP_TISEEI .e.uveieiiiiiiiiecetee ettt ettt st st sbee e 70
TAW 1394 _StOP_FCP_LISTEM ..ttt ettt ettt st be e st e b 71
TAW 1394 gt LIDVEISIONeeuiiiieiieitieiiete ettt ettt ettt s b e s et e eseentesaeentesbeeneeneeeseenes 71
raw 1394_update_CONTIZ_TOM.......oiuiiiiiiieiieie ettt ettt ettt ettt e ste et et e b ene e ee s enes 72
1AW 1394 gt _CONTIZ_TOM ..ueiiiiiiiiieiieie ettt ettt ettt ettt e a et bt et e b eae e ee b enes 73
raw1394_bandwidth_mOdifyccoiiiiiiiii e e 75
raw1394_channel_MOdifYcooiiiiiiiiie e et 75

Chapter 1. Introduction

The Linux kernel’s IEEE 1394 subsystem provides access to the raw 1394 bus through the raw1394
module. This includes the standard 1394 transactions (read, write, lock) on the active side, isochronous
stream receiving and sending and dumps of data written to the FCP_COMMAND and FCP_RESPONSE
registers. raw 1394 uses a character device to communicate to user programs using a special protocol.

libraw1394 was created with the intent to hide that protocol from applications so that

1. the protocol has to be implemented correctly only once.

2. all work can be done using easy to understand functions instead of handling a complicated command
structure.

3. only libraw1394 has to be changed when raw1394’s interface changes.

To fully achieve the goals (especially 3) libraw1394 is distributed under the LGPL (Lesser General
Public License - see file COPYING.LIB for more information.) to allow linking with any program, be it
open source or binary only. The requirements are that the libraw 1394 part can be replaced (relinked) with
another version of the library and that changes to libraw 1394 itself fall under LGPL again. Refer to the
LGPL text for details.

Chapter 2. Short Introduction into IEEE 1394

IEEE 1394 in fact defines two types of hardware implementations for this bus system, cable and
backplane. The only one described here and supported by the Linux subsystem is the cable
implementation. Most people not familiar with the standard probably don’t even know that there is
something else than the 1394 cable specification.

If you are familiar with CSR architectures (as defined in ISO/IEC 13213 (ANSI/IEEE 1212)), then you
already know quite a bit of 1394, which is a CSR implementation.

2.1. Bus Structure

The basic data structures defined in the standard and used in this document are the quadlet (32 bit
quantity) and the octlet (64 bit quantity) and blocks (any quantity of bytes). The bus byte ordering is big
endian. A transmission can be sent at one of multiple possible speeds, which are 100, 200 and 400 Mbit/s
for the currently mostly used IEEE 1394a spec and up to 3.2 Gbit/s in the recently finalized 1394.b
standard (these speeds are also referred to as S100, S200, ...).

A 1394 bus consists of up to 64 nodes (with multiple buses possibly being connected, but that is outside
of the scope of this document and not completely standardized yet). Each node is addressed with a 16 bit
address, which is further divided into a 10 bit bus ID and a 6 bit local node number, the so-called
physical ID. The physical IDs are completely dynamic and determined during the bus reset. The highest
values for both are special values. Bus ID equal to 1023 means "local bus" (the bus the node is connected
to), physical ID equal to 63 means "all nodes" (broadcast).

The local bus ID 1023 is the only one that can be used unless IEEE 1394.1 bridge portals to more buses
were available. Therefore the node IDs have to be given as (1023<<6) | phy_ID. (This is also true if
libraw 1394 runs at a host which contains multiple 1394 bus adapters. The local ID 1023 is valid on each
of these buses. The Linux host itself is no IEEE 1394.1 bridge.)

Each node has a local address space with 48 bit wide addressing. The whole bus can thus be seen as a
linear 64 bit address space by concatenating the node ID (most significant bits) and local address (least
significant bits). libraw 1394 treats them separately in function arguments to save the application some
fiddling with the bits.

Unlike other buses there aren’t many transactions or commands defined, higher level commands are
defined in terms of addresses accessed instead of separate transaction types (comparable to memory
mapped registers in hardware). The 1394 transactions are:

- read (quadlets and blocks)

« write (quadlets and blocks)

Chapter 2. Short Introduction into IEEE 1394

« lock (some atomic modifications)

There is also the isochronous transaction (the above three are called asynchronous transactions), which is
a broadcast stream with guaranteed bandwidth. It doesn’t contain any address but is distinguished by a 6
bit channel number.

The bus view is only logical, physically it consists of many point-to-point connections between nodes
with every node forwarding data it receives to every other port which is capable of the speed the
transaction is sent at (thus a S200 node in the path between two S400 nodes would limit their
communication speed to S200). It forms a tree structure with all but one node having a parent and a
number of children. One node is the root node and has no parents.

2.2. Bus Reset

A bus reset occurs whenever the state of any node changes (including addition and removal of nodes). At
the beginning a root node is chosen, then the tree identification determines for every node which port is
connected to a parent, child or nothing. Then the SelfID phase begins. The root node sends a SelfID
grant on its first port connected to a child. If that is not a leaf node, it will itself forward the grant to its
first child. When a leaf node gets a grant, it will pick the lowest physical ID not yet in use (starting with
0) and send out a SelfID packet with its physical ID and more information, then acknowledge the SelfID
grant to its parent, which will send a grant to its next child until it configured all its children, then pick a
physical ID itself, send SelfID packet and ack to parent.

After bus reset the used physical IDs are in a sequential range with no holes starting from O up to the root
node having the highest ID. This also means that physical IDs can change for many or all nodes with the
insertion of a new node or moving the role of root to another node. In libraw1394 all transactions are
tagged automatically with a generation number which is increased in every bus reset and transactions
with an obsolete generation will fail in order to avoid targetting the wrong node. Nodes have to be
identified in a different way than their volatile physical IDs, namely by reading their globally unique ID
(GUID) contained in the configuration ROM.

2.3. Transactions

The packets transmitted on the bus are acknowledged by the receiving end unless they are broadcast
packets (broadcast writes and isochronous packets). The acknowledge code contains an error code,
which either signifies error, success or packet pending. In the first two cases the transaction completes, in
the last a response packet will follow at a later time from the targetted node to the source node (this is
called a split transaction). Only writes can succeed and complete in the ack code, reads and locks require
a response. Error and packet pending can happen for every transaction. The response packets contain a
response code (rcode) which signifies success or type of error.

For read and write there are two different types, quadlet and block. The quadlet types have all their

Chapter 2. Short Introduction into IEEE 1394

payload (exactly one quadlet) in the packet header, the block types have a variable length data block
appended to the header. Programs using libraw 1394 don’t have to care about that, quadlet transactions
are automatically used when the data length is 4 bytes and block transactions otherwise.

The lock transaction has several extended transaction codes defined which choose the atomic operation
to perform, the most used being the compare-and-swap (code 0x2). The transaction passes the data value
and (depending on the operation) the arg value to the target node and returns the old value at the target
address, but only when the transaction does not have an error. All three values are of the same size, either
one quadlet or one octlet.

In the compare-and-swap case, the data value is written to the target address if the old value is identical
to the arg value. The old value is returned in any case and can be used to find out whether the swap
succeeded by repeating the compare locally. Compare-and-swap is useful for avoiding race conditions
when accessing the same address from multiple nodes. For example, isochronous resource allocation is
done using compare-and-swap, as described below. Since the old value is always returned, it more
efficient to do the first attempt with the reset value of the target register as arg instead of reading it first.
Repeat with the returned old value as new arg value if it didn’t succeed.

2.4. Bus Management

There are three basic bus service nodes defined in IEEE 1394 (higher level protocols may define more):
cycle master, isochronous resource manager and bus manager. These positions are contended for in and
shortly after the bus reset and may all be taken by a single node. A node does not have to support being
any of those but if it is bus manager capable it also has to be iso manager capable, if it is iso manager
capable it also has to be cycle master capable.

The cycle master sends 8000 cycle start packets per second, which initiate an iso cycle. Without that, no
isochronous transmission is possible. Only the root node is allowed to be cycle master, if it is not capable
then no iso transmissions can occur (and the iso or bus manager have to select another node to become
root and initiate a bus reset).

