LAPACK 3.11.0
LAPACK: Linear Algebra PACKage

◆ dlasda()

subroutine dlasda ( integer  ICOMPQ,
integer  SMLSIZ,
integer  N,
integer  SQRE,
double precision, dimension( * )  D,
double precision, dimension( * )  E,
double precision, dimension( ldu, * )  U,
integer  LDU,
double precision, dimension( ldu, * )  VT,
integer, dimension( * )  K,
double precision, dimension( ldu, * )  DIFL,
double precision, dimension( ldu, * )  DIFR,
double precision, dimension( ldu, * )  Z,
double precision, dimension( ldu, * )  POLES,
integer, dimension( * )  GIVPTR,
integer, dimension( ldgcol, * )  GIVCOL,
integer  LDGCOL,
integer, dimension( ldgcol, * )  PERM,
double precision, dimension( ldu, * )  GIVNUM,
double precision, dimension( * )  C,
double precision, dimension( * )  S,
double precision, dimension( * )  WORK,
integer, dimension( * )  IWORK,
integer  INFO 
)

DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.

Download DLASDA + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 Using a divide and conquer approach, DLASDA computes the singular
 value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
 B with diagonal D and offdiagonal E, where M = N + SQRE. The
 algorithm computes the singular values in the SVD B = U * S * VT.
 The orthogonal matrices U and VT are optionally computed in
 compact form.

 A related subroutine, DLASD0, computes the singular values and
 the singular vectors in explicit form.
Parameters
[in]ICOMPQ
          ICOMPQ is INTEGER
         Specifies whether singular vectors are to be computed
         in compact form, as follows
         = 0: Compute singular values only.
         = 1: Compute singular vectors of upper bidiagonal
              matrix in compact form.
[in]SMLSIZ
          SMLSIZ is INTEGER
         The maximum size of the subproblems at the bottom of the
         computation tree.
[in]N
          N is INTEGER
         The row dimension of the upper bidiagonal matrix. This is
         also the dimension of the main diagonal array D.
[in]SQRE
          SQRE is INTEGER
         Specifies the column dimension of the bidiagonal matrix.
         = 0: The bidiagonal matrix has column dimension M = N;
         = 1: The bidiagonal matrix has column dimension M = N + 1.
[in,out]D
          D is DOUBLE PRECISION array, dimension ( N )
         On entry D contains the main diagonal of the bidiagonal
         matrix. On exit D, if INFO = 0, contains its singular values.
[in]E
          E is DOUBLE PRECISION array, dimension ( M-1 )
         Contains the subdiagonal entries of the bidiagonal matrix.
         On exit, E has been destroyed.
[out]U
          U is DOUBLE PRECISION array,
         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
         singular vector matrices of all subproblems at the bottom
         level.
[in]LDU
          LDU is INTEGER, LDU = > N.
         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
         GIVNUM, and Z.
[out]VT
          VT is DOUBLE PRECISION array,
         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
         singular vector matrices of all subproblems at the bottom
         level.
[out]K
          K is INTEGER array,
         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
         secular equation on the computation tree.
[out]DIFL
          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ),
         where NLVL = floor(log_2 (N/SMLSIZ))).
[out]DIFR
          DIFR is DOUBLE PRECISION array,
                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
                  dimension ( N ) if ICOMPQ = 0.
         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
         record distances between singular values on the I-th
         level and singular values on the (I -1)-th level, and
         DIFR(1:N, 2 * I ) contains the normalizing factors for
         the right singular vector matrix. See DLASD8 for details.
[out]Z
          Z is DOUBLE PRECISION array,
                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
                  dimension ( N ) if ICOMPQ = 0.
         The first K elements of Z(1, I) contain the components of
         the deflation-adjusted updating row vector for subproblems
         on the I-th level.
[out]POLES
          POLES is DOUBLE PRECISION array,
         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
         POLES(1, 2*I) contain  the new and old singular values
         involved in the secular equations on the I-th level.
[out]GIVPTR
          GIVPTR is INTEGER array,
         dimension ( N ) if ICOMPQ = 1, and not referenced if
         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
         the number of Givens rotations performed on the I-th
         problem on the computation tree.
[out]GIVCOL
          GIVCOL is INTEGER array,
         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
         of Givens rotations performed on the I-th level on the
         computation tree.
[in]LDGCOL
          LDGCOL is INTEGER, LDGCOL = > N.
         The leading dimension of arrays GIVCOL and PERM.
[out]PERM
          PERM is INTEGER array,
         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
         permutations done on the I-th level of the computation tree.
[out]GIVNUM
          GIVNUM is DOUBLE PRECISION array,
         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
         values of Givens rotations performed on the I-th level on
         the computation tree.
[out]C
          C is DOUBLE PRECISION array,
         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
         C( I ) contains the C-value of a Givens rotation related to
         the right null space of the I-th subproblem.
[out]S
          S is DOUBLE PRECISION array, dimension ( N ) if
         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
         and the I-th subproblem is not square, on exit, S( I )
         contains the S-value of a Givens rotation related to
         the right null space of the I-th subproblem.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension
         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
[out]IWORK
          IWORK is INTEGER array, dimension (7*N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, a singular value did not converge
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA