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CHAPTER
ONE

INTRODUCTION

The GNU Scientific Library (GSL) is a collection of routines for numerical computing. The routines have been written
from scratch in C, and present a modern Applications Programming Interface (API) for C programmers, allowing
wrappers to be written for very high level languages. The source code is distributed under the GNU General Public
License.

1.1 Routines available in GSL

The library covers a wide range of topics in numerical computing. Routines are available for the following areas,

Complex Numbers Roots of Polynomials Special Functions
Vectors and Matrices Permutations Combinations

Sorting BLAS Support Linear Algebra
CBLAS Library Fast Fourier Transforms Eigensystems
Random Numbers Quadrature Random Distributions
Quasi-Random Sequences Histograms Statistics

Monte Carlo Integration N-Tuples Differential Equations
Simulated Annealing Numerical Differentiation Interpolation

Series Acceleration Chebyshev Approximations | Root-Finding
Discrete Hankel Transforms | Least-Squares Fitting Minimization

IEEE Floating-Point Physical Constants Basis Splines
Wavelets Sparse BLAS Support Sparse Linear Algebra

The use of these routines is described in this manual. Each chapter provides detailed definitions of the functions,
followed by example programs and references to the articles on which the algorithms are based.

Where possible the routines have been based on reliable public-domain packages such as FFTPACK and QUADPACK,
which the developers of GSL have reimplemented in C with modern coding conventions.

1.2 GSL is Free Software

The subroutines in the GNU Scientific Library are “free software”; this means that everyone is free to use them, and
to redistribute them in other free programs. The library is not in the public domain; it is copyrighted and there are
conditions on its distribution. These conditions are designed to permit everything that a good cooperating citizen
would want to do. What is not allowed is to try to prevent others from further sharing any version of the software that
they might get from you.
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Specifically, we want to make sure that you have the right to share copies of programs that you are given which use the
GNU Scientific Library, that you receive their source code or else can get it if you want it, that you can change these
programs or use pieces of them in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these rights. For example,
if you distribute copies of any code which uses the GNU Scientific Library, you must give the recipients all the rights
that you have received. You must make sure that they, too, receive or can get the source code, both to the library and
the code which uses it. And you must tell them their rights. This means that the library should not be redistributed in
proprietary programs.

Also, for our own protection, we must make certain that everyone finds out that there is no warranty for the GNU
Scientific Library. If these programs are modified by someone else and passed on, we want their recipients to know that
what they have is not what we distributed, so that any problems introduced by others will not reflect on our reputation.

The precise conditions for the distribution of software related to the GNU Scientific Library are found in the GNU
General Public License. Further information about this license is available from the GNU Project webpage Frequently
Asked Questions about the GNU GPL.

The Free Software Foundation also operates a license consulting service for commercial users (contact details available
from http://www.fsf.org.

1.3 Obtaining GSL

The source code for the library can be obtained in different ways, by copying it from a friend, purchasing it on CDROM
or downloading it from the internet. A list of public ftp servers which carry the source code can be found on the GNU
website, http://www.gnu.org/software/gsl/.

The preferred platform for the library is a GNU system, which allows it to take advantage of additional features in the
GNU C compiler and GNU C library. However, the library is fully portable and should compile on most systems with
a C compiler.

Announcements of new releases, updates and other relevant events are made on the info-gsl @ gnu.org mailing list. To
subscribe to this low-volume list, send an email of the following form:

To: info-gsl-request@gnu.org
Subject: subscribe

You will receive a response asking you to reply in order to confirm your subscription.

1.4 No Warranty

The software described in this manual has no warranty, it is provided “as is”. It is your responsibility to validate the
behavior of the routines and their accuracy using the source code provided, or to purchase support and warranties from
commercial redistributors. Consult the GNU General Public License for further details.
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1.5 Reporting Bugs

A list of known bugs can be found in the BUGS file included in the GSL distribution or online in the GSL bug tracker.'
Details of compilation problems can be found in the INSTALL file.

If you find a bug which is not listed in these files, please report it to bug-gsl@gnu.org.
All bug reports should include:

* The version number of GSL

* The hardware and operating system

* The compiler used, including version number and compilation options

* A description of the bug behavior

* A short program which exercises the bug

It is useful if you can check whether the same problem occurs when the library is compiled without optimization. Thank
you.

Any errors or omissions in this manual can also be reported to the same address.

1.6 Further Information

Additional information, including online copies of this manual, links to related projects, and mailing list archives are
available from the website mentioned above.

Any questions about the use and installation of the library can be asked on the mailing list help-gsl@gnu.org. To
subscribe to this list, send an email of the following form:

To: help-gsl-request@gnu.org
Subject: subscribe

This mailing list can be used to ask questions not covered by this manual, and to contact the developers of the library.

If you would like to refer to the GNU Scientific Library in a journal article, the recommended way is to cite this reference
manual, e.g.:

M. Galassi et al, GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078.

If you want to give a url, use “http://www.gnu.org/software/gsl/”.

1.7 Conventions used in this manual

This manual contains many examples which can be typed at the keyboard. A command entered at the terminal is shown
like this:

$ command

The first character on the line is the terminal prompt, and should not be typed. The dollar sign $ is used as the standard
prompt in this manual, although some systems may use a different character.

! http://savannah.gnu.org/bugs/?group=gsl

1.5. Reporting Bugs 3
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The examples assume the use of the GNU operating system. There may be minor differences in the output on other
systems. The commands for setting environment variables use the Bourne shell syntax of the standard GNU shell
(bash).
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CHAPTER
TWO

USING THE LIBRARY

This chapter describes how to compile programs that use GSL, and introduces its conventions.

2.1 An Example Program

The following short program demonstrates the use of the library by computing the value of the Bessel function Jy ()
for x = 5:

#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>

int

main (void)

{
double x = 5.0;
double y = gsl_sf_bessel 10 (x);
printf ("J0(%g) = \n", x, y);
return 0;

}

The output is shown below, and should be correct to double-precision accuracy',

JO(5) = -1.775967713143382642e-01

The steps needed to compile this program are described in the following sections.

2.2 Compiling and Linking

The library header files are installed in their own gs1 directory. You should write any preprocessor include statements
with a gs1/ directory prefix thus:

#include <gsl/gsl_math.h>

If the directory is not installed on the standard search path of your compiler you will also need to provide its location
to the preprocessor as a command line flag. The default location of the gs1 directory is /usr/local/include/gsl.
A typical compilation command for a source file example.c with the GNU C compiler gcc is:

! The last few digits may vary slightly depending on the compiler and platform used—this is normal
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$ gcc -Wall -I/usr/local/include -c example.c

This results in an object file example.o. The default include path for gcc searches /usr/local/include automati-
cally so the -I option can actually be omitted when GSL is installed in its default location.

2.2.1 Linking programs with the library

The library is installed as a single file, 1ibgsl.a. A shared version of the library 1ibgsl.so is also installed on
systems that support shared libraries. The default location of these files is /usr/local/1lib. If this directory is not
on the standard search path of your linker you will also need to provide its location as a command line flag.

To link against the library you need to specify both the main library and a supporting CBLAS library, which provides
standard basic linear algebra subroutines. A suitable CBLAS implementation is provided in the library 1ibgslcblas.
a if your system does not provide one. The following example shows how to link an application with the library:

$ gcc -L/usr/local/lib example.o -1lgsl -lgslcblas -1m

The default library path for gcc searches /usr/local/lib automatically so the -L option can be omitted when GSL
is installed in its default location.

The option -1m links with the system math library. On some systems it is not needed.’

For a tutorial introduction to the GNU C Compiler and related programs, see “An Introduction to GCC” (ISBN
0954161793).

2.2.2 Linking with an alternative BLAS library

The following command line shows how you would link the same application with an alternative CBLAS library
libcblas.a:

$ gcc example.o -1gsl -1lcblas -1m

For the best performance an optimized platform-specific CBLAS library should be used for -1cblas. The library
must conform to the CBLAS standard. The ATLAS package provides a portable high-performance BLAS library with
a CBLAS interface. It is free software and should be installed for any work requiring fast vector and matrix operations.
The following command line will link with the ATLAS library and its CBLAS interface:

$ gcc example.o -1lgsl -1lcblas -latlas -1m

If the ATLAS library is installed in a non-standard directory use the -L option to add it to the search path, as described
above.

For more information about BLAS functions see BLAS Support.

2 It is not needed on MacOS X
3 http://www.network-theory.co.uk/gec/intro/
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2.3 Shared Libraries

To run a program linked with the shared version of the library the operating system must be able to locate the corre-
sponding . so file at runtime. If the library cannot be found, the following error will occur:

§ ./a.out
./a.out: error while loading shared libraries:
libgsl.so.0: cannot open shared object file: No such file or directory

To avoid this error, either modify the system dynamic linker configuration® or define the shell variable
LD_LIBRARY_PATH to include the directory where the library is installed.

For example, in the Bourne shell (/bin/sh or /bin/bash), the library search path can be set with the following
commands:

$ LD_LIBRARY_PATH=/usr/local/lib
$ export LD_LIBRARY_PATH
$ ./example

In the C-shell (/bin/csh or /bin/tcsh) the equivalent command is:

% setenv LD_LIBRARY_PATH /usr/local/lib

The standard prompt for the C-shell in the example above is the percent character %, and should not be typed as part
of the command.

To save retyping these commands each session they can be placed in an individual or system-wide login file.

To compile a statically linked version of the program, use the -static flag in gcc:

$ gcc -static example.o -1gsl -1lgslcblas -1m

2.4 ANSI C Compliance

The library is written in ANSI C and is intended to conform to the ANSI C standard (C89). It should be portable to
any system with a working ANSI C compiler.

The library does not rely on any non-ANSI extensions in the interface it exports to the user. Programs you write using
GSL can be ANSI compliant. Extensions which can be used in a way compatible with pure ANSI C are supported, how-
ever, via conditional compilation. This allows the library to take advantage of compiler extensions on those platforms
which support them.

When an ANSI C feature is known to be broken on a particular system the library will exclude any related functions
at compile-time. This should make it impossible to link a program that would use these functions and give incorrect
results.

To avoid namespace conflicts all exported function names and variables have the prefix gs1_, while exported macros
have the prefix GSL_.

4 Jetc/1d.so.conf on GNU/Linux systems
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2.5 Inline functions

The inline keyword is not part of the original ANSI C standard (C89) so the library does not export any inline function
definitions by default. Inline functions were introduced officially in the newer C99 standard but most C89 compilers
have also included inline as an extension for a long time.

To allow the use of inline functions, the library provides optional inline versions of performance-critical routines by
conditional compilation in the exported header files. The inline versions of these functions can be included by defining
the macro HAVE_INLINE when compiling an application:

$ gcc -Wall -c -DHAVE_INLINE example.c

If you use autoconf this macro can be defined automatically. If you do not define the macro HAVE_INLINE then the
slower non-inlined versions of the functions will be used instead.

By default, the actual form of the inline keyword is extern inline, which is a gcc extension that eliminates unnec-
essary function definitions. If the form extern inline causes problems with other compilers a stricter autoconf test
can be used, see Autoconf Macros.

When compiling with gcc in C99 mode (gcc -std=c99) the header files automatically switch to C99-compatible in-
line function declarations instead of extern inline. With other C99 compilers, define the macro GSL_C99_INLINE
to use these declarations.

2.6 Long double

In general, the algorithms in the library are written for double precision only. The long double type is not supported
for actual computation.

One reason for this choice is that the precision of long double is platform dependent. The IEEE standard only
specifies the minimum precision of extended precision numbers, while the precision of double is the same on all
platforms.

However, it is sometimes necessary to interact with external data in long-double format, so the vector and matrix
datatypes include long-double versions.

It should be noted that in some system libraries the stdio.h formatted input/output functions printf and scanf are
not implemented correctly for long double. Undefined or incorrect results are avoided by testing these functions
during the configure stage of library compilation and eliminating certain GSL functions which depend on them if
necessary. The corresponding line in the configure output looks like this:

checking whether printf works with long double... no

Consequently when long double formatted input/output does not work on a given system it should be impossible to
link a program which uses GSL functions dependent on this.

If it is necessary to work on a system which does not support formatted long double input/output then the options
are to use binary formats or to convert long double results into double for reading and writing.

8 Chapter 2. Using the Library




GNU Scientific Library, Release 2.7

2.7 Portability functions

To help in writing portable applications GSL provides some implementations of functions that are found in other
libraries, such as the BSD math library. You can write your application to use the native versions of these functions,
and substitute the GSL versions via a preprocessor macro if they are unavailable on another platform.

For example, after determining whether the BSD function hypot () is available you can include the following macro
definitions in a file config.h with your application:

/* Substitute gsl_hypot for missing system hypot */

#1fndef HAVE_HYPOT
#define hypot gsl_hypot
#endif

The application source files can then use the include command #include <config.h> to replace each occurrence
of hypot () by gsl_hypot () when hypot() is not available. This substitution can be made automatically if you use
autoconf, see Autoconf Macros.

In most circumstances the best strategy is to use the native versions of these functions when available, and fall back to
GSL versions otherwise, since this allows your application to take advantage of any platform-specific optimizations in
the system library. This is the strategy used within GSL itself.

2.8 Alternative optimized functions

The main implementation of some functions in the library will not be optimal on all architectures. For example, there are
several ways to compute a Gaussian random variate and their relative speeds are platform-dependent. In cases like this
the library provides alternative implementations of these functions with the same interface. If you write your application
using calls to the standard implementation you can select an alternative version later via a preprocessor definition. It
is also possible to introduce your own optimized functions this way while retaining portability. The following lines
demonstrate the use of a platform-dependent choice of methods for sampling from the Gaussian distribution:

#ifdef SPARC

#define gsl_ran_gaussian gsl_ran_gaussian_ratio_method
#endif

#ifdef INTEL

#define gsl_ran_gaussian my_gaussian

#endif

These lines would be placed in the configuration header file config.h of the application, which should then be included
by all the source files. Note that the alternative implementations will not produce bit-for-bit identical results, and in the
case of random number distributions will produce an entirely different stream of random variates.

2.7. Portability functions 9
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2.9 Support for different numeric types

Many functions in the library are defined for different numeric types. This feature is implemented by varying the name
of the function with a type-related modifier—a primitive form of C++ templates. The modifier is inserted into the
function name after the initial module prefix. The following table shows the function names defined for all the numeric
types of an imaginary module gs1_foo with function fn():

gsl_foo_£fn double
gsl_foo_long_double_fn 1long double
gsl_foo_float_£n float
gsl_foo_long_in long
gsl_foo_ulong_fn unsigned long
gsl_foo_int_£n int
gsl_foo_uint_£n unsigned int
gsl_foo_short_£n short
gsl_foo_ushort_£n unsigned short
gsl_foo_char_fn char

gsl_foo_uchar_fn

unsigned char

The normal numeric precision double is considered the default and does not require a suffix. For example, the function
gsl_stats_mean() computes the mean of double precision numbers, while the function gsl_stats_int_mean()
computes the mean of integers.

A corresponding scheme is used for library defined types, such as gsl_vector and gsl_matrix. In this case the
modifier is appended to the type name. For example, if a module defines a new type-dependent struct or typedef
gsl_foo it is modified for other types in the following way:

gsl_foo double
gsl_foo_long_double long double
gsl_foo_float float
gsl_foo_long long
gsl_foo_ulong unsigned long
gsl_foo_int int
gsl_foo_uint unsigned int
gsl_foo_short short
gsl_foo_ushort unsigned short
gsl_foo_char char

gsl_foo_uchar

unsigned char

When a module contains type-dependent definitions the library provides individual header files for each type. The
filenames are modified as shown in the below. For convenience the default header includes the definitions for all the

types. To include only the double precision header file, or any other specific type, use its individual filename:

#include <gsl/gsl_foo.h> All types
#include <gsl/gsl_foo_double.h> double
#include <gsl/gsl_foo_long_double.h> long double
#include <gsl/gsl_foo_float.h> float
#include <gsl/gsl_foo_long.h> long
#include <gsl/gsl_foo_ulong.h> unsigned long
#include <gsl/gsl_foo_int.h> int
#include <gsl/gsl_foo_uint.h> unsigned int
#include <gsl/gsl_foo_short.h> short
#include <gsl/gsl_foo_ushort.h> unsigned short
(continues on next page)
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(continued from previous page)

#include <gsl/gsl_foo_char.h> char
#include <gsl/gsl_foo_uchar.h> unsigned char

2.10 Compatibility with C++

The library header files automatically define functions to have extern "C" linkage when included in C++ programs.
This allows the functions to be called directly from C++.

To use C++ exception handling within user-defined functions passed to the library as parameters, the library must be
built with the additional CFLAGS compilation option -fexceptions.

2.11 Aliasing of arrays

The library assumes that arrays, vectors and matrices passed as modifiable arguments are not aliased and do not overlap
with each other. This removes the need for the library to handle overlapping memory regions as a special case, and
allows additional optimizations to be used. If overlapping memory regions are passed as modifiable arguments then the
results of such functions will be undefined. If the arguments will not be modified (for example, if a function prototype
declares them as const arguments) then overlapping or aliased memory regions can be safely used.

2.12 Thread-safety

The library can be used in multi-threaded programs. All the functions are thread-safe, in the sense that they do not use
static variables. Memory is always associated with objects and not with functions. For functions which use workspace
objects as temporary storage the workspaces should be allocated on a per-thread basis. For functions which use table
objects as read-only memory the tables can be used by multiple threads simultaneously. Table arguments are always
declared const in function prototypes, to indicate that they may be safely accessed by different threads.

There are a small number of static global variables which are used to control the overall behavior of the library (e.g.
whether to use range-checking, the function to call on fatal error, etc). These variables are set directly by the user, so
they should be initialized once at program startup and not modified by different threads.

2.13 Deprecated Functions

From time to time, it may be necessary for the definitions of some functions to be altered or removed from the library.
In these circumstances the functions will first be declared deprecated and then removed from subsequent versions of
the library. Functions that are deprecated can be disabled in the current release by setting the preprocessor definition
GSL_DISABLE_DEPRECATED. This allows existing code to be tested for forwards compatibility.

2.10. Compatibility with C++ 11
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2.14 Code Reuse

Where possible the routines in the library have been written to avoid dependencies between modules and files. This
should make it possible to extract individual functions for use in your own applications, without needing to have the
whole library installed. You may need to define certain macros such as GSL_ERROR and remove some #include
statements in order to compile the files as standalone units. Reuse of the library code in this way is encouraged, subject
to the terms of the GNU General Public License.
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CHAPTER
THREE

ERROR HANDLING

This chapter describes the way that GSL functions report and handle errors. By examining the status information
returned by every function you can determine whether it succeeded or failed, and if it failed you can find out what the
precise cause of failure was. You can also define your own error handling functions to modify the default behavior of
the library.

The functions described in this section are declared in the header file gsl_errno.h.

3.1 Error Reporting

The library follows the thread-safe error reporting conventions of the POSIX Threads library. Functions return a non-
zero error code to indicate an error and 0 to indicate success:

int status = gsl_function (...)

if (status) { /* an error occurred */

/% status value specifies the type of error */

The routines report an error whenever they cannot perform the task requested of them. For example, a root-finding
function would return a non-zero error code if could not converge to the requested accuracy, or exceeded a limit on the
number of iterations. Situations like this are a normal occurrence when using any mathematical library and you should
check the return status of the functions that you call.

Whenever a routine reports an error the return value specifies the type of error. The return value is analogous to the
value of the variable errno in the C library. The caller can examine the return code and decide what action to take,
including ignoring the error if it is not considered serious.

In addition to reporting errors by return codes the library also has an error handler function gsl_error(). This
function is called by other library functions when they report an error, just before they return to the caller. The default
behavior of the error handler is to print a message and abort the program:

gsl: file.c:67: ERROR: invalid argument supplied by user
Default GSL error handler invoked.
Aborted

The purpose of the gs1_error () handler is to provide a function where a breakpoint can be set that will catch library
errors when running under the debugger. It is not intended for use in production programs, which should handle any
errors using the return codes.

13
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3.2 Error Codes

The error code numbers returned by library functions are defined in the file gsl_errno.h. They all have the prefix
GSL_ and expand to non-zero constant integer values. Error codes above 1024 are reserved for applications, and are not
used by the library. Many of the error codes use the same base name as the corresponding error code in the C library.
Here are some of the most common error codes,

int GSL_EDOM
Domain error; used by mathematical functions when an argument value does not fall into the domain over which
the function is defined (like EDOM in the C library)

int GSL_ERANGE
Range error; used by mathematical functions when the result value is not representable because of overflow or
underflow (like ERANGE in the C library)

int GSL_ENOMEM
No memory available. The system cannot allocate more virtual memory because its capacity is full (like ENOMEM
in the C library). This error is reported when a GSL routine encounters problems when trying to allocate memory
withmallocQ).

int GSL_EINVAL
Invalid argument. This is used to indicate various kinds of problems with passing the wrong argument to a library
function (like EINVAL in the C library).

The error codes can be converted into an error message using the function gsI_strerror().

const char *gsl_strerror (const int gsl_errno)
This function returns a pointer to a string describing the error code gs1_errno. For example:

printf ("error: \n", gsl_strerror (status));

would print an error message like error: output range error for a status value of GSL_ERANGE.

3.3 Error Handlers

The default behavior of the GSL error handler is to print a short message and call abort (). When this default is in use
programs will stop with a core-dump whenever a library routine reports an error. This is intended as a fail-safe default
for programs which do not check the return status of library routines (we don’t encourage you to write programs this
way).

If you turn off the default error handler it is your responsibility to check the return values of routines and handle them
yourself. You can also customize the error behavior by providing a new error handler. For example, an alternative error
handler could log all errors to a file, ignore certain error conditions (such as underflows), or start the debugger and
attach it to the current process when an error occurs.

All GSL error handlers have the type gsl_error_handler_t, which is defined in gsl_errno.h,

type gsl_error_handler_t
This is the type of GSL error handler functions. An error handler will be passed four arguments which specify
the reason for the error (a string), the name of the source file in which it occurred (also a string), the line number
in that file (an integer) and the error number (an integer). The source file and line number are set at compile time
using the __FILE__ and __LINE__ directives in the preprocessor. An error handler function returns type void.
Error handler functions should be defined like this:
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void handler (const char * reason,
const char * file,
int line,
int gsl_errno)

To request the use of your own error handler you need to call the function gs1_set_error_handler () which is also
declared in gsl_errno.h,

gsl_error_handler_t *gsl_set_error_handler (gs/_error_handler_t *new_handler)
This function sets a new error handler, new_handler, for the GSL library routines. The previous handler is
returned (so that you can restore it later). Note that the pointer to a user defined error handler function is stored
in a static variable, so there can be only one error handler per program. This function should be not be used
in multi-threaded programs except to set up a program-wide error handler from a master thread. The following
example shows how to set and restore a new error handler:

/% save original handler, install new handler */
old_handler = gsl_set_error_handler (&my_handler);

/% code uses new handler */

/* restore original handler */
gsl_set_error_handler (old_handler);

To use the default behavior (abort () on error) set the error handler to NULL:

old_handler = gsl_set_error_handler (NULL);

gsl_error_handler_t *gsl_set_error_handler_off()
This function turns off the error handler by defining an error handler which does nothing. This will cause the
program to continue after any error, so the return values from any library routines must be checked. This is the
recommended behavior for production programs. The previous handler is returned (so that you can restore it
later).