The isochronous resource manager is the central point where channel and bandwidth allocations are
stored. A bit in the SelfID shows whether a node is iso manager capable or not, the iso manager capable
node with the highest ID wins the position after a bus reset. Apart from containing allocation registers,
this one doesn’t do much. Only if there is no bus manager, it may determine a cycle master capable node
to become root and initiate a bus reset.

The bus manager has more responsibilities: power management (calculate power provision and
consumption on the bus and turn on disabled nodes if enough power is available), bus optimization
(calculate an effective gap count, optimize the topology by selecting a better positioned node for root)
and some registers relevant to topology (topology map containing the SelfIDs of the last reset and a
speed map, which is obsoleted in IEEE 1394a). The bus manager capable nodes contend for the role by

Chapter 2. Short Introduction into IEEE 1394

doing a lock transaction on the bus manager ID register in the iso manager, the first to successfully
complete the transaction wins the role.

2.5. Isochronous Transmissions

Nodes can allocate a channel and bandwidth for isochronous transmissions at the iso manager to
broadcast timing critical data (e.g. multimedia streams) on the bus. However these transmissions are
unreliable, there is no guarantee that every packet reaches the intended recipients (the software and
hardware involved also take iso packets a bit more lightly). After a cycle start packet, the isochronous
cycle begins and every node can transmit iso packets, however only one packet per channel is allowed.
As soon as a gap of a certain length appears (i.e. no node sends anymore), the iso cycle ends and the rest
of the time until the next cycle start is reserved for asynchronous packets.

The channel register on the iso manager consists of 64 bits, each of which signifies one channel. A
channel can be allocated by any node by doing a compare-swap lock request with the new bitmask.
Likewise the bandwidth can be allocated by doing a lock request with the new value. The bandwidth
register contains the remaining time available for every iso cycle. Since you allocate time, the maximum
data you are allowed to put into an iso packet depends on the speed you will send at.

On every bus reset, the resource registers are resetted to their initial values (all channels free, all
bandwidth minus some amount set aside for asynchronous communication available), this has to happen
since the isochronous manager may have moved to another node. Isochronous transmissions may
continue with the old allocations for 1000ms. During that time, the nodes have to reallocate their
resources and no new allocations are allowed to occur. Only after this period new allocations may be
done, this avoids nodes losing their allocations over a bus reset.

libraw 1394 does not provide special functions for allocating iso resources nor does it clean up after
programs when they exit. Protocols exist that require the first node to use some resources to allocate it
and then leave it for the last node using it to deallocate it. This may be different nodes, so automatic
behaviour would be very undesirable in these cases.

Chapter 3. Data Structures and Program Flow

3.1. Overview

The 1394 subsystem in Linux is divided into the classical three layers, like most other interface
subsystems in Linux. The in-kernel subsystem consists of the ieee1394 core, which provides basic
services like handling of the 1394 protocol (converting the abstract transactions into packets and back),
collecting information about bus and nodes and providing some services to the bus that are required to be
available for standards conformant nodes (e.g. CSR registers). Below that are the hardware drivers,
which handle converting packets and bus events to and from hardware accesses on specific 1394 chipsets.

Above the core are the highlevel drivers, which use the services provided by the core to implement
protocols for certain devices and act as drivers to these. raw1394 is one such driver, however it is not
specialized to handle one kind of device but is designed to accept commands from user space to do any
transaction wanted (as far as possible from current core design). Using raw 1394, normal applications can
access 1394 nodes on the bus and it is not neccessary to write kernel code just for that.

raw1394 communicates to user space like most device drivers do, through device files in /dev. It uses a
defined protocol on that device, but applications don’t have to and should not care about that. All of this
is taken care of by libraw 1394, which provides a set of functions that convert to and from raw1394
protocol packets and are a lot easier to handle than that underlying protocol.

3.2. Handles

The handle presented to the application for using libraw1394 is the raw1394handle_t, an opaque data
structure (which means you don’t need to know its internals). The handle (and with it a connection to the
kernel side of raw1394) is obtained using raw1394_new_handle () . Insufficient permissions to access
the kernel driver will result in failure of this function, among other possibilities of failure.

While initializing the handle, a certain order of function calls have to be obeyed or undefined results will
occur. This order reflects the various states of initialization to be done:

1. raw1394 new handle ()
2. rawl394_get_port_info ()

3. rawl394_set_port ()

Chapter 3. Data Structures and Program Flow

3.3. Ports

A computer may have multiple 1394 buses connected by having multiple 1394 chips. Each of these is
called a port, and the handle has to be connected to one port before it can be used for anything. Even if
no nodes are connected to the chip in question, it forms a complete bus (with just one node, itself).

A list of available ports together with some information about it (name of the hardware, number of
connected nodes) is available via raw1394_get_port_info (), which is to be called right after getting
a fresh handle. The user should be presented with a choice of available ports if there is more than one. It
may be good practice to do that even if there is only one port, since that may result from a normally
configured port just not being available, making it confusing to be dropped right into the application
attached to a port without a choice and notion of anything going wrong.

The choice of port is then reported using raw1394_set_port (). If this function fails and errno is set to
ESTALE, then something has changed about the ports (port was added or removed) between getting the
port info and trying to set a port. It is required that the current port list is fetched (presenting the user
with the choice again) and setting the port is retried with the new data.

After a successful raw1394_set_port (), the get and set port functions must not be used anymore on
this handle. Undefined results occur if you do so. To make up for this, all the other functions are allowed
now.

3.4. The Event Loop

All commands in libraw1394 are asynchronous, with some synchronous wrapper functions for some
types of transactions. This means that there are two streams of data, one going into raw1394 and one
coming out. With this design you can send out multiple transactions without having to wait for the
response before you can continue (sending out other transactions, for example). The responses and other
events (like bus resets and received isochronous packets) are queued, and you can get them with
rawl394_loop_iterate () or rawl394_loop_iterate_timeout () (Which always returns after a
user-specified timeout if no raw1394 event has occurred).

This forms an event loop you may already know from similar systems like GUI toolkits.
rawl394_loop_iterate () gets one message from the event queue in raw 1394, processes it with the
configured callback functions and returns the value returned by the callback (so you can signal to the
main loop from your callback; the standard callbacks all return 0). It normally blocks when there are no
events and always processes only one event. If you are only receiving broadcast events like isochronous
packets you thus have to set up a loop continuously calling the iterate function to get your callbacks
called.

Often it is necessary to have multiple event loops and combine them, e.g. if your application uses a GUI
toolkit which also has its own event loop. In that case you can use raw1394_get_f£d () to get the file

Chapter 3. Data Structures and Program Flow

descriptor used for this handle by libraw1394. The fd can be used to for select () or poll () calls
together with the other loop’s fd. (Most toolkits, like GTK and Qt, have special APIs for integrating file
descriptors into their own event loops).

If using pol1 (), you must test for POLLIN and POLLPRI events. If using select (), you must test for
both read and exception activity.

If any of these conditions trigger, you should then call raw1394_loop_iterate () to pick up the event.
rawl394_loop_iterate () is guaranteed not to block when called immediately after select() or poll()
indicates activity. After the first call you continue the main event loop. If more events wait, the

select ()/poll () will immediately return again.

You can also use the fd to set the O_NONBLOCK flag with fcnt1 (). After that, the iterate function will
not block anymore but fail with errno set to EAGAIN if no events wait. These are the only legal uses for
the fd returned by raw1394_get_£d ().

There are some functions which provide a synchronous wrapper for transactions, note that these will call
rawl394_loop_iterate () continuously until their transaction is completed, thus having implicit
callback invocations during their execution. The standard transaction functions have names of the form
rawl394_start_xxx, the synchronous wrappers are called raw1394_xxx.

3.5. Handlers

There are a number of handlers which can be set using the appropriate function as described in the
function reference and which libraw 1394 will call during a raw1394_loop_iterate (). These are:

- tag handler (called for completed commands)

+ bus reset handler (called when a bus reset happens)

« iso handler (called when an iso packet is received)

« fcp handler (called when a FCP command or response is received)

The bus reset handler is always called, the tag handler for every command that completes, the iso handler
and fcp handler are only called when the application chooses to receive these packets. Handlers return an
integer value which is passed on by raw1394_loop_iterate () (only one handler is called per
invocation), 0 is returned without a handler in place.

The tag handler case is a bit special since the default handler is actually doing something. Every
command that you start can be given an unsigned long tag which is passed untouched to the tag handler
when the event loop sees a completed command. The default handler expects this value to be a pointer to
araw1394_reghandle structure, which contains a data pointer and its own callback function pointer. The
callback gets the untouched data pointer and error code as arguments. If you want to use tags that are not
raw1394_reghandle pointers you have to set up your own tag handler.

