GtkAda Documentation
Release 18.0w

AdaCore

May 10, 2023

10

Introduction: What is GtkAda ?

Getting started with GtkAda

2.1 How tobuild and install GtkAda
2.2 How to distribute a GtkAda application
23 Howtouse GtkAda
2.4 Organization of the GtkAda package
2.5 How to compile an application with GtkAda
2.6 Architecture of the toolkit
2.7 Widgets Hierarchy

Hierarchical composition of a window

Signal handling
4.1 Predefinedsignals
4.2 Connecting signals

4.2.1 Connecting via the On_* procedures
4.2.2 Connecting via the Gtk.Handlers package . . .
43 Handlinguserdata
43.1 Firstcase: simpleuserdata
4.3.2 Second case: using Object_Connect instead . .
4.3.3 Third case: manually disconnecting the callback
4.3.4 Fourth case: setting a watch on a specific widget

Starting an application with GtkAda
Resource files

Memory management

Tasking with GtkAda

Processing external events

Object-oriented features
10.1 General description of the tagged types
10.1.1 Why should I use object-oriented programming ?
10.1.2 Type conversions from C to Ada widgets
10.2 Using tagged types to extend Gtk widgets
10.3 Creating new widgets in Ada
10.3.1 Creating composite widgets

CONTENTS

p—

0NN AW W

19

21

23

25

27

11

12

13

14

10.3.2 Creating widgets from scratch e 31
Support for Glade, the Gtk GUI builder 35
11,1 Introduction e e e e e e e e e e e e e 35
11.2 Launching Glade e e e e e e e e 35
11.3 Building yourinterface e e e e 35
11.4 Using the interface in your application. o 35
Binding new widgets 37
Debugging GtkAda applications 39
Transitioning from GtkAda 2 to GtkAda 3 41
14.1 General e e e e e e e e e e e e 41

14.1.1 Interfaces o v v i e e e e e e e e e e e e e e e 41

14.1.2 Ada2012 e e e e 42
142 Pango o o e e e e e e e e e e e 42

14.2.1 Pango.Font e e e e e e e 42
143 Glib e e 42

14.3.1 GIlib.Object e 42

14.3.2 GIb.G_Icon o o o e e 42
144 Gdk e 42

1441 GdkBitmap e e 42

1442 Gdk.Color o o o e e e e e e 43

1443 GAK.Cursor e e e e e e e e e e e e e e e e e e 43

1444 Gdk.Dnd 43

1445 Gdk.Drawable e e 43

144.6 Gdk.Event e e 43

14477 GdkFont e 44

1448 Gdk.GC e 44

1449 GdkImage e 44

14410 Gdk.Main o oo e e e e e e e e 44

14.4.11 Gdk.Pixbuf e 44

14.4.12 GAR.Pixmap 0 o e e e e e e e e e e e 44

14.4.13 Gdk.-Region L 44

14.4.14 Gdk.RGB e 45

14.4.15 GAK.WIndow o o e e e e e e e e e e e e e e 45

14.4.16 GAk.Window_Attr o oo e e e 45
145 Gtk . . o e e 45

1451 Gtk Action 0 i e e e 45

14.5.2 Gtk.Aspect_Frame e e e e 46

14.5.3 GtRASSISTANE o v v o e 46

1454 GtkBuilder e e 46

1455 GtkButton_Box e e 46

145.6 Gtk.Cell_Layout e 46

1457 Gtk.Cell_Renderer e e e 46

1458 Gtk.Cell_View e 46

1459 Gtk Clist. o 0 e e 46

14.5.10 Gtk.Container e e e e e e e 46

14.5.11 Gtk.Color_Button 0 e e e e e e e e e 47

14.5.12 Gtk.Color_Selection i i e e e e e e 47

14.5.13 Gtk.Color_Selection_Dialog e 47

14.5.14 Gtk.Combo e e e e e e e e e e e e 47

14.5.15 Gtk.Combo_BoX o e e e 47

14.5.16 Gtk.Combo_Box_Entry e e e 47

14.5.17
14.5.18
14.5.19
14.5.20
14.5.21
14.5.22
14.5.23
14.5.24
14.5.25
14.5.26
14.5.27
14.5.28
14.5.29
14.5.30
14.5.31
14.5.32
14.5.33
14.5.34
14.5.35
14.5.36
14.5.37
14.5.38
14.5.39
14.5.40
14.5.41
14.5.42
14.5.43
14.5.44
14.5.45
14.5.46
14.5.47
14.5.48
14.5.49
14.5.50
14.5.51
14.5.52
14.5.53
14.5.54
14.5.55
14.5.56
14.5.57
14.5.58
14.5.59
14.5.60
14.5.61
14.5.62
14.5.63
14.5.64
14.5.65
14.5.66
14.5.67
14.5.68
14.5.69
14.5.70

Gtk.Clipboard e e e e e e e e 47

GIK.Ctree o e e e e 47
Gk.Curve o e e 48
Gtk.Dialog e 48
GtkDnd e 48
Gtk.Editable e 48
Gtk.Entry_Completion e e e e e e 49
GtkEnums e e 49
Gtk.File_Chooser_Button e 49
Gtk.File_Chooser_Dialog e 49
Gtk File_Chooser_Widget e 49
Gtk.File_Selection e e e e e e 50
Gtk.Fixed e e 50
Gtk.Gamma_Curve e e e e 50
Gtk.GC . . . e e 50
Gtk.GENtry e 50
Gtk.GRange 50
Gtk.Handle_Box e 50
Gtk.HRuler 50
GtkIcon_Factory e 50
GtkImage o L 51
Gtk.Image Menu_Item 51
Gtk.Input_Dialog e e e e e e 51
GtkItem e e 51
Gtk.Item_Factory e 51
Gtk.Layout e 51
Gtk.Link_Button e e e e e e e e 51
Gtk.List_Item o e e e e e e e 51
Gtk.Main e e s 51
Gtk.Menu e e e 52
Gtk.Menu_Item e e e e 52
Gtk.Menu_Tool Button e e e e e 52
Gtk.Notebook e 52
Gtk List e 52
Gtk.Object o e e e e e e 52
Gtk.Old_Editable e e e 53
Gtk.Option_Menu e e 53
GtkPixmap e 53
GtkPreview e e e 53
Gtk.Print_Operation e e e e e 53
Gtk.Progress o e e e e e 53
Gtk.Progress_Bar L e 53
Gtk RC . . . o e 53
Gtk.Recent_Manager it e e e e e e e e e e e e 54
Gtk.Ruler 54
Gtk.Settings e e e e e 54
Gtk.Scale_Button e e e e e e 54
Gtk.Selection L e 54
Gtk.Scrolled_WiIindow L e e e e e e 55
Gtk.Socket / Gtk.Plug e e e e e 55
Gtk.Status_Icon e e 55
Gtk.Style L e e e 55
Gtk Text e e e e e e 55
Gtk.Text Attributes o e e e e e e e e e 55

15

16

17

18

19

14571 GIk.Text_VIEW o o e e e e e e e e e e e
14.5.72 Gtk.Tree_Dnd 0 e e e e e
14.5.73 Gtk.Tree_Model e e e e e e e e e e e e
14.5.74 Gtk.Tree_View_Column it i it e e e e e e e
14575 Gtk.Tips_QUETY o o e e e e e e e e e e e
14.5.76 Gtk.Tool_Item e e e e e e e e
14.5.77 Gtk.Toolbar e e e e e e e e
14.5.778 GEK.TOOItIPS v o o e
14.5.79 Gtk.Tree_View o e e e e e e e e e e e e e e e e e
14.5.80 Gtk.VRuler e
14581 Gtk.Widget o . e
14582 Gtk.Window e e e e e e e
14.6 GtkAda e e
14.6.1 Gtkada.MDI e e e e e e e e e e e e e
14.6.2 Gtkada.Properties o L. e e e e e e
1477 Gnome e e e e e e e e e
14.7.1 Gnome. App_Bar
1472 Gnome.GEeNtIY o v v v v e

How to report bugs

System Package Dependencies
16.1 Red HatEnterprise Linux 7 & 8 e
16.2 Ubunbu 18.04 & 20.04 L L

Using GtkParasite to inspect and modify running GtkAda applications
Bibliography

GNU Free Documentation License

19.1 PREAMBLE e e e
19.2 APPLICABILITY AND DEFINITIONS e e e
19.3 VERBATIM COPYING e e e e e e e e e e e e e
19.4 COPYING IN QUANTITY e e e e e e e e e e
19.5 MODIFICATIONS e e e e e e e e e e s
19.6 COMBINING DOCUMENTS e e e e e e
19.7 COLLECTIONS OF DOCUMENTS e e e e e e e
19.8 AGGREGATION WITH INDEPENDENT WORKS
19.9 TRANSLATION e e e e e e e e e e e s e e
19.10 TERMINATION o e e e e e e e e e e e
19.11 FUTURE REVISIONS OF THISLICENSE et
19.12 ADDENDUM: How to use this License for your documents

61

63
63
64

67

69

CHAPTER
ONE

INTRODUCTION: WHAT IS GTKADA ?

GtkAda is a high-level portable graphical toolkit, based on the gtk+ toolkit, one of the official GNU toolkits. It makes
it easy to create portable user interfaces for multiple platforms, including most platforms that have a X11 server and
Win32 platforms.

Although it is based on a C library, GtkAda uses some advanced Ada features such as tagged types, generic packages,
access to subprograms, and exceptions to make it easier to use and design interfaces. For efficiency reasons, it does not
use controlled types, but takes care of all the memory management for you in other ways.

As a result, this library provides a secure, easy to use and extensible toolkit.

Compared to the C library, GtkAda provides type safety (especially in the callbacks area), and object-oriented pro-
gramming. As opposed to common knowledge, it requires less type casting than with in C. Its efficiency is about the
same as the C library through the use of inline subprograms.

GtkAda comes with a complete integration to the graphical interface builder Glade. This makes it even easier to develop
interfaces, since you just have to click to create a description of the window and all the dialogs. Ada code can simply
import that description to bring the windows to life.

Under some platforms, GtkAda also provides a bridge to use OpenGL, with which you can create graphical applications
that display 3D graphics, and display them in a GtkAda window, as with any other 2D graphics. This manual does not
document OpenGL at all, see any book on OpenGL, or the specification that came with your OpenGL library, for more
information.

The following Internet sites will always contain the latest public packages for GtkAda, gtk+, Glade and Cairo
* https://github.com/AdaCore/gtkada
* http://www.gtk.org/
* http://glade.gnome.org/
* http://www.cairographics.org/

This toolkit was tested on the following systems:
* GNU Linux/x86

GNU Linux/x86-64

Mac OS/x86-64

¢ Windows 2008r2,7,10/x86

* Windows 200812,7,10/x86-64

with the latest version of the GNAT compiler, developed and supported by Ada Core Technologies (see http://www.
adacore.com).

This version of GtkAda is known to be compatible with gtk+ 3.24.x This release may or may not be compatible with
older versions of gtk+.

https://github.com/AdaCore/gtkada
http://www.gtk.org/
http://glade.gnome.org/
http://www.cairographics.org/
http://www.adacore.com
http://www.adacore.com

GtkAda Documentation, Release 18.0w

This document does not describe all the widgets available in GtkAda, nor does it try to explain all the subprograms. The
GtkAda Reference Manual provides this documentation instead, as well as the GtkAda sources spec files themselves,
whose extension is .ads.

No complete example is provided in this documentation. Instead, please refer to the examples that you can find in the
testgtk/ and examples/ directory in the GtkAda distribution, since these are more up-to-date (and more extensive).
They are heavily commented, and are likely to contain a lot of information that you might find interesting.

If you are interested in getting support for GtkAda—including priority bug fixes, early releases, help in using the toolkit,
help in designing your interface, and on site consulting—please contact AdaCore (mailto:sales @adacore.com).

2 Chapter 1. Introduction: What is GtkAda ?

mailto:sales@adacore.com

CHAPTER
TWO

GETTING STARTED WITH GTKADA

This chapter describes how to start a new GtkAda application. It explains the basic features of the toolkit, and shows
how to compile and run your application.

It also gives a brief overview of the extensive widget hierarchy available in GtkAda.

2.1 How to build and install GtkAda

This section explains how to build and install GtkAda on your machine.

On Windows systems, we provide an automatic installer that installs GtkAda along with dependent components like
gtk+ libraries and Glade. If you are a Windows user, you can skip the rest of this section which will address installation
on Unix systems.

On Unix systems, you first need to install the glib and gtk+ libraries. Download the compatible packages from the gtk+
web site (http://www.gtk.org), compile and install it. Alternatively, if your operating system vendor provides glib and
gtk+ development packages, you can install the libraries they provide.

Change your PATH environment variable so that the script pkg-config, which indicates where gtk+ was installed and
what libraries it needs is automatically found by GtkAda. You will no longer need this script once GtkAda is installed,
unless you develop part of your application in C.

OpenGL support will not be activated in GtkAda unless you already have the OpenGL libraries on your systems. You
can for instance look at Mesa, which is free implementation.

Optionally, you can also install the Glade interface builder. Get the compatible package from the Glade web site,
compile and install it.

You can finally download the latest version of GtkAda from the web site. Untar and uncompress the package, then
simply do the following steps:

$./configure

$ make

$ make tests (this step is optional)
$ make install

As usual with the configure script, you can specify where you want to install the GtkAda libraries by using the —prefix
switch.

You can specify the switch —disable-shared to prevent building shared libraries, even if your system supports them (by
default, both shared and static libraries are installed). By default, your application will be linked statically with the
GtkAda libraries. You can override this default by specifying —enable-shared as a switch to configure, although you
can override it later through the LIBRARY_TYPE scenario variable.

http://www.gtk.org

GtkAda Documentation, Release 18.0w

If you have some OpenGL libraries installed on your system, you can make sure that configure finds them by specifying
the —with-GL-prefix switch on the command line. configure should be able to automatically detect the libraries however.

You must then make sure that the system will be able to find the dynamic libraries at run time if your application uses
them. Typically, you would do one of the following:

* run ldconfig if you installed GtkAda in one of the standard location and you are super-user on your machine

e edit /etc/ld.conf if you are super-user but did not install GtkAda in one of the standard location. Add the path
that contains libgtkada.so (by default /usr/local/1lib or $prefix/lib.

e modify your LD_LIBRARY_PATH environment variable if you are not super-user. You should simply add the
path to libgtkada.