The error behavior can be changed for specific applications by recompiling the library with a customized definition of
the GSL_ERROR macro in the file gsl_errno.h.

3.4 Using GSL error reporting in your own functions

If you are writing numerical functions in a program which also uses GSL code you may find it convenient to adopt the
same error reporting conventions as in the library.

To report an error you need to call the function gsl_error() with a string describing the error and then return an
appropriate error code from gsl_errno.h, or a special value, such as NaN. For convenience the file gsl_errno.h
defines two macros which carry out these steps:

GSL_ERROR (reason, gsl_errno)

This macro reports an error using the GSL conventions and returns a status value of gsl_errno. It expands to
the following code fragment:

gsl_error (reason, __FILE _, __LINE_ _, gsl_errno);
return gsl_errno;

3.4. Using GSL error reporting in your own functions 15
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The macro definition in gsl_errno.h actually wraps the codeinado { ... } while (@) block to prevent
possible parsing problems.

Here is an example of how the macro could be used to report that a routine did not achieve a requested tolerance. To
report the error the routine needs to return the error code GSL_ETOL:

if (residual > tolerance)

{
GSL_ERROR("residual exceeds tolerance', GSL_ETOL);

3

GSL_ERROR_VAL (reason, gsl_errno, value)
This macro is the same as GSL_ERROR but returns a user-defined value of value instead of an error code. It can
be used for mathematical functions that return a floating point value.

The following example shows how to return a NaN at a mathematical singularity using the GSL_ERROR_VAL macro:

if (x == 0)
{
GSL_ERROR_VAL("argument lies on singularity", GSL_ERANGE, GSL_NAN);
}

3.5 Examples

Here is an example of some code which checks the return value of a function where an error might be reported:

#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_fft_complex.h>

int status;
size_t n = 37;

gsl_set_error_handler_off();
status = gsl_fft complex_radix2_forward (data, stride, n);

if (status) {
if (status == GSL_EINVAL) {
fprintf (stderr, "invalid argument, n=%d\n", n);
} else {
fprintf (stderr, "failed, gsl_errno=%d\n", status);
}
exit (-1);
}

The function gs1_£fft_complex_radix2_forward() only accepts integer lengths which are a power of two. If the
variable n is not a power of two then the call to the library function will return GSL_EINVAL, indicating that the
length argument is invalid. The function call to gsI_set_error_handler_off() stops the default error handler
from aborting the program. The else clause catches any other possible errors.
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CHAPTER
FOUR

MATHEMATICAL FUNCTIONS

This chapter describes basic mathematical functions. Some of these functions are present in system libraries, but the
alternative versions given here can be used as a substitute when the system functions are not available.

The functions and macros described in this chapter are defined in the header file gs1_math.h.

4.1 Mathematical Constants

The library ensures that the standard BSD mathematical constants are defined. For reference, here is a list of the
constants:

M_E The base of exponentials, e
M_LOG2E The base-2 logarithm of e, log, (e)
M_LOG1QE The base-10 logarithm of e, log;(e)
M_SQRT?2 The square root of two, V2
M_SQRT1_2 The square root of one-half, \/m
M_SQRT3 The square root of three, V3

M_PI The constant pi, 7

M_PI_2 Pi divided by two, 7/2

M_PI_4 Pi divided by four, 7 /4

M_SQRTPI The square root of pi, /7
M_2_SQRTPI | Two divided by the square root of pi, 2/y/7

M_1_PI The reciprocal of pi, 1/7

M_2_PI Twice the reciprocal of pi, 2/7
M_LN10O The natural logarithm of ten, 1n(10)
M_LN2 The natural logarithm of two, In(2)
M_LNPI The natural logarithm of pi, In()
M_EULER Euler’s constant, ~y

17
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4.2 Infinities and Not-a-number

GSL_POSINF
This macro contains the IEEE representation of positive infinity, +-oco. It is computed from the expression +1.
0/0.0.

GSL_NEGINF
This macro contains the IEEE representation of negative infinity, —oo. It is computed from the expression -1.
0/0.0.

GSL_NAN
This macro contains the IEEE representation of the Not-a-Number symbol, NaN. It is computed from the ratio
0.0/0.0.

int gsl_isnan(const double x)
This function returns 1 if x is not-a-number.

int gs1l_isinf (const double x)
This function returns +1 if x is positive infinity, —1 if x is negative infinity and 0 otherwise.'

int gsl_finite(const double x)
This function returns 1 if x is a real number, and O if it is infinite or not-a-number.

4.3 Elementary Functions

The following routines provide portable implementations of functions found in the BSD math library. When native
versions are not available the functions described here can be used instead. The substitution can be made automatically
if you use autoconf to compile your application (see Portability functions).

double gsl_loglp(const double x)
This function computes the value of log(1 + x) in a way that is accurate for small x. It provides an alternative to
the BSD math function loglp(x).

double gs1_expml (const double x)
This function computes the value of exp(z) — 1 in a way that is accurate for small x. It provides an alternative
to the BSD math function expm1 (x).

double gs1_hypot (const double x, const double y)
This function computes the value of /2 + 32 in a way that avoids overflow. It provides an alternative to the
BSD math function hypot (x,y).

double gs1_hypot3 (const double x, const double y, const double z)
This function computes the value of /22 + 42 + 22 in a way that avoids overflow.

double gsl_acosh(const double x)

This function computes the value of arccosh (x). It provides an alternative to the standard math function
acosh(x).

double gsl_asinh(const double x)
This function computes the value of arcsinh (). It provides an alternative to the standard math function
asinh(x).

! Note that the C99 standard only requires the system isinf() function to return a non-zero value, without the sign of the infinity. The im-
plementation in some earlier versions of GSL used the system isinf() function and may have this behavior on some platforms. Therefore, it is
advisable to test the sign of x separately, if needed, rather than relying the sign of the return value from gsI_isinf().
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double gsl_atanh(const double x)
This function computes the value of arctanh (z). It provides an alternative to the standard math function
atanh(x).

double gs1_ldexp(double x, int e)
This function computes the value of = x 2°. It provides an alternative to the standard math function 1dexp(x,e).

double gsl_£frexp(double x, int *e)
This function splits the number x into its normalized fraction f and exponent e, such that x = f % 2° and
0.5 <= f < 1. The function returns f and stores the exponent in e. If x is zero, both f and e are set to zero.
This function provides an alternative to the standard math function frexp(x, e).

4.4 Small integer powers

A common complaint about the standard C library is its lack of a function for calculating (small) integer powers. GSL
provides some simple functions to fill this gap. For reasons of efficiency, these functions do not check for overflow or
underflow conditions.

double gsl_pow_int (double x, int n)

double gs1_pow_uint (double x, unsigned int n)
These routines computes the power 2™ for integer n. The power is computed efficiently—for example, z° is
computed as ((22)?)2, requiring only 3 multiplications. A version of this function which also computes the
numerical error in the result is available as gs1_sf_pow_int_e().

double gs1_pow_2 (const double x)
double gs1_pow_3 (const double x)
double gs1_pow_4 (const double x)
double gs1_pow_5 (const double x)
double gs1_pow_6 (const double x)
double gs1_pow_7 (const double x)
double gs1_pow_8(const double x)

double gs1_pow_9(const double x)
These functions can be used to compute small integer powers x2, 23, etc. efficiently. The functions will be
inlined when HAVE_INLINE is defined, so that use of these functions should be as efficient as explicitly writing
the corresponding product expression:

2

#include <gsl/gsl_math.h>
double y = gsl_pow_4 (3.141) /* compute 3.141%%4 */

4.4. Small integer powers 19
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4.5 Testing the Sign of Numbers

GSL_SIGN(x)
This macro returns the sign of x. It is defined as ((x) >= 0 ? 1 : -1). Note that with this definition the
sign of zero is positive (regardless of its IEEE sign bit).