Chapter 3. Data Structures and Program Flow

3.6. Generation Numbers

libraw1394 and the kernel code use generation numbers to identify the current bus configuration and
increment those on every configuration change. The most important generation number is stored per
connected 1394 bus and incremented on every bus reset. There is another number managed by raw1394
which identifies global changes (like a complete port being added or removed), which is used for the
rawl394_set_port () function to make sure you don’t use stale port numbers. This is done
transparently to you.

The bus generation number is more relevant for your work. Since nodes can change IDs with every bus
reset, it is very likely that you don’t want to send a packet you constructed with the old ID before you
noticed the bus reset. This does not apply to isochronous transmissions, since they are broadcast and do
not depend on bus configuration. Therefore every packet is automatically tagged with the expected
generation number, and it will fail to send if that does not match the number managed in the kernel for
the port in question.

You get the current generation number through the bus reset handler. If you don’t set a custom bus reset
handler, the default handler will update the generation number automatically. If you set your own
handler, you can update the generation number to be used through raw1394_update_generation ()
directly in the handler or later.

3.7. Error and Success Codes

libraw 1394 returns the ack/rcode pair in most transaction cases. The rcode is undefined in cases where
the ack code is not equal to ack_pending. This is stored in a type raw1394_errcode_t, from which the ack
and rcode parts can be extracted using two macros.

With the function rawl1394_errcode_to_errno () itis possible to convert this to an errno number that
conveys roughly the same meaning. Many developers will find that easier to handle. This is done
automatically for the synchronous read/write/lock wrapper functions, i.e. they return O for success and a
negative value for failure, in which case they also set the errno variable to the appropriate code. The raw
ack/rcode pair can then still be retrieved using raw1394_get_errcode ().

Chapter 4. Isochronous Transmission and
Reception

4.1. Overview

Isochronous operations involve sending or receiving a constant stream of packets at a fixed rate of 8KHz.
Unlike raw1394’s asynchronous API, where you "push" packets to raw 1394 functions at your leisure, the
isochronous API is based around a "pull" model. During isochronous transmission or reception, raw1394
informs your application when a packet must be sent or received. You must fulfill these requests in a
timely manner to avoid breaking the constant stream of isochronous packets.

A raw1394 handle may be associated with one isochronous stream, either transmitting or receiving (but
not both at the same time). To transmit or receive more than one stream simultaneously, you must create
more than one raw1394 handle.

4.2. Initialization

When a raw 1394 handle is first created, no isochronous stream is assocated with it. To begin isochronous
operations, call either raw1394_iso_xmit_init () (transmission) or raw1394_iso_recv_init ()
(reception). The parameters to these functions are as follows:

handler is your function for queueing packets to be sent (transmission) or processing received packets
(reception).

buf_packets is the number of packets that will be buffered at the kernel level. A larger packet buffer will
be more forgiving of IRQ and application latency, however it will consume more kernel memory. For
most applications, it is sufficient to buffer 2000-16000 packets (0.25 seconds to 2.0 seconds maximum
latency).

max_packet_size is the size, in bytes, of the largest isochronous packet you intend to handle. This size
does not include the isochronous header but it does include the CIP header specified by many
isochronous protocols.

channel is the isochronous channel on which you wish to receive or transmit. (currently there is no
facility for multi-channel transmission or reception).

speed is the isochronous speed at which you wish to operate. Possible values are
RAW1394 ISO_SPEED_100, RAW1394_ISO_SPEED_200, and RAW1394_ISO_SPEED_400.

10

Chapter 4. Isochronous Transmission and Reception

irq_interval is the maximum latency of the kernel buffer, in packets. (To avoid excessive IRQ rates, the
low-level drivers only trigger an interrupt every irq_interval packets). Pass -1 to receive a default value
that should be suitable for most applications.

mode for raw1394_iso_recv_init () sets whether to use packet-per-buffer or buffer-fill receive
mode. Possible values are RAW1394_DMA_DEFAULT (bufferfill on ohcil394),
RAW1394_DMA_BUFFERFILL, and RAW1394_DMA_PACKET_PER_BUFFER.

If raw1394_iso_xmit/recv_init () retuns successfully, then you may start isochronous operations.
You may not call raw1394_iso_xmit/recv_init () again on the same handle without first shutting
down the isochronous operation with raw1394_iso_shutdown ().

Note that raw1394_iso_xmit_init () and rawl394_iso_recv_init () involve potentially
time-consuming operations like allocating kernel and device resources. If you intend to transmit or
receive several isochronous streams simultaneously, it is advisable to initialize all streams before starting
any packet transmission or reception.

4.3. Stopping and Starting

Once the isochronous operation has been initialized, you may start and stop packet transmission with
rawl394_iso_xmit/recv_start () and rawl394_iso_stop (). Itis legal to call these as many
times as you want, and it is permissible to start an already-started stream or stop an already-stopped
stream. Packets that have been queued for transmission or reception will remain queued when the
operation is stopped.

rawl394_iso_xmit/recv_start () allow you to specify on which isochronous cycle number to start
transmitting or receiving packets. Pass -1 to start immediately. This parameter is ignored if isochronous
transmission or reception is already in progress.

rawl394_iso_xmit_start () has an additional parameter, prebuffer_packets, which specifies how
many packets to queue up before starting transmission. Possible values range from zero (start
transmission immediately after the first packet is queued) up to the total number of packets in the buffer.

Once the isochronous operation has started, you must repeatedly call raw1394_loop_iterate () as
usual to drive packet processing.

4.4. Receiving Packets

Raw1394 maintains a fixed-size ringbuffer of packets in kernel memory. The buffer is filled by the
low-level driver as it receives packets from the bus. It is your application’s job to process each packet,

11

Chapter 4. Isochronous Transmission and Reception

after which the buffer space it occupied can be re-used for future packets.

The isochronous receive handler you provided will be called from raw1394_loop_iterate () after
each packet is received. Your handler is passed a pointer to the first byte of the packet’s data payload,
plus the packet’s length in bytes (not counting the isochronous header), the cycle number at which it was
received, the channel on which it was received, and the "tag" and "sy" fields from the isochronous
header. Note that the packet is at this point still in the kernel’s receive buffer, so the data pointer is only
valid until the receive handler returns. You must make a copy of the packet’s data if you want to keep it.

The receive handler is also passed a "packet(s) dropped" flag. If this flag is nonzero, it means that one or
more incoming packets have been dropped since the last call to your handler (usually this is because the
kernel buffer has completely filled up with packets or a bus reset has occurred).

4.5. Transmitting Packets

Similar to reception, raw1394 maintains a fixed-size ringbuffer of packets in kernel memory. The buffer
is filled by your application as it queues packets to be sent. The buffer is drained by the hardware driver
as it transmits packets on the 1394 bus.

The isochronous transmit handler you provided will be called from raw1394_loop_iterate ()
whenever there is space in the buffer to queue another packet. The handler is passed a pointer to the first
byte of the buffer space for the packet’s data payload, pointers to words containing the data length in
bytes (not counting the isochronous header), "tag" and "sy" fields, and the isochronous cycle number at
which this packet will be transmitted. The handler must write the packet’s data payload into the supplied
buffer space, and set the values pointed to by "len", "tag", and "sy" to the appropriate values. The handler
is permitted to write any number of data bytes, up and including to the value of max_packet_size passed

to rawl394_iso_xmit_init ().

Note: If you passed -1 as the starting cycle to raw1394_iso_xmit_init (), the cycle number provided
to your handler will be incorrect until after one buffer’s worth of packets have been transmitted.

The transmit handler is also passed a "packet(s) dropped" flag. If this flag is nonzero, it means that one or
more outgoing packets have been dropped since the last call to your handler (usually this is because the
kernel buffer has gone completely empty or a bus reset has occurred).

4.6. Shutting down

When the isochronous operation has finished, call raw1394_iso_shutdown () to release all associated
resources. If you don’t call this function explicitly, it will be called automatically when the raw1394
handle is destroyed.