In addition, if you are using precompiled Gtk+ binary packages, you will also need to set the FONTCONFIG_FILE
environment variable to point to the prefix/etc/fonts/fonts.conf file of your binary installation.

For example, assuming you have installed Gtk+ under /opt/gtk and using bash:

$ export FONTCONFIG_FILE=/opt/gtk/etc/fonts/fonts.conf

If your application is using printing, on UNIX and Linux you will need to point your environment variable GTK_PATH
to the directory that contains your Gtk+ libraries, appending it with the gtk-3.0 suffix:

$ export GTK_PATH=<gtk_install_dir>/lib/gtk-3.0

This will allow Gtk+ to show the available printers and options when using Gtk. Print and Gtk. PrintOperations packages
(or Gtkada.Printing, which is a high-level interface built on top of these packages).

2.2 How to distribute a GtkAda application

Since GtkAda depends on Gtk+, you usually need to distribute some Gtk+ libraries along with your application.

Under some OSes such as Linux, Gtk+ comes preinstalled, so in this case, a simple solution is to rely on the preinstalled
Gtk+ libraries. See below for more information on the gtkada library itself.

Under other unix systems, GtkAda usually comes with a precompiled set of Gtk+ libraries that have been specifically
designed to be easily redistributed.

In order to use the precompiled Gtk+ binaries that we distribute with GtkAda, you need to distribute all the Gtk+
.so libraries along with your application, and use the LD_LIBRARY_PATH environment variable to point to these
libraries.

The list of libraries needed is <gtkada-prefix>/1ib/1lib*.so0.? or <gtkada-prefix>/1ib64/1ib*.so.? along
with your executable, and set LD_LIBRARY_PATH.

You may also need the 1ibgtkada-xxx.so file. This dependency is optional since gtkada supports both static and
dynamic linking, depending on how your project sets up the library type in gtkada.gpr. You might chose to link with
the static library 1ibgtkada. a for convenience.

Under Windows, you need to distribute the following files and directories along with your application, and respect the
original directory set up:

e bin/*.d11
e etc/

* 1ib/gtk-2.0

4 Chapter 2. Getting started with GtkAda

GtkAda Documentation, Release 18.0w

2.3 How to use GtkAda

On Unix systems, to use GtkAda, you need to have you PATH and LD_LIBRARY_PATH environment variables set,
as explained above:

PATH=$prefix/bin: $PATH
LD_LIBRARY_PATH=$prefix/1lib: $LD_LIBRARY_PATH
export PATH LD_LIBRARY_PATH

Set the following variables as well when using a custom gtk+ build (but not if you are using the system’s libraries):

GDK_PIXBUF_MODULE_FILE=$prefix/lib/gdk-pixbuf-2.0/2.10.0/loaders.cache
GDK_PIXBUF_MODULEDIR=$prefix/lib/gdk-pixbuf-2.0/2.10.0/loaders/
export GDK_PIXBUF_MODULEDIR GDK_PIXBUF_MODULE_FILE

FONTCONFIG_FILE=$prefix/etc/fonts/fonts.conf
export FONTCONFIG_FILE

XDG_DATA_DIRS=$XDG_DATA_DIRS:$prefix/share
export XDG_DATA_DIRS

GDK_PIXBUF_MODULE_FILE contains the paths to find the libpixbufloader-* libraries. By default, the paths are
relative to the executable loading the libraries: thus, GDK_PIXBUF_MODULEDIR must be installed relatively to
the executable. When the paths are absolute, the location of GDK_PIXBUF_MODULEDIR doesn’t matter when
loading the libraries however it will be necessary to re-generate GDK_PIXBUF_MODULE_FILE on each host. Two
executables are packaged with GtkAda to re-generate the modules’ paths: gdk-pixbuf-query-loaders, which generates
relative paths, and gdk-pixbuf-query-loaders-absolute, which generates absolute paths. Both should be launched with
the —update-cache option to re-generate the proper cache file (by default it will just output the contents on stdout).

2.4 Organization of the GtkAda package

In addition to the full sources, the GtkAda package contains a lot of heavily commented examples. If you haven’t been
through those examples, we really recommend that you look at them and try to understand them, since they contain
some examples of code that you might find interesting for your own application.

* testgtk/ directory:

This directory contains the application festgtk that tests all the widgets in GtkAda. It gives you a quick overview
of what can be found in the toolkit, as well as some detailed information on the widgets and their parameters.

Each demo is associated with contextual help pointing to aspects worth studying.
It also contains an OpenGL demo, if GtkAda was compiled with support for OpenGL.
This program is far more extensive that its C counterpart, and the GtkAda team has added a lot of new examples.

This directory also contains the application testcairo which demonstrates the use of various Cairo functions in
GtkAda.

* docs/ directory:

It contains the html, info, text and @TeX{} versions of the documentation you are currently reading. Note that
the documentation is divided into two subdirectories, one containing the user guide, which you are currently
reading, the other containing the reference manual, which gives detailed information on all the widgets found in
GtkAda. The docs directory also contains a subdirectory with some slides that were used to present GtkAda at
various shows.

2.3. How to use GtkAda 5

GtkAda Documentation, Release 18.0w

2.5 How to compile an application with GtkAda

This section explains how you can compile your own applications.

A set of project files is installed along with GtkAda. If you have installed GtkAda in the same location as GNAT itself,
nothing else needs to be done.

Otherwise, you need to make the directory that contains these project files visible to the compiler. This is done by
adding the directory to the GPR_PROJECT_PATH environment variable. Assuming you have installed the library in
prefix, the directory you need to add is prefix/lib/gnat.

On Unix, this is done with:

csh:

setenv GPR_PROJECT_PATH $prefix/lib/gnat:$GPR_PROJECT_PATH
sh:

GPR_PROJECT_PATH=$prefix/lib/gnat: $GPR_PROJECT_PATH

export GPR_PROJECT_PATH

To build your own application, you should then setup a project file (see the GNAT documentation for more details on
project files), which simply contains the statement:

with "gtkada";

This will automatically set the right compiler and linker options, so that your application is linked with GtkAda.

By default, the linker will use GtkAda’s shared library, if it was built. If you would prefer to link with the static library,
you can set the environment variable:

LIBRARY_TYPE=static
export LIBRARY_TYPE

before launching the compiler or linker, which will force it to use the static library instead.

2.6 Architecture of the toolkit

The gtk+ toolkit has been designed from the beginning to be portable. It is made of two libraries: gtk and gdk. In
addition, GtkAda provides binding to three supporting libraries: pango, cairo and glib.

Glib is a non-graphical library that includes support for lists, h-tables, threads, and so on. It is a highly optimized,
platform-independent library. Since most of its contents are already available in Ada (or in the GNAT . * hierarchy in the
GNAT distribution), GtkAda does not include a complete binding to it. For the parts of Glib that we do depend on, we
provide Glib.* packages in the GtkAda distribution.

Gdk is the platform-dependent part of gtk+, and so there are different implementations (for instance, for Win32 and
X11 based systems) that implement a common API. Gdk provides basic graphical functionality to, for instance, draw
lines, rectangles and pixmaps on the screen, as well as manipulate colors. The Gdk.* packages provide a full Ada
interface to Gdk.

Pango is a modern font handling system. Bindings in GtkAda gives access to the API to manipulate font descriptions
and text attributes.

Cairo is the low-level 2D drawing library used by Gdk to render widgets. Cairo provides a rich set of vector draw-
ing features, supporting anti-aliasing, transparency, and 2D matrix transformations.The Cairo.* packages provide a
complete Ada binding to Cairo.

6 Chapter 2. Getting started with GtkAda

GtkAda Documentation, Release 18.0w

Gtk is the top level library. It is platform independent, and does all its drawing through calls to Gdk and Cairo. This is
where the high-level widgets are defined. It also includes support for callbacks. Its equivalent in the GtkAda libraries
are the Gtk.* packages. It is made of a fully object-oriented hierarchy of widgets (see Widgets Hierarchy).

Since your application only calls GtkAda, it is fully portable, and can be recompiled as-is on other platforms:

e +
| Your Application |
- +
| GtkAda |
| o + /
| | GTK |
| R e e e +-———+ |
I I GDK | |
| to—m - + Fommm - +-———F
| | Pango | | Cairo |
e s T T +
| GLIB | X-Window / Win32 |
- T +

Although the packages have been evolving a lot since the first versions of GtkAda, the specs are stabilizing now. We
will try as much as possible to provide backward compatibility whenever possible.

Since GtkAda is based on gtk+ we have tried to stay as close to it as possible while using high-level features of the Ada
language. It is thus relatively easy to convert external examples from C to Ada.

We have tried to adopt a consistent naming scheme for Ada identifiers:

» The widget names are the same as in C, except that an underscore sign (_) is used to separate words, e.g:

Gtk_Button Gtk_Color_Selection_Dialog

* Because of a clash between Ada keywords and widget names, there are two exceptions to the above general rule:

Gtk.GEntry.Gtk_Entry Gtk.GRange.Gtk_Range

* The function names are the same as in C, ignoring the leading grk_ and the widget name, e.g:

gtk_misc_set_padding => Gtk.Misc.Set_Padding
gtk_toggle_button_set_state => Gtk.Toggle_Button.Set_State

* Most enum types have been grouped in the gtk-enums. ads file

e Some features have been implemented as generic packages. These are the timeout functions (see
Gtk.Main.Timeout), the idle functions (see Gtk.Main.Idle), and the data that can be attached to any object (see
Gtk.Object.User_Data). Type safety is ensured through these generic packages.

¢ Callbacks were the most difficult thing to interface with. These are extremely powerful and versatile, since the
callbacks can have any number of arguments and may or may not return values. These are once again imple-
mented as generic packages, that require more explanation (Signal handling).

WARNING: all the generic packages allocate some memory for internal structures, and call internal functions. This
memory is freed by gtk itself, by calling some Ada functions. Therefore the generic packages have to be instantiated
at library level, not inside a subprogram, so that the functions are still defined when gtk needs to free the memory.

WARNING Before any other call to the GtkAda library is performed, Grk.Main.Init must be invoked first. Most of
the time, this procedure is invoked from the main procedure of the application, in which case no use of GtkAda can be
done during the application elaboration.

2.6. Architecture of the toolkit 7

GtkAda Documentation, Release 18.0w

2.7 Widgets Hierarchy

All widgets in GtkAda are implemented as tagged types. They all have a common ancestor, called
Gtk.Object.Gtk_Object. All visual objects have a common ancestor called Gtk. Widget. Gtk_Widget.

The following table describes the list of objects and their inheritance tree. As usual with tagged types, all the primitive
subprograms defined for a type are also known for all of its children. This is a very powerful way to create new widgets,
as will be explained in Creating new widgets in Ada.

Although gtk+ was written in C its design is object-oriented, and thus GtkAda has the same structure. The following
rules have been applied to convert from C names to Ada names: a widget Grk_XXX is defined in the Ada package
Gtk. XXX, in the file gtk-xxx.ads. This follows the GNAT convention for file names. For instance, the Gtk_Text
widget is defined in the package Gtk.Text, in the file gtk-text.ads.

Note also that most of the documentation for GtkAda is found in the spec files themselves.

It is important to be familiar with this hierarchy. It is then easier to know how to build and organize your windows.
Most widgets are demonstrated in the testgtk/ directory in the GtkAda distribution.

8 Chapter 2. Getting started with GtkAda

GtkAda Documentation, Release 18.0w

Gik Option Menu |

[Gik_Object f| ik Dat | o Gk Alignment

T
[Gik_Widget | Gtk_Toctips | Mok Butn
Gtk Calendar Gk Adjusiment I -|G1k Ewveni Box Gik_Check Bullon I
Gik Confainer = Gk |mvisible | h Gtk Aadio_Buten |

Gtk Dmawing Area

{53k Bin feel Gk Hande B |
Gk Curve el Gik_Tree | Gk Frame Gtk Aspect Frame
Gtk Editable =Gk Table] Hewiem }=r{c1K L&t e]

Gik_Entry | =(Gk_Fixed | 4 Gk Viewpor | Gk Menu lism
L Gicspn Buon | MGk | ek Window = Gtk_Check_Menu_item |
Gik_Text | Gtk List | Gk Buten Box | LIG‘.k Radic_Msnu_hem |
o Gtk _Separater | “{Gik_Box] Gtk VButon_Box | Gik_Tearctl Menu [&m
= Gik_Previsw | = Gik_Toolbar | Gik HButton Box m{Gtk Tree lom]
Gtk Progress | Gitk_Packer | ek color Selection]

| Gitk_Paned | Mok combe] [Gtk Cokbr Sekction Dialg |
=Gtk Scroled Windod B Gtk Gamma _Curve | ={51k_Dialog]

Gk Scak] ={Gtk_Socks! | “ckssewsgar] Gik_Input_Dialeg |

Gtk Serollbar | = Gik_Mosba ok }=—{ e _Font selection] =|Gik_Fils_Sslection_|

= Gtk_Ruler | = Gik_Clist = Gik_Ctree | ={Gtk_Font Sekction Diabg |
= Gtk _Mis] o Gik_Menu_Shell I—D Gik_Menu | { Gk Plug]
|

Gik Menu_Bar

+E:k AT I
IIGHI Imﬁ& I

[Gik_Label |

Gik Acce| Label

Fig. 1: Widgets Hierarchy

2.7. Widgets Hierarchy 9

GtkAda Documentation, Release 18.0w

10 Chapter 2. Getting started with GtkAda

CHAPTER
THREE

HIERARCHICAL COMPOSITION OF A WINDOW

Interfaces in GtkAda are built in layers, as in Motif. For instance, a typical dialog is basically a Gtk_Window, that in
turn contains a Gtk_Box, itself divided into two boxes and a Gtk_Separator, and so on.

Altough this may seem more complicated than setting absolute positions for children, this is the simplest way to auto-
matically handle the resizing of windows. Each container that creates a layer knows how it should behave when it is
resized, and how it should move its children. Thus almost everything is handled automatically, and you don’t have to
do anything to support resizing.

11

GtkAda Documentation, Release 18.0w

If you really insist on moving the children to a specific position, look at the Gtk_Fixed widget and its demo in testgtk/.
But you really should not use this container, since you will then have to do everything by hand.

All the containers are demonstrated in testgtk/, in the GtkAda distribution. This should help you understand all the
parameters associated with the containers. It is very important to master these containers, since using the appropriate
containers will make building interfaces a lot easier.

If you look at the widget hierarchy (Widgets Hierarchy), you can see that a Gtk_Window inherits from Gtk_Bin, and
thus can have only one child. In most cases, the child of a Gtk_Window will thus be a Gtk_Box, which can have any
number of children.

Some widgets in GtkAda itself are built using this strategy, from the very basic Gtk_Button to the more advanced
Gtk_File_Selection.

For example, by default a Gtk_Button contains a Gtk_Label, which displays the text of the button (like ‘OK’ or ‘Can-
cel’).

However, it is easy to put a pixmap in a button instead. When you create the button, do not specify any label. Thus, no
child will be added, and you can give it your own. See testgtk/create_pixmap.adb for an example on how to do
that.

12 Chapter 3. Hierarchical composition of a window

CHAPTER
FOUR

SIGNAL HANDLING

In GtkAda, the interaction between the interface and the core application is done via signals. Most user actions on the
graphical application trigger some signals to be emitted.

A signal is a message that an object wants to broadcast. It is identified by its name, and each one is associated with
certain events which happen during the widget’s lifetime. For instance, when the user clicks on a Gtk_Button, a ‘clicked’
signal is emitted by that button. More examples of signals can be found in the GtkAda reference manual.

It is possible to cause the application to react to such events by connecting to a signal a special procedure called a
handler or callback. This handler will be called every time that signal is emitted, giving the application a chance to do
any processing it needs. More than one handler can be connected to the same signal on the same object; the handlers
are invoked in the order they were connected.

4.1 Predefined signals

Widgets, depending on their type, may define zero or more different signals. The signals defined for the parent widget
are also automatically inherited; thus every widget answers many signals.

The easiest way to find out which signals can be emitted by a widget is to look at the GtkAda reference manual. Every
widget will be documented there. The GtkAda RM explains when particular signals are emitted, and the general form
that their handlers should have (although you can always add a User_Data if you wish, see below).

In general, your handlers should have the exact same profile that is documented (the GtkAda RM is automatically
generated, so you can in fact find the same documentation directly in GtkAda’s *.ads files).

However, if you connect to signals via the generic packages defined in Gtk.Handlers (see below), it is valid to pass
a procedure that drops all arguments except the first one, i.e. the actual widget that emitted the signal. To get a better
documented code, though, we recommend to always use the full profile for your handlers.

4.2 Connecting signals

There are currently two ways to connect widgets to signal handlers. One of them is much simpler to use, although it
has some limited capabilities.

13

GtkAda Documentation, Release 18.0w

4.2.1 Connecting via the On_* procedures

Each widget has a number of primitive operations (including inherited ones) for all the signals it might emit. In fact,
for each signal there are two On_<signal_name> procedures that can be used to easily connect to the corresponding
signal:

procedure Handler (Button : access Gtk_Button_Record'Class) is
begin

end Handler;

Button.On_Clicked (Handler'Access);

The code above ensures that the procedure Handler is called whenever the button is clicked.
The On_* procedures ensure that the profile of the handler is correct, and thus are type-safe.

The type of the first parameter to the handler is always the type where the signal is defined, not the type to which the
handler is connected.

For instance, the “draw” signal is defined for a Grk_Widget. But if you connect this signal to a Grk_Button, the first
paramter of the handler is always of type access Gtk_Widget_Record’Class.

There is a second version of the On_* procedures, which is used to pass a different object than the one the signal is
connected to. In practice, this is the version that is used more often. For instance, clicking on a toolbar button will in
general affect some other widget than the button itself, and you would typically pass the main window as a parameter
to the handler. Here is an example, note how the type of the first parameter is different:

procedure Handler (Win : access GObject_Record'Class) is
begin

end Handler;

Button.On_Clicked (Handler'Access, Slot => Main_Window) ;

This subprogram also ensures that the handler is automaticall disconnected if the second object is destroyed.

4.2.2 Connecting via the Gtk.Handlers package

All signal handling work is performed internally using services provided by the Grtk. Handlers package. But this package
can also be used directly by user applications.

This file is collection of several generic packages that need to be instantiated before you can actually start connecting
handlers to widgets. A number of predefined instantiations are provided in GtkAda.Handlers to make it slightly
easier.

Compared to the previous approach based on the On_* procedures described above, this approach has a number of
additional capabilities, at the cost of slightly more complex code:

* It is possible to retrieve a handle on the Widget/Signal/Handle tuple, so that you can later on disconnect the
handler, or temporarily block the signal for instance.

* Itis possible to pass additional user data to the handler. For instance, you could have a single handler connected
to multiple check buttons. When you press any of the button, the handler is called and passes an additional
integer to indicate which button was pressed. This is sometimes convenient, although it can often be avoided by
creating new Ada tagged types derived from the standard GtkAda types.

14 Chapter 4. Signal handling

GtkAda Documentation, Release 18.0w

* You have full control over the type of the first parameter to the handler. As discussed earlier, the On_* sub-
programs force specific types (either a GObject_Record or the type on which the signal was defined). With the
generic packages, you can avoid the often necessary type casts in the handler, although this approach does not
guarantee more (or less) type safety.

e A very limited number of signals do not have a corresponding On_* for circular dependency (or elaboration
circularity) reasons. For those, you need to use the generic packages. However, we believe these signals are
hardly ever used by user-level applications.

A short, annotated example of connecting signals follows; a complete example can be found in create_file_selection.adb
(inside the testgtk/ directory). In our example, an application opens a file selector to allow the user to select a file.
GtkAda provides a high-level widget called Gtk_File_Selection which can be used in this case:

declare

Window : Gtk_File_Selection;
begin

Gtk.File_Selection.Gtk_New (Window, Title => "Select a file');
end;

When the ‘OK’ button is pressed, the application needs to retrieve the selected file and then close the dialog. The only
information that the handler for the button press needs is which widget to operate upon. This can be achieved by the
following handler:

procedure OK (Files : access Gtk _File_Selection_Record'Class) is
begin
-- Prints the name of the selected file.
Ada.Text_IO0.Put_Line ("Selected " & Get_Filename (Files));

-- Destroys the file selector dialog
Destroy (Files);
end Ok;

We now need to connect the object we created in the first part with the new callback we just defined. Gtk.Handlers
defines four types of generic packages, depending on the arguments one expects in the callback and whether the callback
returns a value or not. Note that you can not use an arbitrary list of arguments; these depend on the signal, as explained
in the previous section.

In our example, since the callback does not return any value and does not handle any User_Data (that is, we don’t pass
it extra data, which will be specified at connection time), the appropriate package to use is Gtk.Handlers.Callback. We
thus instantiate that package.

Remember that generic package instantiations in Gtk Ada must be present in memory at all times, since they take care of
freeing allocated memory when finished. GtkAda generic package instantiations must therefore always be performed
at the library level, and not inside any inner block:

package Files_Cb is new Handlers.Callback (Gtk_File_Selection_Record);

The Files_Cb package now provides a set of Connect subprograms that can be used to establish a tie between a widget
and a handler. It also provides a set of other subprograms which you can use to emit the signals manually, although most
of the time, the signals are simply emitted internally by GtkAda. We will not discuss the Emit_By_Name subprograms
here.

The general form of handler, as used in Gtk.Handlers, expects some handlers that take two or three arguments: the
widget on which the signal was applied, an array of all the extra arguments sent internally by GtkAda, and possibly
some user data given when the connection was made.

This is the most general form of handler and it covers all the possible cases. However, it also expects the user to
manually extract the needed values from the array of arguments. This is not always the most convenient solution. This

4.2. Connecting signals 15

GtkAda Documentation, Release 18.0w

is why GtkAda provides a second package related to signals, Gtk.Marshallers.

The Gtk.Marshallers package provides a set of functions that can be used as callbacks directly for GtkAda, and that will
call your application’s handlers after extracting the required values from the array of arguments. Although this might
sound somewhat complicated, in practice it simplifies the task of connecting signals. In fact, the techniques employed
are similar to what is done internally by gtk+ in C. Because of the similarity of techniques, there is no overhead involved
in using Gtk.Marshallers with Ada over the C code in gtk+.

A set of functions To_Marshaller is found in every generic package in Gtk.Handlers. They each take a single argument,
the name of the function you want to call, and return a handler that can be used directly in Connect.

The connection is then done with the following piece of code:

Files_Cb.Object_Connect

(Get_Ok_Button (Window), -- The object to connect to the handler
"clicked", -- The name of the signal
Files_Cb.To_Marshaller (Ok'Access), -- The signal handler

Slot_Object => Window);

Note that this can be done just after creating the widget, in the same block. As soon as it is created, a widget is ready
to accept connections (although no signals will be emitted before the widget is shown on the screen).

We use To_Marshaller since our handler does not accept the array of arguments as a parameter, and we use the special
Object_Connect procedure. This means that the parameter to our callback (Files) will be the Slot_Object given in
Object_Connect, instead of being the button itself.

Compare the above code to the approach described in the first section, in particular when using Ada05 notation:

Window.Get_Ok_Button.On_Clicked (Ok'Access, Window);

4.3 Handling user data

As described above, it is possible to define some data that is that passed to the callback when it is called. This data is
called user_data, and is passed to the Connect or Object_Connect subprograms.

GtkAda will automatically free any memory it has allocated internally to store this user data. For instance, if you
instantiated the generic package User_Callback with a String, it means that you want to be able to have a callback of
the form:

procedure My_Callback (Widget : access Gtk _Widget_Record'Class;
User_Data : String);

and connect it with a call similar to:

Connect (Button, "Clicked", To_Marshaller (My_Callback'Access),
User_Data => "any string");

GtkAda needs to allocate some memory to store the string (an unconstrained type). However, this memory is automat-
ically freed when the callback is destroyed.

There are a few subtleties in the use of user_data, most importantly when the user data is itself a widget.

The following four examples do exactly the same thing: each creates two buttons, where clicking on the first one will
destroy the second one. They all work fine the first time, while both buttons exist. However, some of them will fail if
you press on the first button a second time.

16 Chapter 4. Signal handling

GtkAda Documentation, Release 18.0w

Complete, compilable source code for these examples can be found in the distribution’s examples/user_data direc-
tory, from which the code samples below are excerpted.

4.3.1 First case: simple user data

This code will fail: even after Button2 is destroyed, the Ada pointer continues to reference memory that has been
deallocated. The second call to Destroy will fail with a Storage_Error:

package User_Callback is new Gtk.Handlers.User_Callback
(Gtk_Widget_Record, Gtk _Widget);

procedure My_Destroy?2

(Button : access Gtk _Widget_Record'Class; Data : Gtk_Widget) is
begin

Destroy (Data);
end My_Destroy2;

begin
User_Callback.Connect
(Buttonl, "clicked",
User_Callback.To_Marshaller (My_Destroy2'Access),
Gtk_Widget (Button2));
end;

4.3.2 Second case: using Object_Connect instead

One of the solutions to fix the above problem is to use Object_Connect instead of Connect. In that case, GtkAda
automatically takes care of disconnecting the callback when either of the two widgets is destroyed:

procedure My_Destroy (Button : access Gtk_Widget_Record'Class) is
begin

Destroy (Button);
end My_Destroy;

begin
Widget_Callback.Object_Connect
(Buttonl, "clicked",
Widget_Callback.To_Marshaller (My_Destroy'Access),
Button2);
end;

4.3.3 Third case: manually disconnecting the callback

Using Object_Connect is not always possible. In that case, one of the possibilities is to store the Id of the callback, and
properly disconnect it when appropriate. This is the most complex method, and very often is not applicable, since you
cannot know for sure when the callback is no longer needed:

type My_Data3 is record
Button, Object : Gtk_Widget;
Id : Handler_Id;

(continues on next page)

4.3. Handling user data 17

GtkAda Documentation, Release 18.0w

(continued from previous page)

end record;
type My_Data3_Access is access My_Data3;

package User_Callback3 is new Gtk.Handlers.User_Callback
(Gtk_Widget_Record, My_Data3_Access);

procedure My_Destroy3
(Button : access Gtk_Widget_Record'Class;
Data : My_Data3_Access) is
begin
Destroy (Data.Button);
Disconnect (Data.Object, Data.Id);
end My_Destroy3;

Id : Handler_Id;
begin
Data3 := new My_Data3' (Object => Gtk_Widget (Buttonl),
Button => Gtk_Widget (Button2),
Id => (Null_Signal_Id, null));
Id := User_Callback3.Connect
(Buttonl, "clicked",
User_Callback3.To_Marshaller (My_Destroy3'Access),
Data3);
Data3.Id := Id;
end;

4.3.4 Fourth case: setting a watch on a specific widget

GtkAda provides a function Add_Watch, that will automatically disconnect a callback when a given widget is destroyed.
This is the function used internally by Object_Connect. In the example below, the callback is automatically discon-
nected whenever Button?2 is destroyed:

procedure My_Destroy?2

(Button : access Gtk _Widget_Record'Class; Data : Gtk_Widget) is
begin

Destroy (Data);
end My_Destroy2;

Id : Handler_Id;
begin
Id := User_Callback.Connect
(Buttonl, "clicked",
User_Callback.To_Marshaller (My_Destroy2'Access),
Gtk_Widget (Button2));
Add_Watch (Id, Button2);
end;

18 Chapter 4. Signal handling

CHAPTER
FIVE

STARTING AN APPLICATION WITH GTKADA

You need to perform some initializations to start a GtkAda application:

-- predefined units of the library
with Gtk.Main;

with Gtk.Enums;

with Gtk.Window;

-- My units
with Callbacks;

procedure Application is
procedure Create_Window is ...

begin
-- Set the locale specific datas (e.g time and date format)
Gtk.Main.Set_Locale;

-- Initializes GtkAda
Gtk.Main.Init;

-- Create the main window
Create_Window;

-- Signal handling loop
Gtk.Main.Main;
end Application;

the Create_Window procedure looks like:

procedure Create_Window is
Main_Window : Gtk.Window.Gtk_Window;

begin
Gtk.Window.Gtk_New
(Window => Main_Window,
The_Type => Gtk.Enums.Window_Toplevel);

-- From Gtk.Widget:

Gtk.Window.Set_Title (Window => Main_Window, Title => "Editor");

-- Construct the window and connect various callbacks

(continues on next page)

19

GtkAda Documentation, Release 18.0w

(continued from previous page)

Gtk.Window.Show_All (Main_Window);

end Create_Window;

20

Chapter 5. Starting an application with GtkAda

CHAPTER
SIX

RESOURCE FILES

Resource files let you parametrize aspects of the widgets in a GtkAda application without having to recompile it.

