
JAGS Developers Manual

Martyn Plummer

6 July 2011

Contents

1 Introduction 2

2 Working with the CVS repository 3

3 Testing the Installation 4

4 Directory structure 5

5 Debugging and Profiling 6
5.1 Debugging with gdb . 6
5.2 Debugging with valgrind . 6
5.3 Profiling with gprof . 7
5.4 Profiling with oprofile . 7

1

Chapter 1

Introduction

This is currently a collection of notes on working with the JAGS source. It will eventually
grow into an explanation of how to extend the capabilities of JAGS by writing new modules.

2

Chapter 2

Working with the CVS repository

The JAGS source code is held in a CVS repository. Clear instructions on how to access the CVS
source are given at the project web site http://sourceforge.net/projects/mcmc-jags. To
access the instructions, click the link marked “develop” then the “Code” tab and select “CVS”
from the pull-down menu.

You need a complete installation of GNU autotools (autoconf, automake, and libtool) to
work with the CVS source, since all non-essential files have been stripped out of the repository.
You must build local versions of these files by changing directory into the top-level source
directory and typing

autoreconf -fi

Your source tree is then ready to work with. Note that JAGS is not currently compatible
with automake-1.12. You must use automake-1.11 or earlier.

The CVS repository also excludes some C++ source files that are included in the source
tarball. These files are re-created in the build tree by the GNU tools flex and bison. You
must also have these tools installed if you are using the CVS repository. Note that the
standard unix versions of these tools – lex and yacc – are not sufficient, and you must have
an up-to-date version of flex. 1

Once you have checked out a CVS tree, you can keep it up to date with

cvs update -Pd

You may occasionally need to rerun the autoreconf function when files are added, removed,
or moved within the repository.

I recommend keeping one or more build directories that are separate from the source
directory. I have several build directories for JAGS configured in different ways: one standard
one for testing the BUGS examples, one with no optimization for debugging, another statically
linked one for profiling, and so on.

1On Solaris, the OpenCSW package flex contains version 2.5.4, which is not compatible with JAGS. Use
the flexnew package

3

Chapter 3

Testing the Installation

The classic bugs are available in the CVS module “examples”. They can also be downloaded
in a tarball from the JAGS home page. There are two sub-directories: “vol1” and “vol2”.
Within each sub-directory you can test the installation with

make check

To test a subset of examples, set the environment variable EXAMPLES:

make check EXAMPLES="blocker bones"

If you are not using a GNU system, you may need to use GNU make (gmake).
You need to have R installed in order to check the output of JAGS against the benchmarks.

If you have the rjags package installed, then you may also test the rjags package with

make Rcheck

4

Chapter 4

Directory structure

The JAGS source is divided into three main directories: lib, modules, and terminal. The
lib directory contains the JAGS library, which contains all the facilities for defining a Bayesian
graphical model in the BUGS language, running the Gibbs sampler and monitoring the sam-
pled values. The JAGS library is divided into several convenience libraries

sarray which defines the basic SArray class, modelled on an S language array, and its asso-
ciated classes.

function which defines the interface for functions and the FuncTab class that allows you to
reference them by name.

distribution which defines the interface for distribution and the DistTab class that allows
you to reference them by name.

graph which defines the various Node classes used by JAGS when constructing a Bayesian
graphical model, as well as the Graph class which is a container for nodes.

sampler which defines the interface for Samplers, which update stochastic nodes in the
graph.

model which defines all the classes needed to create a model, including monitor classes.

compiler which contains the Compiler class and a number of supporting classes designed for
an efficient translation of a BUGS-language description the model into a Graph.

rng which defines the interface for random number generators (RNGs) and the factories that
create them.

util which contains some utility functions used in the rest of the JAGS library.

The Console class provides a clean interface to the JAGS library. The member functions of the
Console class conduct all of the operations one may wish to do on a Bayesian graphical model.
They are designed to catch any exceptions thrown by the library and print an informative
message to either an output stream or an error stream, depending on the result.

The modules directory contains the source code for JAGS modules, which contain concrete
classes corresponding to the abstract classes defined in the JAGS library.

The terminal directory contains the source code for a reference front end for the JAGS
library, which uses the Stata-like syntax described in the user manual

5

Chapter 5

Debugging and Profiling

Debugging and profiling tools are essential for finding bugs and bottlenecks in the code. The
most important tools are gdb, valgrind, gprof and oprofile.

5.1 Debugging with gdb

JAGS can be run from within the GNU debugger gdb by typing

jags -d gdb

To run a script, type

r <scriptname>

at the gdb prompt.
Debugging of optimized C++ code is not easy, especially when using code from the Stan-

dard Template Library (STL). Unless you speak fluent STL, you will need to work with a
non-optimized build of JAGS. Using gcc this is done with the following build flags.

CXXFLAGS="-g -O0"

CFLAGS="-g -O0"

It is helpful to keep a separate non-optimized build directory for occasions when you need to
use a debugger.

It is not possible to set a break point in a module before it has been dynamically loaded.
To do so, run JAGS by typing “r” at the gdb prompt, then control-C to return to the gdb
prompt after the modules have been loaded.

5.2 Debugging with valgrind

Valgrind (www.valgrind.org) is a memory profiler and debugger. To run JAGS through
valgrind, type

jags -d valgrind <script-file>

If you need to pass options to valgrind, enclose these in quotes

jags -d ’valgrind --leak-check=full’ <scriptfile>

JAGS will run very slowly inside valgrind, and will use more memory, so its use should be
limited to small test programs.

6

5.3 Profiling with gprof

The GNU profiler gprof does not debug dynamic libraries. It is therefore not very useful
for a standard installation of JAGS, since almost all of the functionality is contained in the
jags library, the jrmath library, and the modules. However, you can build a statically linked
version in which the libraries and modules are folded into the executable jags-terminal. To
build this version of JAGS, with profiling information for gprof, use the following configure
options:

CXXFLAGS="-g -O2 -pg" \

CFLAGS="-g -O2 -pg" \

/path/to/JAGS/configure --disable-shared

Whenever JAGS is run, it will create a file gmon.out in the working directory that can be
used for profiling with gprof.

5.4 Profiling with oprofile

Oprofile (oprofile.sourceforge.net) is a linux-based profiler that runs as a daemon. Unlike
gprof it does not require any special configuration options, and can be used to debug dynamic
libraries.

You must be root to start the profiler

opcontrol --no-vmlinux

opcontrol --start

Then, as a normal user, you may run a model and dump the profiling information to file with

opcontrol --dump

To see how much time JAGS is spending in the functions in a module type

opreport -l /usr/local/lib/JAGS/modules/bugs.so | less

The opreport command gives copious information, so you will need to redirect the output to
a file or, as in this example, a pager. The same command works for the main JAGS library

opreport -l /usr/local/lib/libjags.so

More detailed profiling information can be obtained with the opannotate command, pro-
vided that JAGS has been compiled with debugging symbols. The command

opannotate --source /usr/local/lib/JAGS/modules/bugs.so | less

reconstructs the source code and gives annotations in a column in the left hand side count-
ing the number of samples in each function, block or line. This can be useful for finding
bottlenecks in the code.

Oprofile will continue to accumulate samples from multiple runs of JAGS, although the
output of the opreport and opannotate commands will not change until you dump the
data again with opcontrol --dump. If you do not wish to see the cumulative samples from
multiple runs – for instance if you have modified the JAGS code and want to check that a
previous bottleneck has been removed – then you can clear the existing data collection by
typing, as root

opcontrol --reset

7