12

Chapter 5. Function Reference

raw1394 iso_ xmit_init

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_iso_xmit_init — initialize isochronous transmission

Synopsis

int rawl394_iso_xmit_init (rawl394handle_t handle, rawl394_iso_xmit_handler_t

handler, unsigned int buf_packets, unsigned int max_packet_size, unsigned
char channel, enum rawl394_iso_speed speed, int irqg interval);

Arguments
handle
libraw 1394 handle

handler

handler function for queueing packets

buf_packets

number of isochronous packets to buffer

max_packet_size

largest packet you need to handle, in bytes (not including the isochronous header)

channel

isochronous channel on which to transmit

speed

speed at which to transmit

irq_interval

maximum latency of wake-ups, in packets (-1 if you don’t care)

13

Chapter 5. Function Reference

Description

Allocates all user and kernel resources necessary for isochronous transmission. Channel and bandwidth
allocation at the IRM is not performed.

Returns

0 on success or -1 on failure (sets errno)

raw1394 iso_recv_init

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_iso_recv_init — initialize isochronous reception

Synopsis

int rawl394_iso_recv_init (rawl394handle_t handle, rawl394_iso_recv_handler_t
handler, unsigned int buf_packets, unsigned int max_packet_size, unsigned
char channel, enum rawl394_iso_dma_recv_mode mode, int irqg interval);

Arguments
handle
libraw 1394 handle

handler

handler function for receiving packets

buf_packets

number of isochronous packets to buffer

max_packet_size

largest packet you need to handle, in bytes (not including the isochronous header)

14

Chapter 5. Function Reference

channel

isochronous channel to receive

mode

bufferfill or packet per buffer mode

irqg _interval

maximum latency of wake-ups, in packets (-1 if you don’t care)

Description

Allocates all user and kernel resources necessary for isochronous reception.

Returns

0 on success or -1 on failure (sets errno)

raw1394 iso_multichannel recv init

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_iso_multichannel_recv_init — initialize multi-channel iso reception

Synopsis

int rawl394_iso_multichannel_recv_init (rawl394handle_t handle,
rawl394_iso_recv_handler_t handler, unsigned int buf_packets, unsigned int
max_packet_size, int irq interval);

15

Chapter 5. Function Reference

Arguments

handle

libraw 1394 handle

handler

handler function for receiving packets

buf_packets

number of isochronous packets to buffer

max_packet_size

largest packet you need to handle, in bytes (not including the isochronous header)

irqg _interval

maximum latency of wake-ups, in packets (-1 if you don’t care)

Description

Allocates all user and kernel resources necessary for isochronous reception.

Returns

0 on success or -1 on failure (sets errno)

raw1394 iso_recv_listen_channel

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_iso_recv_listen_channel — listen to a specific channel in multi-channel mode

Synopsis

int rawl394_iso_recv_listen_channel (rawl394handle_t handle, unsigned char
channel) ;

16

Chapter 5. Function Reference

Arguments

handle

libraw 1394 handle

channel

the channel to start listening

Description

listen/unlisten on a specific channel (multi-channel mode ONLY)

Returns

0 on success or -1 on failure (sets errno)

raw1394 iso_recv_unlisten_channel

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_iso_recv_unlisten_channel — stop listening to a specific channel in multi-channel
mode

Synopsis

int rawl394_iso_recv_unlisten_channel (rawl394handle_t handle, unsigned char
channel) ;

17

Chapter 5. Function Reference

Arguments

handle

libraw 1394 handle

channel

the channel to stop listening to

Returns

0 on success or -1 on failure (sets errno)

raw1394 iso recv_set channel mask

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_iso_recv_set_channel_mask — listen or unlisten to a whole bunch of channels at
once

Synopsis

int rawl394_iso_recv_set_channel _mask (rawl394handle_t handle, u_int64_t
mask) ;

Arguments

handle

libraw 1394 handle

mask

64-bit mask of channels, 1 means listen, 0 means unlisten, channel O is LSB, channel 63 is MSB

18

Chapter 5. Function Reference

Description

for multi-channel reception mode only

Returns

0 on success, -1 on failure (sets errno)

raw1394 iso xmit_start

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_iso_xmit_start — begin isochronous transmission

Synopsis

int rawl394_iso_xmit_start (rawl394handle_t handle, int start_on_cycle, int

prebuffer_packets);

Arguments

handle
libraw 1394 handle

start_on_cycle

isochronous cycle number on which to start (-1 if you don’t care)

prebuffer_packets

number of packets to queue up before starting transmission (-1 if you don’t care)

19

Returns

0 on success or -1 on failure (sets errno)

raw1394 iso recv_start

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_iso_recv_start — begin isochronous reception

Synopsis

int rawl394_iso_recv_start (rawl394handle_t handle,
tag_mask, int sync);

Arguments
handle
libraw 1394 handle

start_on_cycle

isochronous cycle number on which to start (-1 if you don’t care)

tag_mask

mask of tag fields to match (-1 to receive all packets)

sync

not used, reserved for future implementation

Returns

0 on success or -1 on failure (sets errno)

Chapter 5. Function Reference

int start_on_cycle,

int

20

Chapter 5. Function Reference

raw1394 iso_xmit_write

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_iso_xmit_write — alternative blocking-write API for ISO transmission

Synopsis

int rawl394_iso_xmit_write (rawl394handle_t handle, unsigned char * data,
unsigned int Ien, unsigned char tag, unsigned char sy);

Arguments
handle
libraw 1394 handle

data

pointer to packet data buffer

len

length of packet, in bytes

tag

tag field

Sy

sync field

Description

write style API - do NOT use this if you have set an xmit_handler if buffer is full, waits for more space
UNLESS the file descriptor is set to non-blocking, in which case xmit_write will return -1 with errno
= EAGAIN

21

Chapter 5. Function Reference

Returns

0 on success or -1 on failure (sets errno)

raw1394 iso_xmit_sync

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_iso_xmit_sync — wait until all queued packets have been sent

Synopsis

int rawl394_iso_xmit_sync (rawl394handle_t handle);

Arguments

handle
libraw 1394 handle

Returns

0 on success or -1 on failure (sets errno)

raw1394 iso recv_flush

LINUX

22

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name

rawl394_iso_recv_flush — flush all already received iso packets from kernel into user space

Synopsis

int rawl394_iso_recv_flush (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

Description

If you specified an irq_interval > 1 in iso_recv_init, you won’t be notified for every single iso packet, but
for groups of them. Now e.g. if irq_interval is 100, and you were just notified about iso packets and after
them only 20 more packets arrived, no notification will be generated (20 < 100). In the case that you
know that there should be more packets at this moment, you can call this function and all iso packets
which are already received by the kernel will be flushed out to user space.

Returns

0 on success or -1 on failure (sets errno)

raw1394 iso_stop

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_iso_stop — halt isochronous transmission or reception

23

Chapter 5. Function Reference

Synopsis

void rawl394_iso_stop (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

raw1394 iso shutdown

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_iso_shutdown — clean up and deallocate all resources for isochronous transmission or
reception

Synopsis

void rawl394_iso_shutdown (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

raw1394 read_cycle timer

LINUX

24

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name
rawl394_read_cycle_timer — get the current value of the cycle timer
Synopsis

int rawl394_read cycle_timer (rawl394handle_t handle, u_int32_t =
cycle timer, u_int64_t * local_time);

Arguments

handle

libraw 1394 handle

cycle _timer

buffer for Isochronous Cycle Timer

local_time

buffer for local system time in microseconds since Epoch

Description
Simultaneously reads the cycle timer register together with the system clock.

Format of cycle_timer, from MSB to LSB: 7 bits cycleSeconds (seconds, or number of cycleCount
rollovers), 13 bits cycleCount (isochronous cycles, or cycleOffset rollovers), 12 bits cycleOffset (24.576
MHz clock ticks, not provided on some hardware). The union of cycleSeconds and cycleCount is the
current cycle number. The nominal duration of a cycle is 125 microseconds.

Returns

the error code of the ioctl, or O if successful.

25

Chapter 5. Function Reference

raw1394 get errcode

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_get_errcode — return error code of async transaction

Synopsis

rawl394_errcode_t rawl394_get_errcode (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

Description

Some macros are available to extract information from the error code, raw1394_errcode_to_errno
can be used to convert it to an errno number of roughly the same meaning.