In this file, it is possible to specify visual characteristics of widgets, such as their colors and fonts. Under X, the xfontsel
command allows you to easily select a font. The FontSelection widget is also a simple way to select fonts.

Here is an example of a resource file:

application.rc
#
resource file for "Application"

Buttons style
style "button"

{
BackGround Colors
Red Green Blue
bg[PRELIGHT] = { 0.0, 0.75, 0.0 } # Green when the mouse is on
the button
bg[ACTIVE] ={0.75, 0.0, 0.0 } # Red on click
ForeGround Colors
Red Green Blue
fg[PRELIGHT] = { 1.0, 1.0, 1.0 } # White when the mouse is on
the button
fg[ACTIVE] ={1.0, 1.0, 1.0 } # White on click
}

All the buttons will have the style "button"
widget_class "*GtkButton*" style "button"

Text style
style "text"

{
font = "-adobe-courier-medium-r-normal-*-15-*-%-%_%_%_%_%"
text[NORMAL] = { 0.0, 0.0, 0.0 } # black
fg[NORMAL] ={0.0, 0.0, 0.0 } # black
base[NORMAL] = { 1.0, 1.0, 1.0 } # white : background color
}

All Gtk _Text will have the "text" style
widget_class "*GtkText" style "text"

21

GtkAda Documentation, Release 18.0w

22 Chapter 6. Resource files

CHAPTER
SEVEN

MEMORY MANAGEMENT

GtkAda takes care of almost all the memory management for you. Here is a brief overview of how this works, you’ll
have to check the sources if you want more detailed information. Gtk+ (the C library) does its own memory management
through reference counting, i.e. any widget is destroyed when it is no longer referenced anywhere in the application.

In GtkAda itself, a ‘user_data’ is associated with each object allocated by a Gtk_New procedure. A ‘destroy’ callback
is also associated, to be called when the object to which the user_data belongs is destroyed. Thus, every time a C object
is destroyed, the equivalent Ada structure is also destroyed (see Gtk.Free_User_Data).

Concerning widgets containing children, every container holds a reference to its children, whose reference counting is
thus different from O (and generally 1). When the container is destroyed, the reference of all its children and grand-
children is decremented, and they are destroyed in turn if needed. So the deallocation of a widget hierarchy is also
performed automatically.

23

GtkAda Documentation, Release 18.0w

24 Chapter 7. Memory management

CHAPTER
EIGHT

TASKING WITH GTKADA

Note that Gtk+ under Windows does not interact properly with threads, so the only safe approach under this operating
system is to perform all your Gtk+ calls in the same task.

On other platforms, the Glib library can be used in a task-safe mode by calling Gdk.Threads.G_Init and
Gdk.Threads.Init before making any other Glib/Gdk calls. Gdk routines may then be called simultaneously by multi-
ple tasks, thanks to task-safe construction of Gdk’s internal data structures. However, Gdk objects such as hash tables
are not automatically protected, so it is the application’s responsibility to prevent simultaneous access to user-defined
objects (e.g. by using protected objects).

When Gdk is initialized to be task-safe, GtkAda becomes task aware. There is a single global lock that you must
acquire with Gdk.Threads. Enter before making any Gdk/Gtk call, and which you must release with Gdk.Threads.Leave
afterwards.

Gtk.Main.Main should be called with the lock acquired (see example below), ensuring that all the functions executed
in the task that started the main loop do not need to protect themselves again.

Beware that the GtkAda main loop (Gtk.Main.Main) can only be be run inside one specific task. In other words, you
cannot call Gtk.Main.Main from any task other than the one that started the outer level main loop.

Note that Gdk.Threads assumes that you are using a tasking run time that maps Ada tasks to native threads.

A minimal main program for a tasking GtkAda application looks like:

with Gdk.Threads;

with Gtk.Main;

with Gtk.Enums; use Gtk.Enums;
with Gtk.Window; use Gtk.Window;

procedure GtkAda_With_Tasks is
Window : Gtk_Window;

begin
Gdk.Threads.G_Init;
Gdk.Threads.Init;
Gtk.Main.Init;

Gtk_New (Window, Window_Toplevel);
Show (Window) ;

Gdk.Threads.Enter;

Gtk.Main.Main;

Gdk.Threads.Leave;
end GtkAda_With_Tasks;

25

GtkAda Documentation, Release 18.0w

Callbacks require a bit of attention. Callbacks from GtkAda (signals) are made within the GtkAda lock. However,
callbacks from Glib (timeouts, IO callbacks, and idle functions) are made outside of the GtkAda lock. So, within a
signal handler you do not need to call Gdk.Threads. Enter, but within the other types of callbacks, you do.

26 Chapter 8. Tasking with GtkAda

CHAPTER
NINE

PROCESSING EXTERNAL EVENTS

It often happens that your application, in addition to processing graphical events through the GtkAda main loop, also
needs to monitor external events. This is the case if, for instance, you are running external processes and need to display
their output, or if you are listening to incoming data on a socket. If you implement your own main loop to poll for these
external events and then invoke the GUI, the GUI will enter its main loop and not return control back to you.

There are several ways to handle this situation:

* The cleanest solution, especially if you intend to make the GUI a major part of your application (as opposed to
just popping up a few dialogs here and there), would be to use the gtk+ main loop as the infinite loop, instead of
yours.

You can then use gtk+ ‘idle callbacks’ (which are called every time the gtk+ loop is not busy processing graphical
events) or ‘timeout callbacks’ (which are called every n milliseconds), and in those callbacks do the work you
were doing before in your own main loop (that assumes the check is relatively fast, otherwise the GUI will be
frozen during that time). Such callbacks are created through packages in glib-main.ads

Another approach is to not start the gtk+ main loop, but to check periodically whether there are some events to
be handled. See the subprogram Gtk.Main.Main_Iteration.

This second approach is not necessarily recommended, since you would basically duplicate code that’s already
in gtk+ to manage the main loop, and you also get finer control using idle and timeout callbacks

27

GtkAda Documentation, Release 18.0w

28 Chapter 9. Processing external events

CHAPTER
TEN

OBJECT-ORIENTED FEATURES

GtkAda has been designed from the beginning to provide a full object oriented layer over gtk+. This means that features
such as type extension and dynamic dispatching are made available through the standard Ada language.

This section will describe how things work, how you can extend existing widgets, and even how to create your own
widgets.

10.1 General description of the tagged types

10.1.1 Why should | use object-oriented programming ?

Every widget in the Gtk. * packages in GtkAda is a tagged type with a number of primitive subprograms that are inherited
by all of its children. Tagged types in Ada make it possible to perform safe, automatic type conversions without using
explicit casts (such as is necessary when coding in C). It is also possible for the compiler to verify whether or not these
type conversions are valid. Most errors are found at compile time, which leads to a safer and more robust application.

As a further example, imagine a table that has been populated by some widgets. It is possible to query for this table’s
children and operate on these widgets without knowing details about their type, their creator, and so on—the tagged
objects that are returned contain all the information necessary. It becomes possible to use dynamic dispatching without
ever having to cast to a known type.

Modifying a standard widget to draw itself differently or display different data is easy using tagged types. Simply create
a new type that extends the current one (see the section Using tagged types to extend Gtk widgets below.

Creating a new reusable widget from scratch is also possible. Create a new tagged type and specify properties of the
widget—such as how it is to draw itself and how it should react to events. See the section Creating new widgets in Ada
below.

Object oriented programming through the use of Ada tagged types makes GtkAda a very powerful, flexible, and safe
tool for designing graphical interfaces.

10.1.2 Type conversions from C to Ada widgets

There are three kinds of widgets that you can use with GtkAda:
* Ada widgets: These are widgets that are written directly in Ada, using the object oriented features of GtkAda

* Standard widgets: These are the widgets that are part of the standard gtk+ and GtkAda distributions. This include
all the basic widgets you need to build advanced interfaces.

e third party C widgets These are widgets that were created in C, and for which you (or someone else) created an
Ada binding. This is most probably the kind of widgets you will have if you want to use third party widgets.

29

GtkAda Documentation, Release 18.0w

GtkAda will always be able to find and/or create a valid tagged type in the first two cases, no matter if you explicitly
created the widget or if it was created automatically by gtk+. For instance, if you created a widget in Ada, put it in a
table, and later on extracted it from the table, then you will still have the same widget.

In the third case (third party C widgets), GtkAda is not, by default, able to create the corresponding Ada type.

The case of third party C widgets is a little bit trickier. Since GtkAda does not know anything about them when it
is built, it can’t magically convert the C widgets to Ada widgets. This is your job to teach GtkAda how to do the
conversion.

We thus provide a ‘hook’ function which you need to modify. This function is defined in the package
Glib.Type_Conversion. This function takes a string with the name of the C widget (ex/ “GtkButton”), and should
return a newly allocated pointer. If you don’t know this type either, simply return null.

10.2 Using tagged types to extend Gtk widgets

With this toolkit, it’s possible to associate your own data with existing widgets simply by creating new types. This
section will show you a simple example, but you should rather read the source code in the testgtk/ directory where
we used this feature instead of using user_data as is used in the C version::

type My_Button_Record is new Gtk_Button_Record with record
-- whatever data you want to associate with your button

end record;

type My_Button is access all My_Button_Record'Class;

With the above statements, your new type is defined. Every function available for Gtk_Button is also available for
My_Button. Of course, as with every tagged type in Ada, you can create your own primitive functions with the following
prototype:

procedure My_Primitive_Func (Myb : access My_Button_Record);

To instanciate an object of type My_Button in your application, do the following:

declare

Myb : My_Button;
begin

Myb := new My_Button_Record;

Initialize (Myb); -- from Gtk.Button
end;

The first line creates the Ada type, whereas the Initialize call actually creates the C widget and associates it with the
Ada type.

10.3 Creating new widgets in Ada

With GtkAda, you can create widgets directly in Ada. These new widgets can be used directly, as if they were part of
gtk itself.

Creating new widgets is a way to create reuseable components. You can apply to them the same functions as you would
for any other widget, such as Show, Hide, and so on.

This section will explain how to create two types of widgets: composite widgets and widgets created from scratch. Two
examples are provided with GtkAda, in the directories examples/composite_widget and examples/base_widget.
Please also refer to the gtk+ tutorial, which describes the basic mechanisms that you need to know to create a widget.

30 Chapter 10. Object-oriented features

GtkAda Documentation, Release 18.0w

10.3.1 Creating composite widgets

A composite widget is a widget that does not do much by itself. Rather, this is a collection of subwidgets grouped into
a more general entity. For instance, among the standard widgets, Gtk_File_Selection and Gtk_Font_Selection belong
to this category.

The good news is that there is nothing special to know. Just create a new tagged type, extending one of the standard
widgets (or even another of your own widgets), provide a Gtk_New function that allocates memory for this widget, and
call the Initialize function that does the actual creation of the widget and the subwidgets. There is only one thing to do:
Initialize should call the parent class’s Initialize function, to create the underlying C widget.

The example directory examples/composite_widget reimplements the Gtk_Dialog widget as written in C by the
creators of gtk+.

10.3.2 Creating widgets from scratch

Creating a working widget from scratch requires a certain level of familiary with the GtkAda signal mechanism and
entails much work with low level signals. This is therefore not an activity recommended for novice GtkAda program-
mers.

Creating a widget from scratch is what you want to do if your widget should be drawn in a special way, should create
and emit new signals, or otherwise perform differently than pre-existing widgets. The example we give in examples/
base_widget is a small target on which the user can click, and that sends one of two signals: “bullseye” or “missed”,
depending on where the user has clicked.

See also the example in examples/tutorial/gtkdial for a more complex widget, that implements a gauge where
the user can move the arrow to select a new value.

Since we are creating a totally new widget from scratch, with potentially its own signals, we need to do slightly more
work. In particular, we need to provide a function Get_Type similar to what all the predefined widgets provide:

with Glib.Properties.Creation; use Glib.Properties.Creation;
with Glib.Objects; use Glib.Objects;

with Gtk.Scrollable;

with System;

package body My_Widgets is
type My_Widget_Record is new Gtk_Button_Record with record

end record;
type My_Widget is access all My_Widget_Record'Class;

Klass : aliased Ada_GObject_Class := Uninitialized_Class;

: constant Property_Id := 1;
: constant Property_Id := 2;
-- internal identifier for our widget properties

procedure Class_Init (Self : GObject_Class);
pragma Convention (C, Class_Init);

procedure Class_Init (Self : GObject_Class) is
begin
-- Set properties handler
Set_Properties_Handlers (Self, Prop_Set'Access, Prop_Get'Access);

(continues on next page)

10.3. Creating new widgets in Ada 31

GtkAda Documentation, Release 18.0w

(continued from previous page)

-- Override inherited properties
Override_Property (Self, PROP_H_AD], "hadjustment");
Override_Property (Self, PROP_V_AD], "vadjustment");

-- Install some custom style properties
Install_Style_Property (Self, Gnew_Int (...));

-- Override some the inherited methods (how to draw the widget)
Set_Default_Draw_Handler (Self, On_Draw'Access);

-- Override the primitives to compute the widget size
Set_Default_Get_Preferred_Width (Self, ...);
end Class_Init;

function Get_Type return GType is
Info : access GInterface_Info;

begin
if Initialize_Class_Record
(Ancestor => Gtk.Button.Get_Type,
Class_Record => Klass'Access,
Type_Name => "My_Widget",
Class_Init => Class_Init)
begin

-- Add interfaces if needed
Info := new GInterface_Info'(null, null, System.Address);
Add_Interface (Klass, Gtk.Scrollable.Get_Type, Info);
end if;
return Klass.The_Type;
end Get_Type;
end My_Widgets;

You should also create the usual functions Gtk_New and Initialize:

procedure Gtk_New (Self : out My _Widget) is

begin
Self := new My_Widget_Record; -- create the Ada wrapper
Initialize (Self);

end Gtk_New;

procedure Initialize (Self : not null access My_Widget_Record'Class) is
begin

G_New (Self, Get_Type); -- allocate the C widget, unless done

-- Initialize parent fields.

Gtk.Button.Initialize (Self);

-- Initialization of the Ada types

Self.Fieldl := ...;
end Initialize;

32 Chapter 10. Object-oriented features

GtkAda Documentation, Release 18.0w

In the above example, the new part is the Get_Type subprogram. It takes three or four arguments:
* Ancestor This is the GType for the ancestor that is being extended.

* Signals This is an array of string access containing the name of the signals you want to create. For instance, you
could create Signals with:

Signals : Gtkada.Types.Chars_Ptr_Array := "bullseye" + "missed";

This will create two signals, named “bullseye” and “missed”’, whose callbacks’ arguments can be specified with
the fourth parameter.

* Class_Record Every widget in C is associated with three records:

— An instance of GType, which is a unique identifier (integer) for all the class of widgets defined in the
framework. This description also contains the name of the class, its parent type, the list of interfaces it
inherits, and all the signals is defines.

These GType are often created early on when an application is launched, and provide the basic introspection
capabilities in a gtk+ application.

In Ada, this type is created by the function Get_Type in the example above (which is why we need to add
the interface in that function).

— An instance of GObject_Class, which contains implementation details for the class, defines the default
signal handlers (how to draw a widget of the class, how to handle size negociation,...), and defines any
number of properties that can be configured on the widget (properties are a generic interface to access
the components of a composite widget, as well as some of its behavior — they can be modified through
introspection for instance in a GUI builder).

Such a type is created automatically by gtk+ just before it creates the first instance of that wid-
get type. It will then immediately call the Class_Init function that might have been passed to
Glib.Object.Initialize_Class_Record. At that point, you can add your own new properties, or override the
default signal handlers to redirect them to your own implementation.

— A class instance record; there is one such record for each widget of that type. In GtkAda, the ‘instance
record’ is simply your tagged type and its fields. It is created when you call any of the Gtk_New functions.

* Parameters This fourth argument is in fact optional, and is used to specify which kind of parameters each new
signal is expecting. By default (ie if you don’t give any value for this parameter), all the signals won’t expect
any argument, except of course a possible user_data. However, you can decide for instance that the first signal
(“bullseye”) should in fact take a second argument (say a Gint), and that “missed” will take two parameters (two
Gints).

Parameters should thus contain a value of:

(1 = (1 => Gtk_Type_Int, 2 => Gtk_Type_None),
2 => (1 => Gtk_Type_Int, 2 => Gtk_Type_Int));

Due to the way arrays are handled in Ada, each component must have the same number of signals. However, if
you specify a type of Gtk_Type_None, this will in fact be considered as no argument. Thus, the first signal above
has only one parameter.

Note also that to be able to emit a signal such a the second one, ie with multiple arguments, you will have to extend
the packages defined in Gtk.Handlers. By default, the provided packages can only emit up to one argument (and
only for a few specific types). Creating your own Emit_By_Name subprograms should not be hard if you look at
what is done in gtk-marshallers.adb. Basically, something like:

procedure Emit_With_Two_Ints
(Object : access Widget_Type'Class;

(continues on next page)

10.3. Creating new widgets in Ada 33

GtkAda Documentation, Release 18.0w

(continued from previous page)

Name : String;
Argl : Gint;
Arg2 : Gint);

pragma Import (C, Emit_With_Two_Ints,
"gtk_signal_emit_by_name");

Emit_With_Two_Ints (Gtk.Get_Object (Your_Widget),
"missed" & ASCII.NUL, 1, 2);

will emit the “missed” signal with the two parameters 1 and 2.

34 Chapter 10. Object-oriented features

CHAPTER
ELEVEN

SUPPORT FOR GLADE, THE GTK GUI BUILDER

11.1 Introduction

GtkAda now comes with support for the GUI builder Glade-3. Glade-3 provides a graphical interface for designing
windows and dialogs. The interface description is saved in an XML file which can be loaded at run-time by your
GtkAda application. With this approach, there is no need to write or generate Ada code to describe the interface, all is
needed is to write the callbacks for various actions.

11.2 Launching Glade

Under UNIX and Linux, Glade is invoked by the command-line script glade-3 which is located in the bin directory of
your GtkAda installation. Under Windows, Glade is invoked by clicking on the executable glade-3.exe, also located in
the bin directory of your GtkAda installation.

11.3 Building your interface

In Glade-3 the interface is done by point-and-clicking. The first step is to create one or more toplevel window and then
placing widgets in these windows.

Detailed tutorials can be found at: https://wiki.gnome.org/ Apps/Glade/Tutorials

In the Preferences for your project (menu Edit->Preferences), make sure that the preference “Project file format” is set
to “GtkBuilder”.

11.4 Using the interface in your application.

Once the interface is built and saved in an XML file, you can use it in your GtkAda application. You will need to use
objects defined in the package Gtkada.Builder to load the interface file and to connect subprograms defined in your
application to signals emitted by the interface. See the detailed explanations and examples in gtkada-builder.ads

35

https://wiki.gnome.org/Apps/Glade/Tutorials

GtkAda Documentation, Release 18.0w

36 Chapter 11. Support for Glade, the Gtk GUI builder

CHAPTER
TWELVE

BINDING NEW WIDGETS

GtkAda comes with a Perl script to help you create a binding to a C widget (this is the script we have used ourselves).
This will not fully automate the process, although it should really speed things up. You will probably need less than
15 min to create a new binding once you will get used to the way GtkAda works. Note that your C file should have the
same format as is used by Gtk+ itself.

To get started on a new binding, launch the script contrib/binding.pl as follows:

$ touch gtk-button.ads
$ binding.pl ../include/gtk/gtkbutton.h > temporary

This dumps several kind of information on the standard output:

¢ List of subprograms defined in the .h file. Their documentation is also added, since binding.pl will parse the . c
file as appropriate.

* List of properties and signals for the widget
* Tentative bodies for the subprograms These will often need adjustements, but provide a good start

You can also use this script to update existing bindings:

$ binding.pl ../include/gtk/*.h

37

GtkAda Documentation, Release 18.0w

38 Chapter 12. Binding new widgets

CHAPTER
THIRTEEN

DEBUGGING GTKADA APPLICATIONS

This chapter presents a number of technics that can be used when debugging GtkAda applications. First, the standard
tools to debug Ada applications can be used:

Compile with -g
You should almost always include debugging information when compiling and linking your code. This gives you
the possibility to use the debugger. See below the variable GDK_DEBUG for how to disable grabs.

bind with -E
Using this argument on the gnatbind or gnatmake command line will force the compiler to include backtraces
when an exception is raised. These backtraces can be converted to symbolic backtraces by using the addr2line
tool.

Link with -lgmem
Using this switch gives access to the gnatmem tool, that helps you to detect memory leaks or doubly-deallocated
memory. The latter often results in hard-to-fix Storage_Error exceptions. See the GNAT User’s guide for more
information.

There are also a number of technics specific to GtkAda or gtk+ applications. For most of them, you might need to
recompile these libraries with the appropriate switches to get access to the extended debugging features.

Use the —sync *switch
Under unix systems, all applications compiled with gtk+ automatically support this switch, which forces events
to be processed synchronously, thus making it easier to detect problems as soon as they happen. This switch is
not relevant to Windows systems.

break on g_log
In the debugger, it is often useful to put a breakpoint on the glib function g_log. When gtk+ is linked dynamically,
you will need to first start your application with begin, then put the breakpoint and continue the application with
cont. This helps understand internal errors or warnings reported by gtk+ and glib

compile glib with -disable-mem-pools*
Glib, the underlying layer that provides system-independent services to gtk+, has an extensive and optimized
system for memory allocation. Bigger chunks of Memory are allocated initially, and then subdivided by glib
itself. Although this is extremely performant, this also make the debugging of memory-related problems (stor-
age_error) more difficult. Compiling with the above switch forces glib to use the standard malloc() and free()
system calls. On GNU/Linux systems, it might be useful to set the variable MALLOC_CHECK_ to 1 to use
error-detecting algorithms (see the man page for malloc()).

compile glib and gtk+ with —enable-debug=yes*
It is recommended that you specify this switch on the configure command line when compiling these two li-
braries. In addition to compiling the libraries with debugging information for the debugger, additional runtime
debug options (controllable via environment variables) become available. Specifying —enable-debug=no is not
recommended for production releases (see glib or gtk+ documentation for details).

39

GtkAda Documentation, Release 18.0w

For these three variables, the possible values are given below. These are lists of colon-separated keywords. You
can choose to remove any of these value from the variable

GOBJECT_DEBUG=objects:signals
This sets up the debugging output for glib. The value @samp{objects} is probably the most useful, and
displays, on exit of the application, the list of unfreed objects. This helps detect memory leaks. The
second value @samp{signals} will display all the signals emitted by the objects. Note that this results in a
significant amount of output.

GDK_DEBUG=updates:nograbs:events:dnd:misc: @*xim:colormap:gdkrgb:gc:pixmap:image:input:cursor
This sets up the debugging output for gdk. The most useful value is @samp{nograbs}, which prevents
the application from ever grabbing the mouse or keyboards. If you don’t set this, it might happen that
the debugger becomes unusable, since you don’t have access to the mouse when the debugger stops on a
breakpoint. Another simpler solution is to debug remotely from another machine, in which case the grabs
won’t affect the terminal on which the debugger is running.

GTK_DEBUG=misc:plugsocket:text:tree:updates:keybindings
This sets up the debugging output for gtk. Almost all of these values are mostly for internal use by gtk+
developpers, although @samp{keybindings} might prove useful sometimes.

Import the C function ada_gtk_debug_get_ref count

This function has the following Ada profile:

function Ref_Count (Add : System.Address) return Guint;
pragma Import (C, Ref_Count, "ada_gtk_debug_get_ref_count");

and should be called in a manner similar to:

declare

Widget : Gtk_Widget;

Count : Guint;
begin

Count := Ref_Count (Get_Object (Widget));
end;

and returns the internal reference counter for the widget. When this counter reaches 0, the memory allocated for
the widget is automatically freed.

This is mostly a debugging aid for people writting their own containers, and shouldn’t generally be needed. You
shouldn’t rely on the internal reference counter in your actual code, which is why it isn’t exported by default in
GtkAda.

40

Chapter 13. Debugging GtkAda applications

CHAPTER
FOURTEEN

TRANSITIONING FROM GTKADA 2 TO GTKADA 3

14.1 General

GtkAda 3.x is a binding to the C library gtk+ 3.x. This is a major release, with several incompatible changes. Most of
those incompatibilities are due to major changes in the C library. Mostly, the gtk+ developers have performed a general
cleanup, removing old types and subprograms that were rarely used and belong to more specialized libraries.

They have also made significant changes in the internals of the library. A lot of these changes should not impact typical
user code, although they will if you are writting your own container widgets.

The gtk+ developers have documented various things that will likely need to be changed in user applications. The page
at http://developer.gnome.org/gtk3/3.3/gtk-migrating-2-to-3.html provides a migration guide. Its code samples are in
C, but should be applicable to Ada quite easily.

GtkAda itself has also undergone its own changes. One of the most significants is that most of the binding is now
automatically generated from XML files provided by the gtk+ developers. This ensures that the binding is much more
complete than it was before, and will be much easier to evolve when new releases of gtk+ are made available.

It also means that users can, theoritically at least, automatically bind a number of libraries from the gtk+/GNOME
ecosystem. The automatic generation relies on XML files, called GIR files from their .gir extension. If you wish to
parse other files, you should likely modify the toplevel Makefile (the generate target), as well as the file contrib/
data.py to list which types should be bound. We do not necessarily encourage you to generate your own bindings,
and this generation is likely to be more than just modifying one or two files...

14.1.1 Interfaces

One other advantage of the automatic generation is that it allows us to provide more advanced feature in the binding.
For instance, gtk+ has the notion of interfaces (which play a similar role to Ada05 interfaces).

In GtkAda interfaces no longer require an explicit “with” of the interface package, and a cast to the interface type (with
“-”and “+7). Instead, each package now contains the list of subprograms inherited from the various interfaces.

So basically, all subprograms inherited from an interface become available as primitive operations in the types that
implement the interface.

We also expect to simplify the handling of signals and signal handlers.

41

http://developer.gnome.org/gtk3/3.3/gtk-migrating-2-to-3.html

GtkAda Documentation, Release 18.0w

14.1.2 Ada 2012
GtkAda 3 makes use of Ada 2012 and requires GtkAda applications to be compiled in Ada 2012 mode (e.g. using the
-gnat2012 switch).

This makes it possible to use the object-dotted notation when calling primitive operations. For instance, the following
code:

Gtk.Window.Set_Default_Size (Window, 800, 600);

can be replaced with:

Window.Set_Default_Size (800, 600);

14.2 Pango

14.2.1 Pango.Font

The type Pango_Font_Metrics is now declared in its own package Pango.Font_Metrics.
The type Pango_Font_Face is now declared in its own package Pango.Font_Face.
The type Pango_Font_Family is now declared in its own package Pango.Font_Family.

The type Pango_Language is now declared in its own package Pango.Language.

14.3 Glib

14.3.1 Glib.Object

Initialize_Class_Record’s profile was changed to follow more closely what is done for C applications. The pre-
vious implementation prevented applications from implementing interfaces because some internal gtk+ data had to be
initialized too early. See glib-object.ads for an extensive documentation.

14.3.2 Glib.G_Icon

This type is now a GType_Interface. Instead of using Null_G_Icon, use Glib.Types.Null_Interface.

14.4 Gdk

14.4.1 Gdk.Bitmap

This package has been removed: Cairo packages should be used for drawing, and Gdk . Pixbuf for representing image
data in memory.

42 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

GtkAda Documentation, Release 18.0w

14.4.2 Gdk.Color

Alloc no longer exists, and is not necessary since all drawing is now done internally using Cairo which directly
manipulates red/green/blue.

14.4.3 Gdk.Cursor

The Gdk_New function working on Gdk_Pixmap has been removed. Use Gdk.Pixbuf.Gdk_New_From_Pixbuf to
create a cursor from a pixbuf.

The Gdk_New function working on a String has also been removed.

A Gdk_Cursor is now derived from a G1ib.0Object. This has little impact on programs, except that Null_Cursor
can be replaced simply by “null”.

Destroy was removed, and should be replaced with Unref.

14.4.4 Gdk.Dnd

The functions for handling Drag_Contexts have been moved to new package Gdk.Drag_Contexts.

The Gdk_Drag_Context itself now inherits from GObject, which means that it no longer requires its own Ref/Unref
functions.

Drag_Find_Window has been removed, use Drag_Find_Window_For_Screen instead.

Drag_Get_Protocol has been replaced with Drag_Context_Get_Protocol.

14.4.5 Gdk.Drawable

All Draw_* subprograms have been removed: use Cairo for low-level drawing.

The type Gdk_Drawable no longer exists.

14.4.6 Gdk.Event

A lot of the getters (and all of the setters) were removed. Instead, the Gdk_Event type fields can now be edited directly.
This is slightly more efficient, and more importantly better documents which fields are valid for which event types.

The APIs to Get_Message_Type, Set_Message_Type, Get_Data, and Set_Data have been removed without re-
placement.

Get_Graphics_Expose and Send_Client_Message have been removed with no replacement.
Deep_Copy was removed. It is now possible to simply use “:-”” on the record type itself.
Get and Peek are now functions instead of procedures with a single out parameter.

Is_Created has been removed (you can compare with null) Send_Client_Message_To_All has been removed
(deprecated in gtk+)

Allocate has been removed. Instead, users should directly use Gdk . Event .Gdk_New and set the appropriate fields.

Get_X and Get_Y were replaced by Get_Coords. Get_X_Root and Get_Y_Root were replaced by
Get_Root_Coords

14.4. Gdk 43

GtkAda Documentation, Release 18.0w

Get_Button, Get_State, Get_Key_Val and Get_Keycode were kept (so you do not have to directly access the
field of Gdk_Event) . However, they no longer raise an exception if you pass them an invalid event type, but return
an out-of-range value.

14.4.7 Gdk.Font

This package has been removed: use Pango.Font for fonts manipulation, Cairo.Font_Face and Cairo.
Font_Options for text rendering.

14.4.8 Gdk.GC

This package has been removed: Cairo packages should be used for drawing.

14.4.9 Gdk.Image

This package has been removed: use a Gdk.Pixbuf instead.

14.4.10 Gdk.Main

Set_Locale functions are no longer needed and have been removed.

Functions Set_Use_Xshm and Get_Use_Xshm have been removed.

14.4.11 Gdk.Pixbuf

Render_Threshold_Alpha, Render_To_Drawable, Render_To_Drawable_Alpha,
Render_Pixmap_And_Mask, Render_Pixmap_And_Mask_For_Colormap have been removed.

Use APIs provided by Gdk.Cairo to draw a pixbuf on a Gdk_Drawable.

Get_From_Drawable has been removed, use Get_From_Surface or Get_From_Window.

14.4.12 Gdk.Pixmap

This package has been removed: Cairo packages should be used for drawing, and Gdk . Pixbuf for representing image
data in memory.

14.4.13 Gdk.Region

This package has been removed and replaced with Cairo_Region.

44 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

GtkAda Documentation, Release 18.0w

14.4.14 Gdk.RGB

This package is deprecated in gtk3. Use Pixmaps/Cairo for drawing, and use Gdk.Pixbuf for offscreen image
manipulation and rendering to drawables.

Instead of Gdk.Rgb.Get_Cmap, use Gtk.Widget.Get_Default_Colormap.

14.4.15 Gdk.Window

A Gdk_Window now derives from GObject. This is mostly transparent for applications, unless you are passing a
Gdk_Window directly to C code, in which case you must use Get_Object () onit.

Copy_Area and Set_Back_Pixmap have been removed: use Gdk_Drawable and Gdk.Cairo functions instead.
Clear_Area and Clear_Area_E were removed. Use Cairo for all drawings.

Get_Desk_Relative_Origin: this function has been removed without a replacement.

Get_Toplevels has been removed, use Gtk.Window.List_Toplevels instead.

Set_Hints has been removed. Depending on what you are trying to do, use Gtk.Window.Resize,
Gtk.Window.Set_Size_Request, Gtk.Window.Move, Gtk.Window.Parse_Geometry, and Gtk.Window.
Set_Geometry_Hints.

Window_At_Pointer was renamed to At_Pointer.
Get_Origin is now a procedure, because the return value had no meaning anyway.
Get_Geometry: no longer returns the color depth of the window, which is no longer relevant to gtk+.

The first parameter of the various methods was renamed “Self" instead of “window” to avoid a number of cases where
we would end up with duplicate parameter names.

14.4.16 Gdk.Window_Attr

Parameter “Colormap" has been removed from procedure Gdk_New. This parameter
is no longer needed.

Set_Colormap and Get_Colormap should no longer be needed and have been removed as well.

14.5 Gtk

14.5.1 Gtk.Action

Block_Activate_From, Unblock_Activate_From, Connect_Proxy, Disconnect_Proxy: these obsolete sub-
programs have been removed without a replacement.

Get_Action has been removed without a replacement.

Convert has been removed, use Glib.0Object.Get_User_Data instead.

14.5. Gtk 45

GtkAda Documentation, Release 18.0w

14.5.2 Gtk.Aspect_Frame

Direct accessors Get_Xalign, Get_Yalign and Get_Ratio have been removed: use the corresponding properties
instead.

14.5.3 Gtk.Assistant

The values in Gtk_Assistant_Page_Type were renamed for consistency, removing their Gtk_ prefix.

The package Generic_Assistant_Functions has been renamed to Set_Forward_Page_Func_User_Data.

14.5.4 Gtk.Builder

Add_From_File now returns a Guint and the error as a parameter.

Get_Widget has been removed (use Get_Object instead, and cast to the appropriate type)

14.5.5 Gtk.Button_Box

Set_Child_Size was removed. Equivalent behavior can only be done by changing the theme properties child-min-
width and child-min-height.

14.5.6 Gtk.Cell_Layout

Get_Cell_Renderers has been renamed to Get_Cells.

14.5.7 Gtk.Cell_Renderer

The Render subprogram is now called with a Cairo_Context rather than a Gdk_Window.

14.5.8 Gtk.Cell_View

Get_Cell_Renderers is obsolete, use the Gtk.Cell_Layout interface and Gtk.Cell_Layout.Get_Cells.

14.5.9 Gtk.Clist

This widget has been removed: use a Gtk.Tree_View instead.

14.5.10 Gtk.Container

Procedure Propagate_Expose has been removed and will be replaced with Propagate_Draw.

Class_Find_Child_Property, Class_list_Child_Properties and Class_Install_Child_Property are
no longer bound.

Children was removed (use Get_Children instead).

46 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

GtkAda Documentation, Release 18.0w

14.5.11 Gtk.Color_Button

The function Get_Color returning Gdk.Color.Gdk_Color is now a procedure with an out parameter.

14.5.12 Gtk.Color_Selection

Get_Color and Set_Color have been removed: use Get_Current_Color and Set_Current_Color instead.

14.5.13 Gtk.Color_Selection_Dialog

Subprogram Get_Colorsel has been renamed Get_Color_Selection, to match the Gtk+ naming.

Get_OK_Button, Get_Cancel_Button, Get_Help_Button have been removed. Instead, use:

Gtk_Button (Glib.Properties.Get_Property (Dialog, Ok_Button_Property)),
Gtk_Button (Glib.Properties.Get_Property (Dialog, Cancel_Button_Property)),
Gtk_Button (Glib.Properties.Get_Property (Dialog, Help_Button_Property))

14.5.14 Gtk.Combo

This widget has been removed: use a Gtk .Combo_Box instead.

14.5.15 Gtk.Combo Box

The “text only” variant has been moved to the new package Gtk .Combo_Box_Text.

14.5.16 Gtk.Combo_Box_Entry

This widget has been removed: use a Gtk .Combo_Box instead.

14.5.17 Gtk.Clipboard

The base type is now a GObject_Record instead of an opaque type: use the GObject facilities for lifecycle manage-
ment.

There are now separate “User_Data" generic version for callback-based methods.

14.5.18 Gtk.Ctree

This widget has been removed: use a Gtk.Tree_View instead.

14.5. Gtk 47

GtkAda Documentation, Release 18.0w

14.5.19 Gtk.Curve

This widget has been removed, with no direct replacement. Use drawing functionality from Cairo instead.

14.5.20 Gtk.Dialog

Subprogram Get_Vbox was replaced with Get_Content_Area.

Subprogram Set_Has_Separator has been removed: use the corresponding flag in the call to Gtk_New/Initialize
instead.

14.5.21 Gtk.Dnd

Source_Set_Icon has been removed: use Source_Set_Icon_Pixbuf instead. Set_Icon_Pixmap has been re-
moved: use Set_Icon_Pixbuf instead.

Obsolete Set_Default_Icon working on Gdk.Pixmap has been removed without a replacement.

14.5.22 Gtk.Editable

The type representing a Gtk_Editable_Recordhas been changed from a Widget (whichis a GObject) to an interface
(a System.Address) . Therefore the Gtk_Editable_Record type has been eliminated. User code referencing only
the Gtk_Editable type should function unchanged.

Code using the tag as a test before converting a widget to a Gtk.Editable can now work using the
Implements_Editable package.

For instance, if Widget is a GObject_Record, the following code:

if Widget.all in Gtk_Editable_Record'Class then
Cut_Clipboard (Gtk_Editable (Widget));

becomes:

if Is_A (Widget.Get_Type, Gtk.Editable.Get_Type) then
Cut_Clipboard™ "~ (+Widget);

where the function “+” is defined by instantiating Implements_Editable:

package Implements_Editable is new Glib.Types.Implements
(Gtk.Editable.Gtk_Editable, GObject_Record, GObject);
function "+"
(Widget : access GObject_Record'Class)
return Gtk.Editable.Gtk_Editable

renames Implements_Editable.To_Interface;

The Select_Region subprogram parameter name The_End has been normalized to End_Pos.

48 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

GtkAda Documentation, Release 18.0w

14.5.23 Gtk.Entry_Completion

The “match-selected” and “cursor-on-match” signals were erroneously given the internal filter model instead of the
users model. This oversight has been fixed in GTK+ 3; if you have handlers for these signals, they will likely need
slight adjustments.

14.5.24 Gtk.Enums

The following types were removed:

" GtkAnchorType ™

" GtkCurveType

" GtkMetricType

" GtkGridLines "

" "GtkUpdateType™

T UGtkVisibility ™

" *GtkSideType

" GtkMatchType

' GtkPreviewType

" "GtkSubmenuDirection °
" GtkSubmenuPlacement " "
" GtkTreeViewlMode °

Gtk_Icon_Size is no longer an enumeration type, but an integer, so that new sizes can be defined through Gtk.
Icon_Factory.Icon_Size_Register.

14.5.25 Gtk.File_Chooser_Button

Subprograms Gtk_New_With_Backend and Initialize_With_Backend have been removed: use Gtk_New and
Initialize instead.

14.5.26 Gtk.File_Chooser_Dialog

Subprograms Gtk_New_With_Backend and Initialize_With_Backend have been removed: use Gtk_New and
Initialize instead.

14.5.27 Gtk.File_Chooser_Widget

Subprograms Gtk_New_With_Backend and Initialize_With_Backend have been removed: use Gtk_New and
Initialize instead.

14.5. Gtk 49

GtkAda Documentation, Release 18.0w

14.5.28 Gtk.File_Selection

This package has been replaced by Gtk.File_Chooser. You may also use Gtkada.File_Selection for a simple
interface to the Gtk.File_Chooser.

14.5.29 Gtk.Fixed

Subprograms Set_Has_Windows and Get_Has_Windows are now in Gtk.Widget.

14.5.30 Gtk.Gamma_Curve

This widget has been removed without any replacement.

14.5.31 Gtk.GC

This package has been removed: Cairo packages should be used for drawing.

14.5.32 Gtk.GEntry

The names for Gtk_Entry_Record parameters have been normalized across the board to “The_Entry".

Append_Text has been removed: use Set_Text and Get_Text instead.

14.5.33 Gtk.GRange

Set_Update_Policy has been removed, with no replacement. If you require delayed updates, you will need to code
it yourself.

14.5.34 Gtk.Handle_Box

This package is now marked as deprecated in C, and is likely to be removed in future versions of gtk+, so we encourage
you to stop using it as well.

14.5.35 Gtk.HRuler

This widget has been removed without any replacement.

14.5.36 Gtk.lcon_Factory

Gtk_Icon_Set and Gtk_Icon_Source have been moved to their own packages. Functions Gtk_New are now pro-
cedures.

50 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

GtkAda Documentation, Release 18.0w

14.5.37 Gtk.Image

The subprograms working with Gdk_Pixmap have been removed, use the variants working on Gdk_Pixbuf instead.

14.5.38 Gtk.Image Menu_ltem

All controlling parameters were renamed to Self. There was no consistency before.

Gtk_New_From_Stock now requires an Accel_Group parameter, which can be set to null.

14.5.39 Gtk.Input_Dialog

This package is no longer part of gtk+, so this binding has been removed without replacement.

14.5.40 Gtk.ltem

This obsolete package has been removed with no replacement.

14.5.41 Gtk.ltem_Factory

This obsolete package has been removed in favor of Gtk.UI_Manager.

14.5.42 Gtk.Layout

Get_Width and Get_Height have been removed, use Get_Size instead.

14.5.43 Gtk.Link_Button

All widget parameter names have been normalized to “Self".

The Set_Uri_Hook function has been eliminated, and along with it the Uri_Func type and the Generic_Uri_Hook
package. Register a callback for the button’s “clicked” signal instead.

14.5.44 Gtk.List_Item

This widget has been removed: use a Gtk.Tree_View instead.