4.6 Testing for Odd and Even Numbers

GSL_IS_ODD(n)
This macro evaluates to 1 if n is odd and O if n is even. The argument n must be of integer type.

GSL_IS_EVEN(n)
This macro is the opposite of GSL_IS_ODD. It evaluates to 1 if n is even and O if n is odd. The argument n must
be of integer type.

4.7 Maximum and Minimum functions

Note that the following macros perform multiple evaluations of their arguments, so they should not be used with argu-
ments that have side effects (such as a call to a random number generator).

GSL_MAX(a, b)
This macro returns the maximum of a and b. It is defined as ((a) > (b) ? (a):(b)).

GSL_MIN(a, b)
This macro returns the minimum of a and b. It is defined as ((a) < (b) ? (a):(b)).

extern inline double GSL_MAX_DBL (double a, double b)
This function returns the maximum of the double precision numbers a and b using an inline function. The use
of a function allows for type checking of the arguments as an extra safety feature. On platforms where inline
functions are not available the macro GSL_MNAX will be automatically substituted.

extern inline double GSL_MIN_DBL (double a, double b)
This function returns the minimum of the double precision numbers a and b using an inline function. The use
of a function allows for type checking of the arguments as an extra safety feature. On platforms where inline
functions are not available the macro GSL_NMIN will be automatically substituted.

extern inline int GSL_MAX_INT (int a, int b)

extern inline int GSL_MIN_INT (int a, int b)
These functions return the maximum or minimum of the integers a and b using an inline function. On platforms
where inline functions are not available the macros GSL_MAX or GSL_MIN will be automatically substituted.

extern inline long double GSL_MAX_LDBL (long double a, long double b)

extern inline long double GSL_MIN_LDBL (long double a, long double b)
These functions return the maximum or minimum of the long doubles a and b using an inline function. On
platforms where inline functions are not available the macros GSL_MAX or GSL_MIN will be automatically sub-
stituted.
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4.8 Approximate Comparison of Floating Point Numbers

It is sometimes useful to be able to compare two floating point numbers approximately, to allow for rounding and
truncation errors. The following function implements the approximate floating-point comparison algorithm proposed
by D.E. Knuth in Section 4.2.2 of “Seminumerical Algorithms” (3rd edition).

int gs1_£cmp (double x, double y, double epsilon)
This function determines whether x and y are approximately equal to a relative accuracy epsilon.

The relative accuracy is measured using an interval of size 26, where § = 2¥¢ and k is the maximum base-2
exponent of x and y as computed by the function frexp().

If x and y lie within this interval, they are considered approximately equal and the function returns 0. Otherwise
if x < y, the function returns —1, or if > y, the function returns +1.

Note that = and y are compared to relative accuracy, so this function is not suitable for testing whether a value is
approximately zero.

The implementation is based on the package fcmp by T.C. Belding.
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CHAPTER
FIVE

COMPLEX NUMBERS

The functions described in this chapter provide support for complex numbers. The algorithms take care to avoid
unnecessary intermediate underflows and overflows, allowing the functions to be evaluated over as much of the complex
plane as possible.

For multiple-valued functions the branch cuts have been chosen to follow the conventions of Abramowitz and Stegun.
The functions return principal values which are the same as those in GNU Calc, which in turn are the same as those in
“Common Lisp, The Language (Second Edition)”! and the HP-28/48 series of calculators.

The complex types are defined in the header file gsl_complex.h, while the corresponding complex functions and
arithmetic operations are defined in gs1_complex_math.h.

5.1 Representation of complex numbers

Complex numbers are represented using the type gs1l_complex. The default interface defines gs1_complex as:

typedef struct

{
double dat[2];
} gsl_complex;

The real and imaginary part are stored in contiguous elements of a two element array. This eliminates any padding
between the real and imaginary parts, dat[0] and dat[1], allowing the struct to be mapped correctly onto packed
complex arrays.

If a C compiler is available which supports the C11 standard, and the <complex.h> header file is included prior to
gsl_complex.h, then gsl_complex will be defined to be the native C complex type:

typedef double complex gsl_complex

This allows users to use gsl_complex in ordinary operations such as:

gsl_complex x = 2 + 5 * I;
gsl_complex y = x + (3 - 4*I);

Important: Native C support for complex numbers was introduced in the C99 standard, and additional functionality
was added in C11. When <complex.h> is included in a user’s program prior to gsl_complex.h, GSL uses the new
C11 functionality to define the GSL_REAL and GSL_IMAG macros. It does not appear possible to properly define these
macros using the C99 standard, and so using a C99 compiler will not define gs1_complex to the native complex type.

I Note that the first edition uses different definitions.
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Some compilers, such as the gcc 4.8 series implement only a portion of the C11 standard and so they may fail to
correctly compile GSL code when a user tries to turn on native complex functionality. A workaround for this issue is to
either remove <complex.h> from the include list, or add -DGSL_COMPLEX_LEGACY to the compiler flags, which will
use the older struct-based definition of gsl_complex.

5.2 Complex humber macros

The following C macros offer convenient ways to manipulate complex numbers.

GSL_REAL (z)

GSL_IMAG(z)
These macros return a memory location (Ivalue) corresponding to the real and imaginary parts respectively of
the complex number z. This allows users to perform operations like:

gsl_complex x, y;

GSL_REAL (x) 4;
GSL_IMAG(xX) = 2;

GSL_REAL (y) GSL_REAL (x);
GSL_IMAG(y) = GSL_REAL(x);

In other words, these macros can both read and write to the real and imaginary parts of a complex variable.

GSL_SET_COMPLEX(zp, X, y)
This macro uses the Cartesian components (%, y) to set the real and imaginary parts of the complex number
pointed to by zp. For example:

GSL_SET_COMPLEX(&z, 3, 4)

sets z to be 3 + 41.

5.3 Assignhing complex numbers

gsl_complex gsl_complex_rect (double x, double y)
This function uses the rectangular Cartesian components (, y) to return the complex number z = x + iy. An
inline version of this function is used when HAVE_INLINE is defined.

gsl_complex gsl_complex_polar(double r, double theta)
This function returns the complex number z = r exp(if) = r(cos() + isin(#)) from the polar representation
(r, theta).
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5.4 Properties of complex humbers

double gsl_complex_arg(gsl_complex z)
This function returns the argument of the complex number z, arg(z), where —w < arg(z) <= .

double gs1_complex_abs(gsl_complex z)
This function returns the magnitude of the complex number z, |z|.

double gs1_complex_abs2(gsl_complex z)
This function returns the squared magnitude of the complex number z, |z|2.

double gs1_complex_logabs(gsl_complex z)
This function returns the natural logarithm of the magnitude of the complex number z, log |z|. It allows an
accurate evaluation of log |z| when |z| is close to one. The direct evaluation of log(gsl_complex_abs(z))
would lead to a loss of precision in this case.

5.5 Complex arithmetic operators

gsl_complex gsl_complex_add(gsl_complex a, gsl_complex b)
This function returns the sum of the complex numbers a and b, z = a + b.

gsl_complex gsl_complex_sub(gsl_complex a, gsl_complex b)
This function returns the difference of the complex numbers a and b, z = a — b.

gsl_complex gsl_complex_mul (gsl_complex a, gsl_complex b)
This function returns the product of the complex numbers a and b, z = ab.

gsl_complex gsl_complex_div(gsl_complex a, gsl_complex b)
This function returns the quotient of the complex numbers a and b, z = a/b.

gsl_complex gsl_complex_add_real (gsl_complex a, double x)
This function returns the sum of the complex number a and the real number x, z = a + x.

gsl_complex gsl_complex_sub_real (gsl_complex a, double x)
This function returns the difference of the complex number a and the real number x, z = a — .

gsl_complex gsl_complex_mul_real (gsl_complex a, double x)
This function returns the product of the complex number a and the real number x, z = az.

gsl_complex gsl_complex_div_real (gsl_complex a, double x)
This function returns the quotient of the complex number a and the real number x, z = a/x.

gsl_complex gsl_complex_add_imag(gsl_complex a, double y)
This function returns the sum of the complex number a and the imaginary number ¢y, z = a + y.

gsl_complex gsl_complex_sub_imag(gsl_complex a, double y)
This function returns the difference of the complex number a and the imaginary number 2y, z = a — y.

gsl_complex gsl_complex_mul_imag(gsl_complex a, double y)
This function returns the product of the complex number a and the imaginary number iy, z = a * (iy).

gsl_complex gsl_complex_div_imag(gsl_complex a, double y)
This function returns the quotient of the complex number a and the imaginary number iy, z = a/(iy).

gsl_complex gsl_complex_conjugate(gsl_complex z)
This function returns the complex conjugate of the complex number z, 2* = x — iy.

gsl_complex gsl_complex_inverse (gsl_complex z)
This function returns the inverse, or reciprocal, of the complex number z, 1/z = (z — iy)/(z? + y?).
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gsl_complex gsl_complex_negative(gsl_complex z)
This function returns the negative of the complex number z, —z = (—z) + i(—y).

5.6 Elementary Complex Functions

gsl_complex gsl_complex_sqrt(gsl_complex z)
This function returns the square root of the complex number z, 1/z. The branch cut is the negative real axis. The
result always lies in the right half of the complex plane.

gsl_complex gsl_complex_sqrt_real (double x)
This function returns the complex square root of the real number x, where x may be negative.

gsl_complex gsl_complex_pow(gsl_complex z, gsl_complex a)
The function returns the complex number z raised to the complex power a, z®. This is computed as exp(log(z) *
a) using complex logarithms and complex exponentials.

gsl_complex gsl_complex_pow_real (gsl_complex z, double x)
This function returns the complex number z raised to the real power x, z*.

gsl_complex gsl_complex_exp (gsl_complex z)
This function returns the complex exponential of the complex number z, exp(z).

gsl_complex gsl_complex_log(gsl_complex z)
This function returns the complex natural logarithm (base €) of the complex number z, log(z). The branch cut
is the negative real axis.

gsl_complex gsl_complex_log1®(gsl_complex z)
This function returns the complex base-10 logarithm of the complex number z, log;,(2).

gsl_complex gsl_complex_log_b(gsl_complex z, gsl_complex b)
This function returns the complex base-b logarithm of the complex number z, log, (z). This quantity is computed
as the ratio log(z)/ log(b).

5.7 Complex Trigonometric Functions

gsl_complex gsl_complex_sin(gsl_complex z)
This function returns the complex sine of the complex number z, sin(z) = (exp(iz) — exp(—iz))/(21).

gsl_complex gsl_complex_cos (gsl_complex z)
This function returns the complex cosine of the complex number z, cos(z) = (exp(iz) + exp(—iz))/2.

gsl_complex gsl_complex_tan(gsl_complex z)
This function returns the complex tangent of the complex number z, tan(z) = sin(z)/ cos(z).

gsl_complex gsl_complex_sec(gsl_complex z)
This function returns the complex secant of the complex number z, sec(z) = 1/ cos(z).

gsl_complex gsl_complex_csc(gsl_complex z)
This function returns the complex cosecant of the complex number z, csc(z) = 1/ sin(z).

gsl_complex gsl_complex_cot (gsl_complex z)
This function returns the complex cotangent of the complex number z, cot(z) = 1/ tan(z).

26 Chapter 5. Complex Numbers



GNU Scientific Library, Release 2.7

5.8 Inverse Complex Trigonometric Functions

gsl_complex gsl_complex_arcsin(gsl_complex z)
This function returns the complex arcsine of the complex number z, arcsin(z). The branch cuts are on the real
axis, less than —1 and greater than 1.

gsl_complex gsl_complex_arcsin_real (double z)
This function returns the complex arcsine of the real number z, arcsin(z). For z between —1 and 1, the function
returns a real value in the range [—7 /2, 7/2]. For z less than —1 the result has a real part of —7/2 and a positive
imaginary part. For z greater than 1 the result has a real part of 7/2 and a negative imaginary part.

gsl_complex gsl_complex_arccos (gsl_complex z)
This function returns the complex arccosine of the complex number z, arccos(z). The branch cuts are on the
real axis, less than —1 and greater than 1.

gsl_complex gsl_complex_arccos_real (double z)
This function returns the complex arccosine of the real number z, arccos(z). For z between —1 and 1, the
function returns a real value in the range [0, 7]. For z less than —1 the result has a real part of 7 and a negative
imaginary part. For z greater than 1 the result is purely imaginary and positive.

gsl_complex gsl_complex_arctan(gsl_complex z)
This function returns the complex arctangent of the complex number z, arctan(z). The branch cuts are on the
imaginary axis, below —¢ and above 1.

gsl_complex gsl_complex_arcsec(gsl_complex z)
This function returns the complex arcsecant of the complex number z, arcsec(z) = arccos(1/z2).

gsl_complex gsl_complex_arcsec_real (double z)
This function returns the complex arcsecant of the real number z, arcsec(z) = arccos(1/z).

gsl_complex gsl_complex_arccsc(gsl_complex z)
This function returns the complex arccosecant of the complex number z, arccsc(z) = arcsin(1/z).

gsl_complex gsl_complex_arccsc_real (double z)
This function returns the complex arccosecant of the real number z, arccsc(z) = arcsin(1/z).

gsl_complex gsl_complex_arccot (gsl_complex z)
This function returns the complex arccotangent of the complex number z, arccot(z) = arctan(1/z).

5.9 Complex Hyperbolic Functions

gsl_complex gsl_complex_sinh(gsl_complex z)
This function returns the complex hyperbolic sine of the complex number z, sinh(z) = (exp(z) — exp(—2))/2.

gsl_complex gsl_complex_cosh(gsl_complex z)
This function returns the complex hyperbolic cosine of the complex number z, cosh(z) = (exp(z)+exp(—=z))/2.

gsl_complex gsl_complex_tanh(gsl_complex z)
This function returns the complex hyperbolic tangent of the complex number z, tanh(z) = sinh(z)/ cosh(z).

gsl_complex gsl_complex_sech(gsl_complex z)
This function returns the complex hyperbolic secant of the complex number z, sech(z) = 1/ cosh(z).

gsl_complex gsl_complex_csch(gsl_complex z)
This function returns the complex hyperbolic cosecant of the complex number z, csch(z) = 1/sinh(z).

gsl_complex gsl_complex_coth(gsl_complex z)
This function returns the complex hyperbolic cotangent of the complex number z, coth(z) = 1/ tanh(z).
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5.10 Inverse Complex Hyperbolic Functions

gsl_complex gsl_complex_arcsinh(gsl_complex z)
This function returns the complex hyperbolic arcsine of the complex number z, arcsinh(z). The branch cuts are
on the imaginary axis, below —: and above .

gsl_complex gsl_complex_arccosh(gsl_complex z)
This function returns the complex hyperbolic arccosine of the complex number z, arccosh(z). The branch cut is
on the real axis, less than 1. Note that in this case we use the negative square root in formula 4.6.21 of Abramowitz
& Stegun giving arccosh(z) = log(z — v2%2 — 1).

gsl_complex gsl_complex_arccosh_real (double z)
This function returns the complex hyperbolic arccosine of the real number z, arccosh(z).

gsl_complex gsl_complex_arctanh(gsl_complex z)
This function returns the complex hyperbolic arctangent of the complex number z, arctanh(z). The branch cuts
are on the real axis, less than —1 and greater than 1.

gsl_complex gsl_complex_arctanh_real (double z)
This function returns the complex hyperbolic arctangent of the real number z, arctanh(z).

gsl_complex gsl_complex_arcsech(gsl_complex z)
This function returns the complex hyperbolic arcsecant of the complex number z, arcsech(z) = arccosh(1/z).

gsl_complex gsl_complex_arccsch(gsl_complex z)
This function returns the complex hyperbolic arccosecant of the complex number z, arccsch(z) = arcsinh(1/z).

gsl_complex gsl_complex_arccoth(gsl_complex z)
This function returns the complex hyperbolic arccotangent of the complex number z, arccoth(z) =
arctanh(1/z).

5.11 References and Further Reading

The implementations of the elementary and trigonometric functions are based on the following papers,

e T.E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang, “Implementing Complex Elementary Functions Using Ex-
ception Handling”, ACM Transactions on Mathematical Software, Volume 20 (1994), pp 215-244, Corrigenda,
pS53

* T. E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang, “Implementing the complex arcsin and arccosine functions
using exception handling”, ACM Transactions on Mathematical Software, Volume 23 (1997) pp 299-335

The general formulas and details of branch cuts can be found in the following books,

* Abramowitz and Stegun, Handbook of Mathematical Functions, “Circular Functions in Terms of Real and Imag-
inary Parts”, Formulas 4.3.55-58, “Inverse Circular Functions in Terms of Real and Imaginary Parts”, Formulas
4.4.37-39, “Hyperbolic Functions in Terms of Real and Imaginary Parts”, Formulas 4.5.49-52, “Inverse Hyper-
bolic Functions—relation to Inverse Circular Functions”, Formulas 4.6.14-19.

* Dave Gillespie, Calc Manual, Free Software Foundation, ISBN 1-882114-18-3
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SIX

POLYNOMIALS

This chapter describes functions for evaluating and solving polynomials. There are routines for finding real and complex
roots of quadratic and cubic equations using analytic methods. An iterative polynomial solver is also available for
finding the roots of general polynomials with real coefficients (of any order). The functions are declared in the header
file gsl_poly.h.

6.1 Polynomial Evaluation

The functions described here evaluate the polynomial
P(z) = ¢[0] 4 c[1]z + c[2]z? + - - - + c[len — l]xlen—l

using Horner’s method for stability. Inline versions of these functions are used when HAVE_INLINE is defined.

double gsl_poly_eval (const double c[], const int len, const double x)
This function evaluates a polynomial with real coefficients for the real variable x.

gsl_complex gsl_poly_complex_eval (const double c[], const int len, const gsl_complex z)
This function evaluates a polynomial with real coefficients for the complex variable z.

gsl_complex gsl_complex_poly_complex_eval (const gsl_complex c[], const int len, const gsl_complex z)
This function evaluates a polynomial with complex coefficients for the complex variable z.

int gsl_poly_eval_derivs(const double c[], const size_t lenc, const double x, double res[], const size_t lenres)
This function evaluates a polynomial and its derivatives storing the results in the array res of size lenres. The
output array contains the values of d* P(z)/dz* for the specified value of x starting with k = 0.

6.2 Divided Difference Representation of Polynomials

The functions described here manipulate polynomials stored in Newton’s divided-difference representation. The use of
divided-differences is described in Abramowitz & Stegun sections 25.1.4 and 25.2.26, and Burden and Faires, chapter
3, and discussed briefly below.

Given a function f(z), an nth degree interpolating polynomial P, (x) can be constructed which agrees with f at
n + 1 distinct points zg, z1, ..., ,. This polynomial can be written in a form known as Newton’s divided-difference
representation

Py (x) = f(xz0) + Z[mo,xl, el —zo) (@ — 1) - (T — TR—1)
k=1
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where the divided differences [xg, 21, ..., )] are defined in section 25.1.4 of Abramowitz and Stegun. Additionally, it
is possible to construct an interpolating polynomial of degree 2n 4+ 1 which also matches the first derivatives of f at
the points g, x1, ..., 5. This is called the Hermite interpolating polynomial and is defined as

2n+1

Hapia(2) = f(z0) + Y [20, 21,00 2] (2 — 20) (@ = 21) -+ (2 — 25 1)
k=1

where the elements of z = {x¢, zo, 21,21, ..., Tn, Tp } are defined by zop = 2zop+1 = k. The divided-differences
[20, 21, ..., 21| are discussed in Burden and Faires, section 3.4.

int gs1_poly_dd_init (double dd[], const double xa[], const double ya[], size_t size)
This function computes a divided-difference representation of the interpolating polynomial for the points (z, y)
stored in the arrays xa and ya of length size. On output the divided-differences of (xa, ya) are stored in the
array dd, also of length size. Using the notation above, dd[k] = [z¢, 21, ..., Tx].

double gsl_poly_dd_eval (const double dd[], const double xa[], const size_t size, const double x)
This function evaluates the polynomial stored in divided-difference form in the arrays dd and xa of length size
at the point x. An inline version of this function is used when HAVE_INLINE is defined.

int gsl_poly_dd_taylor (double c[], double xp, const double dd[], const double xa[], size_t size, double w[])
This function converts the divided-difference representation of a polynomial to a Taylor expansion. The divided-
difference representation is supplied in the arrays dd and xa of length size. On output the Taylor coefficients
of the polynomial expanded about the point xp are stored in the array c also of length size. A workspace of
length size must be provided in the array w.

int gsl_poly_dd_hermite_init(double dd[], double za[], const double xa[], const double ya[], const double dya[],
const size_t size)

This function computes a divided-difference representation of the interpolating Hermite polynomial for the points
(z,y) stored in the arrays xa and ya of length size. Hermite interpolation constructs polynomials which also
match first derivatives dy/dx which are provided in the array dya also of length size. The first derivatives can
be incorported into the usual divided-difference algorithm by forming a new dataset z = {xq, zg, 21, 21, ...},
which is stored in the array za of length 2*size on output. On output the divided-differences of the Hermite
representation are stored in the array dd, also of length 2*size. Using the notation above, dd[k] = [z9, 21, ..., Zk].
The resulting Hermite polynomial can be evaluated by calling gs1_poly_dd_eval () and using za for the input
argument xa.

6.3 Quadratic Equations

int gsl_poly_solve_quadratic(double a, double b, double ¢, double *x0, double *x1)
This function finds the real roots of the quadratic equation,

ax? +bxr+c=0

The number of real roots (either zero, one or two) is returned, and their locations are stored in x0 and x1. If no
real roots are found then x@ and x1 are not modified. If one real root is found (i.e. if a = 0) then it is stored in
x0. When two real roots are found they are stored in x0 and x1 in ascending order. The case of coincident roots
is not considered special. For example (z — 1)? = 0 will have two roots, which happen to have exactly equal
values.

The number of roots found depends on the sign of the discriminant b — 4ac. This will be subject to rounding
and cancellation errors when computed in double precision, and will also be subject to errors if the coeflicients
of the polynomial are inexact. These errors may cause a discrete change in the number of roots. However, for
polynomials with small integer coefficients the discriminant can always be computed exactly.
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int gsl_poly_complex_solve_quadratic(double a, double b, double c, gsl_complex *z0, gsl_complex *z1)
This function finds the complex roots of the quadratic equation,

a2 +bz+c=0

The number of complex roots is returned (either one or two) and the locations of the roots are stored in z® and
z1. The roots are returned in ascending order, sorted first by their real components and then by their imaginary
components. If only one real root is found (i.e. if @ = 0) then it is stored in z0.

6.4 Cubic Equations

int gsl_poly_solve_cubic(double a, double b, double ¢, double *x0, double *x1, double *x2)
This function finds the real roots of the cubic equation,

22 4ar+br+ec=0

with a leading coefficient of unity. The number of real roots (either one or three) is returned, and their locations
are stored in x0, x1 and x2. If one real root is found then only x0 is modified. When three real roots are found
they are stored in x@, x1 and x2 in ascending order. The case of coincident roots is not considered special. For
example, the equation (z — 1)3 = 0 will have three roots with exactly equal values. As in the quadratic case,
finite precision may cause equal or closely-spaced real roots to move off the real axis into the complex plane,
leading to a discrete change in the number of real roots.

int gsl_poly_complex_solve_cubic(double a, double b, double c, gsl_complex *z0, gsl_complex *z1,
gsl_complex *z2)
This function finds the complex roots of the cubic equation,

Bra+bz4+e¢=0

The number of complex roots is returned (always three) and the locations of the roots are stored in z@, z1 and
z2. The roots are returned in ascending order, sorted first by their real components and then by their imaginary
components.