Returns

the error code of the last raw1394_read, rawl394_write, rawl394_lock. The error code is either an
internal error (i.e. not a bus error) or a combination of acknowledge code and response code, as
appropriate.

raw1394 errcode to _errno

LINUX

26

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name

rawl394_errcode_to_errno — convert libraw1394 errcode to errno

Synopsis

int rawl394_errcode_to_errno (rawl394_errcode_t errcode);

Arguments

errcode

the error code to convert

Description

The error code as retrieved by rawl1394_get_errcode is converted into a roughly equivalent errno
number and returned. 0xdead is returned for an illegal errcode.

It is intended to be used to decide what to do (retry, give up, report error) for those programs that aren’t
interested in details, since these get lost in the conversion. However the returned errnos are equivalent in
source code meaning only, the associated text of e.g. perror is not necessarily meaningful.

Returns

EAGAIN (retrying might succeed, also generation number mismatch), EREMOTEIO (other node had
internal problems), EPERM (operation not allowed on this address, e.g. write on read-only location),
EINVAL (invalid argument) and EFAULT (invalid pointer).

raw1394 new handle

LINUX

27

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name

rawl394_new_handle — create new handle

Synopsis

rawl394handle_t rawl394_new _handle (void);

Arguments

void

no arguments

Description

Creates and returns a new handle which can (after being set up) control one port. It is not allowed to use
the same handle in multiple threads or forked processes. It is allowed to create and use multiple handles,
however. Use one handle per thread which needs it in the multithreaded case.

The default device node is /dev/raw1394, but one can override the default by setting environment
variable RAW1394DEV. However, if RAW1394DEYV points to a non-existant or invalid device node,
then it also attempts to open the default device node.

Returns

the created handle or NULL when initialization fails. In the latter case errno either contains some OS
specific error code or EPROTO if libraw1394 and raw1394 don’t support each other’s protocol versions.

raw1394_destroy handle

LINUX

28

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name
rawl394_destroy_handle — deallocate handle

Synopsis

void rawl394_destroy_handle (rawl394handle_t handle);

Arguments

handle

handle to deallocate

Description

Closes connection with raw1394 on this handle and deallocates everything associated with it. It is safe to
pass NULL as handle, nothing is done in this case.

raw1394 _new_handle_on_port

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_new_handle_on_port — create a new handle and bind it to a port

Synopsis

rawl394handle_t rawl394_new_handle_on_port (int port);

29

Chapter 5. Function Reference

Arguments

port

port to connect to (same as argument to rawl394_set_port)

Description

Same as rawl1394_new_handle, but also binds the handle to the specified 1394 port. Equivalent to
rawl394_new_handle followed by raw1394_get_port_info and rawl394_set_port. Useful for
command-line programs that already know what port they want. If raw1394_set_port returns
ESTALE, retries automatically.

The default device node is /dev/raw 1394, but one can override the default by setting environment
variable RAW1394DEV. However, if RAW1394DEYV points to a non-existant or invalid device node,
then it also attempts to open the default device node.

Returns

the new handle on success or NULL on failure

raw1394_busreset_notify

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_busreset_notify — Switch off/on busreset-notification for handle

Synopsis

int rawl394_busreset_notify (rawl394handle_t handle, int off_on_switch);

30

Chapter 5. Function Reference

Arguments

handle

libraw 1394 handle

off on_switch

RAW1394_NOTIFY_OFF or RAW1394_NOTIFY_ON

Returns

0 on success or -1 on failure (sets errno)

raw1394 get fd

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_get_fd— get the communication file descriptor

Synopsis

int rawl394_get_fd (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

Description

This can be used for select/poll calls if you wait on other fds or can be integrated into another event
loop (e.g. from a GUI application framework). It can also be used to set/remove the O_NONBLOCK flag

31

Chapter 5. Function Reference

using fcntl to modify the blocking behaviour in raw1394_loop_iterate. It must not be used for
anything else.

Returns

the fd used for communication with the raw1394 kernel module or -1 on failure (sets errno).

raw1394 set userdata

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_set_userdata — associate user data with a handle

Synopsis

void rawl394_set_userdata (rawl394handle_t handle, void =* data);

Arguments

handle

libraw 1394 handle

data

user data (pointer)

Description

Allows to associate one void pointer with a handle. libraw1394 does not care about the data, it just stores
it in the handle allowing it to be retrieved at any time with raw1394_get_userdata. This can be useful
when multiple handles are used, so that callbacks can identify the handle.

32

Chapter 5. Function Reference

raw1394 get userdata

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_get_userdata — retrieve user data from handle

Synopsis

void » rawl394_get_userdata (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

Returns

the user data pointer associated with the handle using raw1394_set_userdata.

raw1394 get local id

LINUX
Kernel Hackers ManualAugust 2009

Name
rawl394_get_local_id — get node ID of the current port

Synopsis

nodeid_t rawl394_get_local_id (rawl394handle_t handle);

33

Chapter 5. Function Reference

Arguments

handle
libraw 1394 handle

Returns

the node ID of the local node connected to which the handle is connected. This value can change with
every bus reset.

raw1394 get irm_id

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_get_irm_id — get node ID of isochronous resource manager

Synopsis

nodeid_t rawl394_get_irm id (rawl394handle_t handle);

Arguments

handle
libraw 1394 handle

Returns

the node ID of the isochronous resource manager of the bus the handle is connected to. This value may
change with every bus reset.

34

Chapter 5. Function Reference

raw1394 get nodecount

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_get_nodecount — get number of nodes on the bus

Synopsis

int rawl394_get_nodecount (rawl394handle_t handle);

Arguments

handle

libraw1394 handle

Description

Since the root node always has the highest node ID, this number can be used to determine that ID (it’s
LOCAL_BUSI(count-1)).

Returns

the number of nodes on the bus to which the handle is connected. This value can change with every bus
reset.

raw1394_get_port_info

LINUX

35

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name
rawl394_get_port_info — get information about available ports
Synopsis

int rawl394_get_port_info (rawl394handle_t handle, struct rawl394_portinfo =
pinf, int maxports);

Arguments

handle
libraw 1394 handle

pinf

pointer to an array of struct raw1394_portinfo

maxports

number of elements in pinf

Description
Before you can set which port to use, you have to use this function to find out which ports exist.

If your program is interactive, you should present the user with this list to let them decide which port to
use if there is more than one. A non-interactive program (and probably interactive ones, too) should
provide a command line option to choose the port. If maxportsis 0, pinf can be NULL, too.

Returns

the number of ports and writes information about them into pinf, but not into more than maxports
elements.

36

Chapter 5. Function Reference

raw1394 set port

LINUX
Kernel Hackers ManualAugust 2009

Name
rawl394_set_port — choose port for handle
Synopsis

int rawl394_set_port (rawl394handle_t handle, int port);

Arguments

handle

libraw 1394 handle

port

port to connect to (corresponds to index of struct raw1394_portinfo)

Description

This function connects the handle to the port given (as queried with raw1394_get_port_info). If
successful, raw1394_get_port_info and rawl394_set_port are not allowed to be called
afterwards on this handle. To make up for this, all the other functions (those handling asynchronous and
isochronous transmissions) can now be called.

Returns

0 for success or -1 for failure with errno set appropriately. A possible failure mode is with errno =
ESTALE, in this case the configuration has changed since the call to raw1394_get_port_info and it
has to be called again to update your view of the available ports.

37

Chapter 5. Function Reference

raw1394 reset bus

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_reset_bus — initiate bus reset

Synopsis

int rawl394_reset_bus (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

Description

This function initiates a bus reset on the connected port. Usually this is not necessary and should be
avoided, this function is here for low level bus control and debugging.

Returns

0 for success or -1 for failure with errno set appropriately

raw1394 reset bus nhew

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_reset_bus_new — Reset the connected bus (with certain type).

38

Chapter 5. Function Reference
Synopsis

int rawl394_reset_bus_new (rawl394handle_t handle, int type);

Arguments

handle

libraw 1394 handle

type
RAW1394_SHORT_RESET or RAW1394_LONG_RESET

Returns

0 for success or -1 for failure

raw1394 loop_iterate

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_loop_iterate — get and process one event message

Synopsis

int rawl394_loop_iterate (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

39

Chapter 5. Function Reference

Description

Get one new message through handle and process it with the registered message handler. Note that some
other library functions may call this function multiple times to wait for their completion, some handler
return values may get lost if you use these.

Returns

-1 for an error or the return value of the handler which got executed. The default handlers always return
Zero.

raw1394 set bus reset handler

LINUX
Kernel Hackers Manual August 2009

Name
rawl394_set_bus_reset_handler — set bus reset handler
Synopsis

bus_reset_handler_t rawl394_set_bus_reset_handler (rawl394handle_t handle,
bus_reset_handler_t new_h);

Arguments

handle
libraw 1394 handle

new_h

pointer to new handler

40

Chapter 5. Function Reference

Description

Sets the handler to be called on every bus reset to new_h. The default handler just calls

rawl394_update_generation

Returns

the old handler or NULL on failure (sets errno)

raw1394 get generation

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_get_generation — get generation number of handle

Synopsis

unsigned int rawl394_get_generation (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

Description

The generation number is incremented on every bus reset, and every transaction started by raw1394 is
tagged with the stored generation number. If these don’t match, the transaction will abort with an error.
The generation number of the handle is not automatically updated, raw1394_update_generation has
to be used for this.

41

Chapter 5. Function Reference

Returns

the generation number associated with the handle or UINT_MAX on failure.

raw1394_update_generation

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_update_generation — set generation number of handle

Synopsis

void rawl394_update_generation (rawl394handle_t handle, unsigned int
generation) ;

Arguments

handle

libraw 1394 handle

generation

new generation number

Description

This function sets the generation number of the handle to gen. All requests that apply to a single node ID
are tagged with this number and abort with an error if that is different from the generation number kept
in the kernel. This avoids acting on the wrong node which may have changed its ID in a bus reset.

You should call this within your bus reset handler with an incremented value.

42

Chapter 5. Function Reference

raw1394 set tag handler

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_set_tag_handler — set request completion handler

Synopsis

tag_handler_t rawl394_set_tag handler (rawl394handle_t handle, tag_handler_t

new_h) ;

Arguments

handle

libraw 1394 handle

new_h

pointer to new handler

Description

Sets the handler to be called whenever a request completes to new_h. The default handler interprets the
tag as a pointer to a struct raw1394_reghandle and calls the callback in there.

Care must be taken when replacing the tag handler and calling the synchronous versions of the
transaction functions (i.e. raw1394_read, rawl394_write, rawl394_lock) since these do pass
pointers to struct raw 1394_reghandle as the tag and expect the callback to be invoked.

Returns

the old handler or NULL on failure (sets errno)

43

Chapter 5. Function Reference

raw1394 set _arm_tag handler

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_set_arm_tag_handler — set the async request handler

Synopsis

arm_tag_handler_t rawl394_set_arm_tag_handler (rawl394handle_t handle,
arm_tag_handler_t new_h);

Arguments

handle

libraw 1394 handle

new_h

pointer to new handler

Description

Set the handler that will be called when an async read/write/lock arm_request arrived. The default action
is to call the arm_callback in the raw1394_arm_reghandle pointed to by arm_tag.

Returns

old handler or NULL on failure (sets errno)

raw1394 set fcp handler

LINUX

44

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name
rawl394_set_fcp_handler — set FCP handler

Synopsis

fcp_handler_t rawl394_set_fcp_handler (rawl394handle_t handle, fcp_handler_t
new_h) ;

Arguments

handle
libraw 1394 handle

new_h

pointer to new handler

Description
Function Control Protocol is defined in IEC 61883-1.

Sets the handler to be called when either FCP command or FCP response registers get written to new_h.
The default handler does nothing. In order to actually get FCP events, you have to enable it with
rawl394_start_fcp_listen and can stop it with raw1394_stop_fcp_listen.

Returns

the old handler or NULL on failure (sets errno)

LINUX

45

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name

int — This is the general request handler

Synopsis

typedef int (x req callback_t);

Arguments

req_callback_t

This is the general request handler

Description

It is used by the default tag handler when a request completes, it calls the callback and passes it the data
pointer and the error code of the request.

int

LINUX
Kernel Hackers ManualAugust 2009

Name

int — This is the general arm-request handle

Synopsis

typedef int (« arm req callback_t);

46

Chapter 5. Function Reference

Arguments

arm_req_callback_t

This is the general arm-request handle

Description

(arm = address range mapping) It is used by the default arm-tag handler when a request has been
received, it calls the arm_callback.

raw1394_arm_register

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_arm_register — register an AddressRangeMapping

Synopsis

int rawl394_arm register (rawl394handle_t handle, nodeaddr_t start, size_t
length, byte_t x initial_value, octlet_t arm tag, arm_options_t
access_rights, arm_options_t notification_ options, arm_options_t
client_transactions);

Arguments
handle
libraw 1394 handle

start

identifies addressrange

length

identifies addressrange

47

Chapter 5. Function Reference

initial value

pointer to buffer containing (if necessary) initial value NULL means undefined

arm_tag

identifier for arm_tag_handler (usually pointer to raw1394_arm_reghandle)

access_rights

access-rights for registered addressrange handled by kernel-part. Value is one or more binary or of
the following flags - ARM_READ, ARM_WRITE, ARM_LOCK

notification_options

identifies for which type of request you want to be notified. Value is one or more binary or of the
following flags - ARM_READ, ARM_WRITE, ARM_LOCK

client_transactions

identifies for which type of request you want to handle the request by the client application. for
those requests no response will be generated, but has to be generated by the application. Value is
one or more binary or of the following flags - ARM_READ, ARM_WRITE, ARM_LOCK For each
bit set here, notification_options and access_rights will be ignored.

Description

ARM = Adress Range Mapping

Returns

0 on success or -1 on failure (sets errno)

raw1394 arm_unregister

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_arm_unregister — unregister an AddressRangeMapping

48

Chapter 5. Function Reference
Synopsis

int rawl394_arm_unregister (rawl394handle_t handle, nodeaddr_t start);

Arguments

handle

libraw 1394 handle

start

identifies addressrange for unregistering (value of start have to be the same value used for
registering this adressrange)

Returns

0 on success or -1 on failure (sets errno)

raw1394 arm_set buf

LINUX
Kernel Hackers ManualAugust 2009

Name
rawl394_arm_set_buf — set the buffer of an AdressRangeMapping

Synopsis

int rawl394_arm_set_buf (rawl394handle_t handle, nodeaddr_t start, size_t
length, void * buf);

49

Chapter 5. Function Reference

Arguments

handle

libraw 1394 handle

start

identifies addressrange

length

identifies addressrange

buf

pointer to buffer

Description

This function copies length bytes from user memory area buf to one ARM block in kernel memory
area with start offset start.

Returns

0 on success or -1 on failure (sets errno)

raw1394 arm_get buf

LINUX
Kernel Hackers ManualAugust 2009

Name
rawl394_arm_get_buf — get the buffer of an AdressRangeMapping

Synopsis

int rawl394_arm get_buf (rawl394handle_t handle, nodeaddr_t start, size_t
length, void x buf);

50

Chapter 5. Function Reference

Arguments

handle

libraw 1394 handle

start

identifies addressrange

length

identifies addressrange

buf

pointer to buffer

Description

This function copies length bytes from one ARM block in kernel memory area with start offset start
to user memory area buf

Returns

0 on success or -1 on failure (sets errno)

raw1394 echo_request

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_echo_request — send an echo request to the driver

Synopsis

int rawl394_echo_request (rawl394handle_t handle, quadlet_t data);

51

Chapter 5. Function Reference

Arguments

handle

libraw 1394 handle

data

arbitrary data; raw1394_loop_iterate will return it

Description

the driver then send back the same request. raw1394_loop_iterate will return data as return value, when it
processes the echo.

Returns

0 on success or -1 on failure (sets errno)

raw1394 wake up

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_wake_up — wake up raw1394_loop_iterate

Synopsis

int rawl394_wake_up (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

52

Chapter 5. Function Reference

Description

(or a blocking read from the device file). actually this calls raw1394_echo_request with 0 as data.

Returns

0 on success or -1 on failure (sets errno)

raw1394_phy_packet_write

LINUX
Kernel Hackers ManualAugust 2009

Name
rawl394_phy_packet_write — send physical request

Synopsis

int rawl394_phy packet_write (rawl394handle_t handle, quadlet_t data);

Arguments

handle

libraw 1394 handle

data

the contents of the packet

Description

examples of physical requests are linkon, physicalconfigurationpacket, etc.

53

Returns

0 on success or -1 on failure (sets errno)

Chapter 5. Function Reference

raw1394 start phy packet write

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_start_phy_ packet_write — initiate sending a physical request

Synopsis

int rawl394_start_phy packet_write
unsigned long tag);

Arguments

handle

libraw1394 handle

data

the contents of the packet

tag

(rawl394handle_t handle, quadlet_t data,

data to identify the request to completion handler

Description

examples of physical requests are linkon, physicalconfigurationpacket, etc.