14.5.45 Gtk.Main

Do_Event was renamed Main_Do_Event.

Grab_Add and Grab_Removed are available in Gtk.Widget (as was already
the case with gtk2).

The Quit package has been removed without replacement.

The Idle and Timeout handling been removed: use equivalent functions in package Glib.Main instead.

14.5. Gtk 51

GtkAda Documentation, Release 18.0w

14.5.46 Gtk.Menu

User_Menu_Popup has been replaced by Popup_User_Data.

The version of Popup was took an access to C_Gtk_Menu_Positon_Func has been removed. If you need to pass
User_Data to the callback, you need to instantiate the package Popup_User_Data. Note that in this package the
position of the Data parameter has changed.

14.5.47 Gtk.Menu_ltem

For subprogram Set_Right_Justified, the parameter “Justify" has been renamed to “Right_Justified".

The obsolete procedures Remove_Submenu, Set_Right_Justify, and Right_Justify have been removed. In-
stead, use Set_Submenu, Set_Right_Justified, or Set_Right_Justified with Justify-True, respectively.

Calling Gtk_New with one Menu_Item argument has the same effect now as before. However, from this version on, if
a Label argument exists (even if set to “”’), a Gtk_Label child will be created with the given value.

14.5.48 Gtk.Menu_Tool_Button

Set_Arrow_Tooltip has been removed, use Set_Arrow_Tooltip_Markup or Set_Arrow_Tooltip_Text instead.

14.5.49 Gtk.Notebook

Get_Children has been removed: call Gtk.Container.Get_Children instead.
Set_Tab_Label_Packing has been removed (this is left under control of the theme).
Set_Page has been removed, use Set_Current_Page instead.

Insert_Page now returns the number of the page that has been inserted.

14.5.50 Gtk.List

This package has been removed: use a Gtk_Tree_View instead.

14.5.51 Gtk.Object

Gtk.Object has been removed in gtk+-3.

The following subprograms and declarations are now in Gtk.Widget:

““Flags™
““Unset_Flags

"“Floating
" “In_Destruction_Is_Set

"*Signal_Destroy

The subprogram Gtk.Object.Sink has been removed: use Glib.Object.Ref_Sink
instead.

52 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

GtkAda Documentation, Release 18.0w

14.5.52 Gtk.Old_Editable

This obsolescent API has been removed, use Gtk.Editable where relevant.

14.5.53 Gtk.Option_Menu

Gtk.Option_Menu has been removed. Using Gtk .Combo_Box instead is recommended.

14.5.54 Gtk.Pixmap

This widget has been removed and is generally replaced with a Gtk.Image.

14.5.55 Gtk.Preview

This widget has been removed without replacement.

14.5.56 Gtk.Print_Operation

Get_Status was renames to Get_Status_String when it returns a string, to match the gtk+ APL

14.5.57 Gtk.Progress

This widget has been removed without any replacement.

14.5.58 Gtk.Progress_Bar

This widget is now derived from Gtk.Widget directly, rather than from Gtk.Progress (which has been removed).

The enumeration type Gtk_Progress_Bar_Orientation has been removed, and this widget now implements
the Gtk_Orientable interface. To fully achieve the same functionality as the GtkAda 2.x Get_Orientation/
Set_Orientation subprograms, it is now necessary to call Get_Orientation/Set_Orientation along with
Get_Inverted/Set_Inverted.

Procedure Set_Pulse_Step's “Step" parameter has been renamed to “Formal."
Set_Ellipsize and Get_Ellipsize parameter names have been normalized from “Pbar" to “Progress_Bar".

If you intend to show text over the progress bar, you need to call Set_Text as before, but also call
Set_Show_Text (True).

14.5.59 Gtk.Rc

This package is now mostly obsolete. The gtk+ library no longer supports the *.rc files, since it uses CSS-like files
instead.

14.5. Gtk 53

GtkAda Documentation, Release 18.0w

14.5.60 Gtk.Recent_Manager

The type Gtk_Recent_Info is now bound in its own package.

14.5.61 Gtk.Ruler

This widget has been removed without any replacement.

14.5.62 Gtk.Settings

Properties are now named with the suffix “_Property”. For instance, Gtk_Theme_Name is now
Gtk_Theme_Name_Property.

14.5.63 Gtk.Scale_Button

This package now conforms to the API conventions practiced throughout the rest of the toolkit. Gtk_New is imple-
mented as a procedure rather than as a function, and the use of GNAT.Strings.String_List replaces Gtkada.
Types.Chars_Ptr_Array throughout.

14.5.64 Gtk.Selection

This package has been renamed Gtk.Selection_Data, for homogeneity with the naming conventions.
Gtk.Selection.Selection_Data is now called Gtk.Selection_Data.Gtk_Selection_Data.

Handling of Target_Lists has been moved to the new package Gtk.Target_List, along with
Target_Entry_Array.

The type Gtk_Target_Entry has been moved to the new package Gtk.Target_Entry.

The way of obtaining the selection data from callbacks using the Args/GValues approach has changed, from:

: constant Gtk.Selection.Selection_Data :-
Gtk.Selection.Selection_Data (Get_Proxy (Nth (Args, 2)));

to:

: constant Gtk.Selection_Data.Gtk_Selection_Data :-
From_Object (Get_Address (Nth (Args, 2)));

The type Target_Flags has been moved to Gtk.Enums.Gtk_Target_Flags.

The flag corresponding to Target_No_Constraint has been removed: use the value O instead.

54 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

GtkAda Documentation, Release 18.0w

14.5.65 Gtk.Scrolled Window

Set_Policy's parameters were renamed to Hscrollbar_Policy and Vscrollbar_Policy instead of
H_Scrollbar_Policy and V_Scrollbar_Policy.

14.5.66 Gtk.Socket / Gtk.Plug

The binding for these two packages was removed. They are not portable across platforms, and require access to the
low-level X11 window ID, for which we do not provide a binding.

14.5.67 Gtk.Status_Icon

Status_Icon widget parameter names have been normalized to “Status_Icon".

Get_Blinking and Set_Blinking have been removed, it is no longer possible to make the status icon blink.

14.5.68 Gtk.Style
All functions based on Gdk . GC or Gdk . Pixmap have been removed. This package is deprecated (but not removed yet)
in gtk3 Use functions in Gtk.Style_Context instead.

A number of drawing functions have been removed: use the Paint_* functions instead.

Replace a call to Get_Font with:

with Gtk.Style_Context; use Gtk.Style_Context;
Get_Style_Context (Widget).Get_Font (Gtk_State_Flags_Normal);

14.5.69 Gtk.Text

This obsolescent API has been removed: use a Gtk.Text_View/Gtk.Text_Buffer instead.

14.5.70 Gtk.Text_ Attributes

Set_Fg_Stipple, Get_Fg_Stipple, Set_Bg_Stipple, Get_Bg_Stipple have been removed without a replace-
ment.

14.5.71 Gtk.Text View

The functions Get/Set_Disable_Scroll_On_Focus have no effect in recent versions of gtk+ and have been removed.

14.5. Gtk 55

GtkAda Documentation, Release 18.0w

14.5.72 Gtk.Tree_Dnd

This package was removed, and its contents split into Gtk.Tree_Drag_Source and Gtk.Tree_Drag_Source.

The “Drag_Dest_’ and “Drag_Source_" prefixes were removed from the subprogram, so for instance
Drag_Dest_Drag_Data_Received has become Drag_Data_Received.

14.5.73 Gtk.Tree_Model

A Gtk_Tree_Model is now an interface (implemented by Gtk_List_Store and Gtk_Tree_Store), no longer a
tagged type. It means that in callbacks that receive a Gtk_Tree_Model parameter, you can no longer cast this parameter
to a Gtk_Tree_Store for instance. Instead, you need to do the following:

-- Model is the parameter, of type Gtk_Tree_Model
: constant Gtk_Tree_Store :- Gtk_Tree_Store (-Model);

Gtk_New, for a Gtk_Tree_Path, are now procedures instead of functions, to follow the usual GtkAda convention.
Gtk_Tree_Row_Reference has been moved to its own package Gtk.Tree_Row_Reference.

Gtk_New and Gtk_New_First (for a tree path) now take a “out” parameter, for consistency with the rest of the API.

14.5.74 Gtk.Tree_View_Column

Get_Cell_Renderers is obsolete, use the Gtk.Cell_Layout interface and Gtk.Cell_Layout.Get_Cells.

14.5.75 Gtk.Tips_Query

This obsolete package has been removed.

14.5.76 Gtk.Tool_ltem

Set_Tooltip has been removed: use Set_Tooltip_Text and Set_Tooltip_Markup instead.

14.5.77 Gtk.Toolbar

All Gtk_Toolbar widget parameter names have been normalized to “Toolbar".
Subprograms Append_*, Prepend_* and Insert_¥* have been removed: use Insert instead.

Subprograms Get_Tooltips/Set_Tooltips have been removed. Use the Gtk_Enable_Tooltips property in-
stead.

56 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

GtkAda Documentation, Release 18.0w

14.5.78 Gtk.Tooltips

The package Gtk.Tooltips has been removed, in favor of Gtk.Tooltip.

For creating simple tooltips on all GtkAda widgets, the easiest is to use Gtk.Widget.Set_Tooltip_Text or Gtk.
Set_Tooltip_Markup. See the example in testgtk/create_tooltip.adb.

14.5.79 Gtk.Tree View

Procedure Create_Row_Drag_Icon now returns a Cairo_Surface.

Get_Hadjustment, Set_Hadjustment, Get_Vadjustment, Set_Vadjustment have been removed: use the
equivalent properties.

Widget_To_Tree_Coords and Tree_To_Widget_Coords have been removed: use
Convert_Widget_To_Tree_Coords and Convert_Tree_To_Widget_Coords.

14.5.80 Gtk.VRuler

This widget has been removed without any replacement.

14.5.81 Gtk.Widget

The old Draw function no longer exists, and should be replaced with calls to Queue_Draw_Area. However, a new
Draw function was added with a different profile and different semantic.

Function " Get_Snapshot™™ has been removed. Draw should be used instead.

Hide_All has been removed: use Hide instead.

Set_Extension_Events and End_Extension_Events are no longer needed and have been removed.
Set_Colormap and Get_Colormap are no longer needed and have been removed.
Set_Scroll_Adjustments has been removed without a replacement.

Shape_Combine_Mask, Input_Shape_Combine_Mask and Reset_Shapes have been removed without replace-
ments.

Set_Uposition has been removed: use the properties of the containing widget to fix the position of contained widgets.
The functions in Gtk.Window, for instance Gtk.Window.Move, should be used for top-level widgets.

Set_USize has been removed: use Set_Size_Request instead.

Size_Request is now obsolescent. = The recommend replacement is to use Get_Preferred_Width and
Get_Preferred_Height.

Set_Default_Colormap, Get_Default_Colormap, Push_Colormap and Pop_Colormap were removed. They are
no longer needed, since all drawing is done through Cairo which doesn’t use a colormap but directly the red/green/blue
components.

Queue_Clear and Queue_Clear_Area have been removed, call Queue_Draw and Queue_Draw_Area instead.

The signal “expose_event” no longer exists. It has been replaced with the “draw” signal which provides a preconfigured
Cairo_Context suitable for the drawing (including the clip area that is used to speed up the rendering).

Activate is now a function.

Child_Focus: removed default value for Direction parameter (was Dir_Tab_Forward)

14.5. Gtk 57

GtkAda Documentation, Release 18.0w

Get_Allocation_Height and Get_Allocation_Width are now named Get_Allocated_Height and
Get_Allocated_Width.

Get_Allocation_X and Get_Allocation_Y were removed, and can be accessed through Get_Allocation.X and
Get_Allocation.Y instead.

A lot of flags (Can_Focus, Can_Default,...) now have explicit setters and getters. This removed a number of
subprograms, like:

" “Double_Buffered_Is_Set "~ (see " “Get_Double_Buffered) °
"“Can_Focus_Is_Set = (see " "Get_Can_Focus)

" "Mapped_Is_Set ~ (see "~ Get_Mapped)
""Realized_Is_Set " (see " "Get_Realized)

" "Has_Default_Is_Set "~ (see "~ “Has_Default)

" "Has_Focus_Is_Set = (see " "Has_Focus) °

" "Has_Grab_Is_Set " (see " "Has_Grab) °
""Rc_Style_Is_Set’ " (see " "Has_Rc_Style)
""In_Destruction_Is_Set ° (see " "In_Destruction) °
" “Drawable_Is_Set ° (see "~ "Is_Drawable)

" “No_Window_Is_Set ~ (see " “Has_Window) °

Size_Allocate now takes an “in out” parameter for the allocation

Set_Flags was renamed Set_State_Flags Unset_Flags was renamed Unset_State_Flags Flags and
Flag_Is_Set must be replaced with a call to Get_State_Flags

Get_Child_Requisition is now a procedure with an in out parameter. It is obsolescent.
Default_Motion_Notify_Event was removed.
Has_Default_Motion_Notify_Handler was removed.

Get_Default_Visual was removed.

Restore_Default_Style was removed (use Set_Style with a null parameter instead).

Class_Find_Style_Property, Class_List_Style_Properties and Class_Install_Style_Property were
removed. They are mostly of interest when writting theme engines.

Class_Path and Path were replaced with Get_Path.

Allow_Shrink_ Property and Allow_Grow_Property have been removed: use
Get_Hexpand and Get_Vexpand instead.

Render_Icon has been replaced by Render_Icon_Pixbuf.

14.5.82 Gtk.Window

Set_Has_Frame, Get_Has_Frame, Set_Frame_Dimensions, Get_Frame_Dimensions: these special-purpose
subprograms have been removed without replacement.

Get_Gravity, Set_Gravity: these have been removed, use the property Gravity_Property instead.

Resize nolonger accepts parameters set to -1 to indicate the preferred size of the window. This was a GtkAda extension,
which can be achieved using Get_Preferred_Size and passing the result to Size.

Group_Add_Window was renamed to Add_Window. Group_Remove_Window was renamed to Remove_Window.
Group_List_Windows was renames to List_Windows.

Initialize now has the same default value for its The_Type parameter as Gtk_New.

