LAPACK 3.11.0
LAPACK: Linear Algebra PACKage

◆ slaev2()

subroutine slaev2 ( real  A,
real  B,
real  C,
real  RT1,
real  RT2,
real  CS1,
real  SN1 
)

SLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.

Download SLAEV2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
    [  A   B  ]
    [  B   C  ].
 On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
 eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
 eigenvector for RT1, giving the decomposition

    [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ]
    [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ].
Parameters
[in]A
          A is REAL
          The (1,1) element of the 2-by-2 matrix.
[in]B
          B is REAL
          The (1,2) element and the conjugate of the (2,1) element of
          the 2-by-2 matrix.
[in]C
          C is REAL
          The (2,2) element of the 2-by-2 matrix.
[out]RT1
          RT1 is REAL
          The eigenvalue of larger absolute value.
[out]RT2
          RT2 is REAL
          The eigenvalue of smaller absolute value.
[out]CS1
          CS1 is REAL
[out]SN1
          SN1 is REAL
          The vector (CS1, SN1) is a unit right eigenvector for RT1.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  RT1 is accurate to a few ulps barring over/underflow.

  RT2 may be inaccurate if there is massive cancellation in the
  determinant A*C-B*B; higher precision or correctly rounded or
  correctly truncated arithmetic would be needed to compute RT2
  accurately in all cases.

  CS1 and SN1 are accurate to a few ulps barring over/underflow.

  Overflow is possible only if RT1 is within a factor of 5 of overflow.
  Underflow is harmless if the input data is 0 or exceeds
     underflow_threshold / macheps.