54

Returns

0 on success or -1 on failure (sets errno)

raw1394 start read

LINUX

Kernel Hackers ManualAugust 2009

Name

rawl394_start_read — initiate a read transaction

Synopsis

Chapter 5. Function Reference

int rawl394_start_read (rawl394handle_t handle, nodeid_t node, nodeaddr_t
addr, size_t length, quadlet_t * buffer, unsigned long tag);

Arguments
handle
libraw 1394 handle

node

target node ID

addr

address to read from

length

amount of bytes of data to read

buffer

pointer to buffer where data will be saved

tag

data to identify the request to completion handler

55

Chapter 5. Function Reference

Description

This function starts the specified read request. If 1ength is 4 a quadlet read is initiated and a block read
otherwise.

The transaction is only started, no success of the transaction is implied with a successful return of this
function. When the transaction completes, a raw1394_loop_iterate will call the tag handler and pass
it the tag and error code of the transaction. tag should therefore be set to something that uniquely
identifies this transaction (e.g. a struct pointer casted to unsigned long).

Returns

0 on success or -1 on failure (sets errno)

raw1394 start write

LINUX
Kernel Hackers Manual August 2009

Name
rawl394_start_write — initiate a write transaction
Synopsis

int rawl394_start_write (rawl394handle_t handle, nodeid_t node, nodeaddr_t
addr, size_t length, quadlet_t = data, unsigned long tag);

Arguments

handle
libraw 1394 handle

node

target node ID

56

Chapter 5. Function Reference

addr

address to write to

length

amount of bytes of data to write

data

pointer to data to be sent

tag

data to identify the request to completion handler

Description

This function starts the specified write request. If 1ength is 4 a quadlet write is initiated and a block
write otherwise.

The transaction is only started, no success of the transaction is implied with a successful return of this
function. When the transaction completes, a raw1394_loop_iterate will call the tag handler and pass
it the tag and error code of the transaction. tag should therefore be set to something that uniquely
identifies this transaction (e.g. a struct pointer casted to unsigned long).

Returns

0 on success or -1 on failure (sets errno)

raw1394 start lock

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_start_lock — initiate a 32-bit compare-swap lock transaction

57

Chapter 5. Function Reference
Synopsis

int rawl394_start_lock (rawl394handle_t handle, nodeid_t node, nodeaddr_t
addr, unsigned int extcode, quadlet_t data, quadlet_t arg, quadlet_t =
result, unsigned long tag);

Arguments

handle

libraw 1394 handle

node

target node ID

addr

address to read from

extcode

extended transaction code determining the lock operation

data

data part of lock parameters

arg

arg part of lock parameters

result

address where return value will be written

tag

data to identify the request to completion handler

Description

This function starts the specified lock request. The transaction is only started, no success of the
transaction is implied with a successful return of this function. When the transaction completes, a
rawl394_loop_iterate will call the tag handler and pass it the tag and error code of the transaction.
tag should therefore be set to something that uniquely identifies this transaction (e.g. a struct pointer
casted to unsigned long).

58

Chapter 5. Function Reference

Returns

0 on success or -1 on failure (sets errno)

raw1394 start lock64

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_start_lock64 — initiate a 64-bit compare-swap lock transaction

Synopsis

int rawl394_start_lock64 (rawl394handle_t handle, nodeid_t node, nodeaddr_t
addr, unsigned int extcode, octlet_t data, octlet_t arg, octlet_t * result,
unsigned long tagqg);

Arguments
handle
libraw 1394 handle

node

target node ID

addr

address to read from

extcode

extended transaction code determining the lock operation

data

data part of lock parameters

arg

arg part of lock parameters

59

Chapter 5. Function Reference

result

address where return value will be written

tag

data to identify the request to completion handler

Description

This function starts the specified lock request. The transaction is only started, no success of the
transaction is implied with a successful return of this function. When the transaction completes, a
rawl394_loop_iterate will call the tag handler and pass it the tag and error code of the transaction.
tag should therefore be set to something that uniquely identifies this transaction (e.g. a struct pointer
casted to unsigned long).

Returns

0 on success or -1 on failure (sets errno)

raw1394 start_async_stream

LINUX
Kernel Hackers ManualAugust 2009

Name
rawl394_start_async_stream— initiate asynchronous stream
Synopsis

int rawl394_start_async_stream (rawl394handle_t handle, unsigned int channel,
unsigned int tag, unsigned int sy, unsigned int speed, size_t length,
quadlet_t x data, unsigned long rawtag);

60

Arguments
handle
libraw 1394 handle

channel

the isochronous channel number to send on

tag

data to be put into packet’s tag field

Sy

data to be put into packet’s sy field

speed

speed at which to send

length

amount of data to send, in bytes

data

pointer to data to send

rawtag

data to identify the request to completion handler

Description

Chapter 5. Function Reference

Passes custom tag. Use pointer to raw1394_reghandle if you use the standard tag handler.

Returns

0 on success or -1 on failure (sets errno)

raw1394 start_async_send

LINUX

61

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name

rawl394_start_async_send — send an asynchronous packet

Synopsis

int rawl394_start_async_send (rawl394handle_t handle, size_t length, size_t
header_length, unsigned int expect_response, quadlet_t = data, unsigned long
rawtag) ;

Arguments

handle

libraw1394 handle

length

the amount of bytes of data to send

header._length

the number of bytes in the header

expect_response

indicate with a O or 1 whether to receive a completion event

data

pointer to data to send

rawtag

data to identify the request to completion handler

Description

This starts sending an arbitrary async packet. It gets an array of quadlets consisting of header and data
(without CRC in between). Header information is always in machine byte order, data (data block as well
as quadlet data in a read response for data quadlet) shall be in big endian byte order. expect_response
indicates, if we expect a response (i.e. if we will get the tag back after the packet was sent or after a
response arrived). length is the length of the complete packet (header_length + length of the data block).
The main purpose of this function is to send responses for incoming transactions, that are handled by the

62

Chapter 5. Function Reference

application. Do not use that function, unless you really know, what you do! Sending corrupt packet may

lead to weird results.

Returns

0 on success or -1 on failure (sets errno)

raw1394 read

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_read — send async read request to a node and wait for response.

Synopsis

int rawl394_read (rawl394handle_t handle,
size_t length, quadlet_t * buffer);

Arguments
handle
libraw 1394 handle

node

target node ID

addr

address to read from

length

amount of bytes of data to read

nodeid_t node, nodeaddr_t addr,

63

Chapter 5. Function Reference

buffer

pointer to buffer where data will be saved

Description
If 1engthis 4, a quadlet read request is used.

This does the complete transaction and will return when it’s finished. It will call
rawl394_loop_iterate as often as necessary, return values of handlers called will be therefore lost.

Returns

0 on success or -1 on failure (sets errno)

raw1394 write

LINUX
Kernel Hackers ManualAugust 2009

Name
rawl394_write — send async write request to a node and wait for response.
Synopsis

int rawl394_write (rawl394handle_t handle, nodeid_t node, nodeaddr_t addr,
size_t length, quadlet_t »* data);

Arguments

handle

libraw 1394 handle

node

target node ID

64

Chapter 5. Function Reference

addr

address to write to

length

amount of bytes of data to write

data

pointer to data to be sent

Description
If 1engthis 4, a quadlet write request is used.

This does the complete transaction and will return when it’s finished. It will call
rawl394_loop_iterate as often as necessary, return values of handlers called will be therefore lost.

Returns

0 on success or -1 on failure (sets errno)

raw1394 lock

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_lock — send 32-bit compare-swap lock request and wait for response.
Synopsis

int rawl394_lock (rawl394handle_t handle, nodeid_t node, nodeaddr_t addr,
unsigned int extcode, quadlet_t data, quadlet_t arg, quadlet_t = result);

65

Chapter 5. Function Reference
Arguments
handle
libraw 1394 handle

node

target node ID

addr

address to read from

extcode

extended transaction code determining the lock operation

data

data part of lock parameters

arg

arg part of lock parameters

result

address where return value will be written

Description

This does the complete transaction and will return when it’s finished. It will call
rawl394_loop_iterate as often as necessary, return values of handlers called will be therefore lost.