58 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

GtkAda Documentation, Release 18.0w

14.6 GtkAda

14.6.1 Gtkada.MDI

Set_Dnd_Message no longer has a special handling for ‘“#”, which was
used to indicate whether the window would be preserved or hidden when changing perspectives. Instead, a
different color is used to highlight the target area (and this highlighting is now done using transparency).

14.6.2 Gtkada.Properties

This package has been removed. It used to provide a dialog allowing you to view and edit the properties of widgets
in your application, live. This is now provided directly by third parties through the GtkParasite tool. See http://code.
google.com/p/gtkparasite/

14.7 Gnhome

14.7.1 Gnome.App_Bar

Subprogram Appbar_Get_Progress has been removed without replacement.

14.7.2 Gnome.Gentry

This package has been removed without replacement.

14.6. GtkAda 59

http://code.google.com/p/gtkparasite/
http://code.google.com/p/gtkparasite/

GtkAda Documentation, Release 18.0w

60 Chapter 14. Transitioning from GtkAda 2 to GtkAda 3

CHAPTER
FIFTEEN

HOW TO REPORT BUGS

GtkAda is a mature, stable toolkit that is heavily and widely used on a variety of platforms. We test GtkAda using an
Ada version of the testgtk. c file found in the gtk+ distribution. For code examples that demonstrate the use of this
toolkit, look within the testgtk/ directory.

There are two kinds of problems you can encounter:

* If the gtk library itself was compiled with warnings turned on, you may get some warning messages, mainly
because of types problems. These warnings should not appear, as we have tried to be as type safe as possible in
this package. To know exactly where the problem is, compile your program with debug information, run gdb,
and set a breakpoint on the function g_log. Then run your program as usual, using the run command. Then send
us the result of the where command. Here is a summary:

$ gprbuild -Pyour_project.gpr -g
$ gdb <your_program_name>

(gdb) break main

(gdb) run

(gdb) break g_log

(gdb) continue

(gdb) where

* In some (hopefully) rare cases, you can even get a segmentation fault within gtk. That means there is definitly
something wrong either in your program or in the toolkit. Please check your program carefully and, if you think
this is a problem in GtkAda itself, send us an e-mail.

If you are a supported user of GNAT, send mail to mailto:report@gnat.com to report errors, otherwise send mail to the
GtkAda list (mailto:gtkada @lists.adacore.com) explaining exactly what your are doing, what is the expected result and
what you actually get. Please include the required sources to reproduce the problem, in a format usable by gnatchop
(basically, insert all the required sources at the end of the mail). Please try to provide as small as possible a subset of
your sources.

Of course, we will welcome any patch you can provide, so that this toolkit may be as useful as possible.

61

mailto:report@gnat.com
mailto:gtkada@lists.adacore.com

GtkAda Documentation, Release 18.0w

62 Chapter 15. How to report bugs

CHAPTER
SIXTEEN

SYSTEM PACKAGE DEPENDENCIES

On Linux, GtkAda requires a set of system development packages to be installed. This set depends on the Linux
distibution. The following sections provide lists of packages which need to be installed on particular distributions. The
installation procedure of GtkAda will fail if some of packages are missing.

16.1 Red Hat Enterprise Linux 7 & 8

¢ glibc-devel

* glibc-headers

* kernel-headers

¢ libX11-devel

* libXau-devel

¢ libXcomposite-devel
¢ libXcursor-devel
¢ libXdamage-devel
* libXext-devel

* libXfixes-devel

¢ libXi-devel

* libXinerama-devel
¢ libXrandr-devel

¢ libXrender-devel
* libuuid-devel

* libxcb-devel

* xorg-x11-proto-devel

63

GtkAda Documentation, Release 18.0w

16.2 Ubunbu 18.04 & 20.04

libc6-dev
libdrm-dev
libegl1-mesa-dev
libgl1-mesa-dev
libgles1
libglvnd-core-dev
libglvnd-dev
libopengl0
libpthread-stubs0-dev
libwayland-dev
libx11-dev
libx11-xcb-dev
libxau-dev
libxcb-dri2-0-dev
libxcb-dri3-dev
libxcb-glx0-dev
libxcb-present-dev
libxcb-randrO-dev
libxcb-render0-dev
libxcb-shapeO-dev
libxcb-shmO-dev
libxcb-sync-dev
libxcb-xfixesO-dev
libxcb1-dev
libxcomposite-dev
libxcursor-dev
libxdamage-dev
libxdmcp-dev
libxext-dev
libxfixes-dev
libxi-dev
libxinerama-dev
libxrandr-dev

libxrender-dev

64

Chapter 16. System Package Dependencies

GtkAda Documentation, Release 18.0w

* libxshmfence-dev

* libxxf86vm-dev

* mesa-common-dev

* uuid-dev

* x11proto-composite-dev
* x11proto-core-dev

* x11proto-damage-dev

* x11proto-dev

* x11proto-fixes-dev

* x11proto-input-dev

* x1lproto-randr-dev

¢ x11proto-xext-dev

* x11proto-xf86vidmode-dev

* x11proto-xinerama-dev

16.2. Ubunbu 18.04 & 20.04 65

GtkAda Documentation, Release 18.0w

66 Chapter 16. System Package Dependencies

CHAPTER
SEVENTEEN

USING GTKPARASITE TO INSPECT AND MODIFY RUNNING
GTKADA APPLICATIONS

GtkParasite is a tool that enables one to inspect running Gtk+ applications. It’s usable with GtkAda application without
any Ada specific recommendations.

When it is installed, you have to make sure that your application will be able to access GtkParasite library. This means
either :

* Linking against the GtkParasite library during compilation of your application.

e Make sure that the dynamic library file is accessible at runtime, for example by adding its path to the
LD_LIBRARY_PATH environnment variable before running your application.

Then, to run GtkParasite with your application:

$ GTK_MODULES=gtkparasite yourapp

You can find more information about how to use GtkParasite on it’s web page here : GtkParasite Home

67

http://chipx86.github.com/gtkparasite/

GtkAda Documentation, Release 18.0w

68 Chapter 17. Using GtkParasite to inspect and modify running GtkAda applications

CHAPTER
EIGHTEEN

BIBLIOGRAPHY

We recommand the following documents. Most of them were written with C in mind, but should be easily adapted
after you’ve read the rest of this document.

¢ [1] “Gtk+/Gome Application Development” — Havoc Pennington This book, by one of the main authors of the
the GNOME environment, describes in detail some of the inner mechanisms of gtk+, including signal handling,
and a complete description of all the widgets and all the events found in Gdk.Event.

Itis worth noting that this book has been published under the Open Publication License. You can get an electronic
copy of it at http://www.opencontent.org/.

69

http://www.opencontent.org/

GtkAda Documentation, Release 18.0w

70 Chapter 18. Bibliography

CHAPTER
NINETEEN

GNU FREE DOCUMENTATION LICENSE

Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

19.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document ‘free’ in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of ‘copyleft’, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free doc-
umentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether
it is published as a printed book. We recommend this License principally for works whose purpose is instruction or
reference.

19.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. The ‘Document’, below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as ‘you’.

A ‘Modified Version’ of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A ‘Secondary Section’ is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The ‘Invariant Sections’ are certain Secondary Sections whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this License.

71

GtkAda Documentation, Release 18.0w

The ‘Cover Texts’ are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License.

A ‘Transparent’ copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not “Transparent’ is called
‘Opaque’.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for
human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The ‘Title Page’ means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For works in formats which do not have any title page as
such, ‘Title Page’ means the text near the most prominent appearance of the work’s title, preceding the beginning of
the body of the text.

19.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

19.4 COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy of the Document, free of added mate-
rial, which the general network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

72 Chapter 19. GNU Free Documentation License

GtkAda Documentation, Release 18.0w

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

19.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

» Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

* List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

« State on the Title page the name of the publisher of the Modified Version, as the publisher.
* Preserve all the copyright notices of the Document.
* Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

* Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

* Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice.

¢ Include an unaltered copy of this License.

 Preserve the section entitled ‘History’, and its title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section entitled ‘History’ in the
Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

* Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the ‘History’ section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

* In any section entitled ‘Acknowledgements’ or ‘Dedications’, preserve the section’s title, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

¢ Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

* Delete any section entitled ‘Endorsements’. Such a section may not be included in the Modified Version.
* Do not retitle any existing section as ‘Endorsements’ or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled ‘Endorsements’, provided it contains nothing but endorsements of your Modified Version
by various parties — for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

19.5. MODIFICATIONS 73

GtkAda Documentation, Release 18.0w

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

19.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled ‘History’ in the various original documents, forming
one section entitled ‘History’; likewise combine any sections entitled ‘Acknowledgements’, and any sections entitled
‘Dedications’. You must delete all sections entitled ‘Endorsements.’

19.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

19.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a compilation is called an ‘aggregate’, and this
License does not apply to the other self-contained works thus compiled with the Document, on account of their being
thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

74 Chapter 19. GNU Free Documentation License

GtkAda Documentation, Release 18.0w

19.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original English version of this License, the
original English version will prevail.

19.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

19.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License ‘or any later version’ applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

19.12 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled 'GNU

Free Documentation License'.

If you have no Invariant Sections, write ‘with no Invariant Sections’ instead of saying which ones are invariant. If
you have no Front-Cover Texts, write ‘no Front-Cover Texts’ instead of ‘Front-Cover Texts being LIST’; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

19.9. TRANSLATION 75

http://www.gnu.org/copyleft/

GtkAda Documentation, Release 18.0w

Copyright C 1998-2000, Emmanuel Briot, Joel Brobecker, Arnaud Charlet
Copyright C 2000-2014, AdaCore

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ‘GNU Free
Documentation License’.

76 Chapter 19. GNU Free Documentation License

	Introduction: What is GtkAda ?
	Getting started with GtkAda
	How to build and install GtkAda
	How to distribute a GtkAda application
	How to use GtkAda
	Organization of the GtkAda package
	How to compile an application with GtkAda
	Architecture of the toolkit
	Widgets Hierarchy

	Hierarchical composition of a window
	Signal handling
	Predefined signals
	Connecting signals
	Connecting via the On_* procedures
	Connecting via the Gtk.Handlers package

	Handling user data
	First case: simple user data
	Second case: using Object_Connect instead
	Third case: manually disconnecting the callback
	Fourth case: setting a watch on a specific widget

	Starting an application with GtkAda
	Resource files
	Memory management
	Tasking with GtkAda
	Processing external events
	Object-oriented features
	General description of the tagged types
	Why should I use object-oriented programming ?
	Type conversions from C to Ada widgets

	Using tagged types to extend Gtk widgets
	Creating new widgets in Ada
	Creating composite widgets
	Creating widgets from scratch

	Support for Glade, the Gtk GUI builder
	Introduction
	Launching Glade
	Building your interface
	Using the interface in your application.

	Binding new widgets
	Debugging GtkAda applications
	Transitioning from GtkAda 2 to GtkAda 3
	General
	Interfaces
	Ada 2012

	Pango
	Pango.Font

	Glib
	Glib.Object
	Glib.G_Icon

	Gdk
	Gdk.Bitmap
	Gdk.Color
	Gdk.Cursor
	Gdk.Dnd
	Gdk.Drawable
	Gdk.Event
	Gdk.Font
	Gdk.GC
	Gdk.Image
	Gdk.Main
	Gdk.Pixbuf
	Gdk.Pixmap
	Gdk.Region
	Gdk.RGB
	Gdk.Window
	Gdk.Window_Attr

	Gtk
	Gtk.Action
	Gtk.Aspect_Frame
	Gtk.Assistant
	Gtk.Builder
	Gtk.Button_Box
	Gtk.Cell_Layout
	Gtk.Cell_Renderer
	Gtk.Cell_View
	Gtk.Clist
	Gtk.Container
	Gtk.Color_Button
	Gtk.Color_Selection
	Gtk.Color_Selection_Dialog
	Gtk.Combo
	Gtk.Combo_Box
	Gtk.Combo_Box_Entry
	Gtk.Clipboard
	Gtk.Ctree
	Gtk.Curve
	Gtk.Dialog
	Gtk.Dnd
	Gtk.Editable
	Gtk.Entry_Completion
	Gtk.Enums
	Gtk.File_Chooser_Button
	Gtk.File_Chooser_Dialog
	Gtk.File_Chooser_Widget
	Gtk.File_Selection
	Gtk.Fixed
	Gtk.Gamma_Curve
	Gtk.GC
	Gtk.GEntry
	Gtk.GRange
	Gtk.Handle_Box
	Gtk.HRuler
	Gtk.Icon_Factory
	Gtk.Image
	Gtk.Image_Menu_Item
	Gtk.Input_Dialog
	Gtk.Item
	Gtk.Item_Factory
	Gtk.Layout
	Gtk.Link_Button
	Gtk.List_Item
	Gtk.Main
	Gtk.Menu
	Gtk.Menu_Item
	Gtk.Menu_Tool_Button
	Gtk.Notebook
	Gtk.List
	Gtk.Object
	Gtk.Old_Editable
	Gtk.Option_Menu
	Gtk.Pixmap
	Gtk.Preview
	Gtk.Print_Operation
	Gtk.Progress
	Gtk.Progress_Bar
	Gtk.Rc
	Gtk.Recent_Manager
	Gtk.Ruler
	Gtk.Settings
	Gtk.Scale_Button
	Gtk.Selection
	Gtk.Scrolled_Window
	Gtk.Socket / Gtk.Plug
	Gtk.Status_Icon
	Gtk.Style
	Gtk.Text
	Gtk.Text_Attributes
	Gtk.Text_View
	Gtk.Tree_Dnd
	Gtk.Tree_Model
	Gtk.Tree_View_Column
	Gtk.Tips_Query
	Gtk.Tool_Item
	Gtk.Toolbar
	Gtk.Tooltips
	Gtk.Tree_View
	Gtk.VRuler
	Gtk.Widget
	Gtk.Window

	GtkAda
	Gtkada.MDI
	Gtkada.Properties

	Gnome
	Gnome.App_Bar
	Gnome.Gentry

	How to report bugs
	System Package Dependencies
	Red Hat Enterprise Linux 7 & 8
	Ubunbu 18.04 & 20.04

	Using GtkParasite to inspect and modify running GtkAda applications
	Bibliography
	GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