Returns

0 on success or -1 on failure (sets errno)

raw1394 lock64

LINUX

66

Kernel Hackers Manual August 2009

Name

Chapter 5. Function Reference

rawl394_lock64 — send 64-bit compare-swap lock request and wait for response.

Synopsis

int rawl394_1lock64 (rawl394handle_t handle, nodeid_t node, nodeaddr_t addr,

unsigned int extcode, octlet_t data, octlet_t arg,

Arguments
handle
libraw 1394 handle

node

target node ID

addr

address to read from

extcode

extended transaction code determining the lock operation

data

data part of lock parameters

arg

arg part of lock parameters

result

address where return value will be written

Description

octlet_t * result);

This does the complete transaction and will return when it’s finished. It will call
rawl394_loop_iterate as often as necessary, return values of handlers called will be therefore lost.

67

Chapter 5. Function Reference

Returns

0 on success or -1 on failure (sets errno)

raw1394 async_stream

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_async_stream —

Synopsis

int rawl394_async_stream (rawl394handle_t handle, unsigned int channel,
unsigned int tag, unsigned int sy, unsigned int speed, size_t length,
quadlet_t x data);

Arguments
handle
libraw 1394 handle

channel

the isochronous channel number to send on

tag

data to be put into packet’s tag field

sy

data to be put into packet’s sy field

speed

speed at which to send

length

amount of bytes of data to send

68

Chapter 5. Function Reference

data

pointer to data to send

Returns

0 on success or -1 on failure (sets errno)

raw1394_async_send

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_async_send —

Synopsis

int rawl394_async_send (rawl394handle_t handle, size_t length, size_t
header_length, unsigned int expect_response, quadlet_t = data);

Arguments
handle
libraw 1394 handle

length

the amount of bytes of data to send

header_length

the number of bytes in the header

expect_response

indicate with a 0 or 1 whether to receive a completion event

69

Chapter 5. Function Reference

data

pointer to data to send

Returns

0 on success or -1 on failure (sets errno)

raw1394 start_fcp_listen

LINUX
Kernel Hackers ManualAugust 2009

Name

rawl394_start_fcp_listen — enable reception of FCP events

Synopsis

int rawl394_start_fcp_listen (rawl394handle_t handle);

Arguments

handle

libraw 1394 handle

Description

FCP = Function Control Protocol (see IEC 61883-1) Enables the reception of FCP events (writes to the
FCP_COMMAND or FCP_RESPONSE address ranges) on handle. FCP requests are then passed to the
callback specified with raw1394_set_fcp_handler.

70

Chapter 5. Function Reference

Returns

0 on success or -1 on failure (sets errno)

raw1394_stop_fcp_listen

LINUX
Kernel Hackers ManualAugust 2009

Name
rawl394_stop_fcp_listen — disable reception of FCP events

Synopsis

int rawl394_stop_fcp_listen (rawl394handle_t handle);

Arguments

handle
libraw 1394 handle

Description

Stops the reception of FCP events (writes to the FCP_COMMAND or FCP_RESPONSE address ranges)
on handle.

Returns

0 on success or -1 on failure (sets errno)

71

Chapter 5. Function Reference

raw1394 get libversion

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_get_libversion — Returns the version string

Synopsis

const char rawl394_get_libversion (void);

Arguments

void

no arguments

Description

Instead, typically, one uses ’pkg-config --mod-version libraw 1394’ Might be useful for an application.

Returns

a pointer to a string containing the version number

raw1394 update config rom

LINUX

72

Chapter 5. Function Reference

Kernel Hackers Manual August 2009

Name
rawl394_update_config_rom— updates the configuration ROM of a host
Synopsis

int rawl394_update_config rom (rawl394handle_t handle, const quadlet_t =
new_rom, size_t size, unsigned char rom version);

Arguments

handle

libraw 1394 handle

new_rom

a pointer to the new ROM image

size

the size of the new ROM image in bytes

rom _version

the version numer of the current version, not the new

Description

rom_version must be the current version, otherwise it will fail with return value -1.

Returns

-1 (failure) if the version is incorrect, -2 (failure) if the new rom version is too big, or 0 for success

73

Chapter 5. Function Reference

raw1394 get config_rom

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_get_config_rom— reads the current version of the configuration ROM of a host

Synopsis

int rawl394_get_config rom (rawl394handle_t handle, quadlet_t = buffer,
size_t buffersize, size_t * rom _size, unsigned char * rom _version);

Arguments

handle

libraw 1394 handle

buffer

the memory address at which to store the copy of the ROM

buffersize

is the size of the buffer, rom size

rom_size

upon successful return, contains the size of the ROM

rom_version

upon successful return, contains the version of the rom

Description

returns the size of the current rom image. rom version is the version number of the fetched rom.

Return

-1 (failure) if the buffer was too small or O for success

74

Chapter 5. Function Reference

raw1394 bandwidth_modify

LINUX
Kernel Hackers ManualAugust 2009

Name
rawl394_bandwidth_modify — allocate or release bandwidth

Synopsis

int rawl394_bandwidth_modify (rawl394handle_t handle, unsigned int bandwidth,
enum rawl394_modify_mode mode) ;

Arguments

handle

a libraw 1394 handle

bandwidth
IEEE 1394 Bandwidth Alloction Units

mode

whether to allocate or free

Description

Communicates with the isochronous resource manager.

Return

-1 for failure, O for success

75

Chapter 5. Function Reference

raw1394_channel_modify

LINUX
Kernel Hackers Manual August 2009

Name

rawl394_channel_modify — allocate or release isochronous channel

Synopsis

int rawl394_channel modify (rawl394handle_t handle, unsigned int channel,
enum rawl394_modify_mode mode) ;

Arguments

handle

a libraw 1394 handle

channel

isochronous channel

mode

whether to allocate or free

Description

Communicates with the isochronous resource manager.

Return

-1 for failure, O for success

76

	libraw1394
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Short Introduction into IEEE 1394
	2.1. Bus Structure
	2.2. Bus Reset
	2.3. Transactions
	2.4. Bus Management
	2.5. Isochronous Transmissions

	Chapter 3. Data Structures and Program Flow
	3.1. Overview
	3.2. Handles
	3.3. Ports
	3.4. The Event Loop
	3.5. Handlers
	3.6. Generation Numbers
	3.7. Error and Success Codes

	Chapter 4. Isochronous Transmission and Reception
	4.1. Overview
	4.2. Initialization
	4.3. Stopping and Starting
	4.4. Receiving Packets
	4.5. Transmitting Packets
	4.6. Shutting down

	Chapter 5. Function Reference
	raw1394isoxmitinit
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394isorecvinit
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394isomultichannelrecvinit
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394isorecvlistenchannel
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394isorecvunlistenchannel
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394isorecvsetchannelmask
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394isoxmitstart
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394isorecvstart
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394isoxmitwrite
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394isoxmitsync
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394isorecvflush
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394isostop
	LINUX
	Name
	Synopsis
	Arguments

	raw1394isoshutdown
	LINUX
	Name
	Synopsis
	Arguments

	raw1394readcycletimer
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394geterrcode
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394errcodetoerrno
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394newhandle
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394destroyhandle
	LINUX
	Name
	Synopsis
	Arguments
	Description

	raw1394newhandleonport
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394busresetnotify
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394getfd
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394setuserdata
	LINUX
	Name
	Synopsis
	Arguments
	Description

	raw1394getuserdata
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394getlocalid
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394getirmid
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394getnodecount
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394getportinfo
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394setport
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394resetbus
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394resetbusnew
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394loopiterate
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394setbusresethandler
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394getgeneration
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394updategeneration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	raw1394settaghandler
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394setarmtaghandler
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394setfcphandler
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	int
	LINUX
	Name
	Synopsis
	Arguments
	Description

	int
	LINUX
	Name
	Synopsis
	Arguments
	Description

	raw1394armregister
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394armunregister
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394armsetbuf
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394armgetbuf
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394echorequest
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394wakeup
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394phypacketwrite
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394startphypacketwrite
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394startread
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394startwrite
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394startlock
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394startlock64
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394startasyncstream
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394startasyncsend
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394read
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394write
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394lock
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394lock64
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394asyncstream
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394asyncsend
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	raw1394startfcplisten
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394stopfcplisten
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394getlibversion
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394updateconfigrom
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Returns

	raw1394getconfigrom
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Return

	raw1394bandwidthmodify
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Return

	raw1394channelmodify
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Return