6.5 General Polynomial Equations

The roots of polynomial equations cannot be found analytically beyond the special cases of the quadratic, cubic and
quartic equation. The algorithm described in this section uses an iterative method to find the approximate locations of
roots of higher order polynomials.

type gsl_poly_complex_workspace
This workspace contains parameters used for finding roots of general polynomials

gsl_poly_complex_workspace *gsl_poly_complex_workspace_alloc(size_t n)
This function allocates space for a gsI_poly_complex_workspace struct and a workspace suitable for solving
a polynomial with n coefficients using the routine gsl_poly_complex_solve().

The function returns a pointer to the newly allocated gs1_poly_complex_workspace if no errors were detected,
and a null pointer in the case of error.

void gsl_poly_complex_workspace_free(gsi_poly_complex_workspace *w)
This function frees all the memory associated with the workspace w.
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int gsl_poly_complex_solve(const double *a, size_t n, gsi_poly_complex_workspace *w,

gsl_complex_packed_ptr z)
This function computes the roots of the general polynomial

P(z) =ag + a1z + agx? + -+ ap_12""

using balanced-QR reduction of the companion matrix. The parameter n specifies the length of the coefficient
array. The coeflicient of the highest order term must be non-zero. The function requires a workspace w of the
appropriate size. The n — 1 roots are returned in the packed complex array z of length 2(n — 1), alternating real

and imaginary parts.

The function returns GSL_SUCCESS if all the roots are found. If the QR reduction does not converge, the er-
ror handler is invoked with an error code of GSL_EFAILED. Note that due to finite precision, roots of higher
multiplicity are returned as a cluster of simple roots with reduced accuracy. The solution of polynomials with
higher-order roots requires specialized algorithms that take the multiplicity structure into account (see e.g. Z.
Zeng, Algorithm 835, ACM Transactions on Mathematical Software, Volume 30, Issue 2 (2004), pp 218-236).

6.6 Examples

To demonstrate the use of the general polynomial solver we will take the polynomial P(x) = 2° — 1 which has these
roots:

1,627.”/576471—1/57667”/5,687”/5

The following program will find these roots.

#include <stdio.h>
#include <gsl/gsl_poly.h>

int
main (void)

{

int i;

/% coefficients of P(Xx) = -1 + xA5 */
double af[6] = { -1, ®, 0, 0, 0, 1 };
double z[10];

gsl_poly_complex_workspace * w
= gsl_poly_complex_workspace_alloc (6);

gsl_poly_complex_solve (a, 6, w, z);
gsl_poly_complex_workspace_free (w);
for (4 = 0; 1 < 5; i++)
{
printf ("z%d = \n",
i, z[2*i], z[2*i+1]);
}

return 0;

The output of the program is
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z0 = -0.809016994374947673 +0.587785252292473359
z1 = -0.809016994374947673 -0.587785252292473359
z2 = +0.309016994374947507 +0.951056516295152976
z3 = +0.309016994374947507 -0.951056516295152976
z4 = +0.999999999999999889 +0.000000000000000000

which agrees with the analytic result, z, = exp(27ni/5).

6.7 References and Further Reading

The balanced-QR method and its error analysis are described in the following papers,

* R.S. Martin, G. Peters and J.H. Wilkinson, “The QR Algorithm for Real Hessenberg Matrices”, Numerische
Mathematik, 14 (1970), 219-231.

¢ B.N. Parlett and C. Reinsch, “Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors”, Numerische
Mathematik, 13 (1969), 293-304.

* A. Edelman and H. Murakami, “Polynomial roots from companion matrix eigenvalues”, Mathematics of Com-
putation, Vol.: 64, No.: 210 (1995), 763-776.

The formulas for divided differences are given in the following texts,
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CHAPTER
SEVEN

SPECIAL FUNCTIONS

This chapter describes the GSL special function library. The library includes routines for calculating the values of
Airy functions, Bessel functions, Clausen functions, Coulomb wave functions, Coupling coefficients, the Dawson func-
tion, Debye functions, Dilogarithms, Elliptic integrals, Jacobi elliptic functions, Error functions, Exponential integrals,
Fermi-Dirac functions, Gamma functions, Gegenbauer functions, Hermite polynomials and functions, Hypergeometric
functions, Laguerre functions, Legendre functions and Spherical Harmonics, the Psi (Digamma) Function, Synchrotron
functions, Transport functions, Trigonometric functions and Zeta functions. Each routine also computes an estimate
of the numerical error in the calculated value of the function.

The functions in this chapter are declared in individual header files, such as gsl_sf_airy.h, gsl_sf_bessel.h, etc.
The complete set of header files can be included using the file gs1_sf.h.

7.1 Usage

The special functions are available in two calling conventions, a natural form which returns the numerical value of the
function and an error-handling form which returns an error code. The two types of function provide alternative ways
of accessing the same underlying code.

The natural form returns only the value of the function and can be used directly in mathematical expressions. For
example, the following function call will compute the value of the Bessel function Jy(x):

double y = gsl_sf_bessel_J0 (x);

There is no way to access an error code or to estimate the error using this method. To allow access to this information
the alternative error-handling form stores the value and error in a modifiable argument:

gsl_sf _result result;
int status = gsl_sf bessel_JO_e (x, &result);

The error-handling functions have the suffix _e. The returned status value indicates error conditions such as overflow,
underflow or loss of precision. If there are no errors the error-handling functions return GSL_SUCCESS.
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7.2 The gsl_sf _result struct

The error handling form of the special functions always calculate an error estimate along with the value of the result.
Therefore, structures are provided for amalgamating a value and error estimate. These structures are declared in the
header file gsl_sf_result.h.

The following struct contains value and error fields.

type gsl_sf_result

typedef struct

{
double val;
double err;

} gsl_sf_result;

The field val contains the value and the field err contains an estimate of the absolute error in the value.

In some cases, an overflow or underflow can be detected and handled by a function. In this case, it may be possible to
return a scaling exponent as well as an error/value pair in order to save the result from exceeding the dynamic range of
the built-in types. The following struct contains value and error fields as well as an exponent field such that the actual
result is obtained as result * 104(el@).

type gsl_sf_result_el0®

typedef struct
{
double val;
double err;
int el0;
} gsl_sf_result_el0;

7.3 Modes

The goal of the library is to achieve double precision accuracy wherever possible. However the cost of evaluating some
special functions to double precision can be significant, particularly where very high order terms are required. In these
cases a mode argument, of type gsl_mode_t allows the accuracy of the function to be reduced in order to improve
performance. The following precision levels are available for the mode argument,

type gsl_mode_t

GSL_PREC_DOUBLE
Double-precision, a relative accuracy of approximately 2 * 10716,

GSL_PREC_SINGLE
Single-precision, a relative accuracy of approximately 1077,

GSL_PREC_APPROX
Approximate values, a relative accuracy of approximately 5 * 10~

The approximate mode provides the fastest evaluation at the lowest accuracy.
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7.4 Airy Functions and Derivatives

The Airy functions Ai(z) and Bi(z) are defined by the integral representations,

1 oo
Ai(z) = ;/0 cos(t®/3 + wt) dt

1 o
Bi(x) = = /0 (e_t3/3+””t +sin(t3/3 + wt)) dt

For further information see Abramowitz & Stegun, Section 10.4. The Airy functions are defined in the header file
gsl_sf airy.h.

7.4.1 Airy Functions
double gsl_sf_airy_Ai (double x, gs/_mode_t mode)

int gsl_sf_airy_Ai_e(double x, gs/_mode_t mode, gsl_sf result *result)
These routines compute the Airy function Ai(x) with an accuracy specified by mode.

double gsl_sf_airy_Bi (double x, gs/_mode_t mode)

int gsl_sf_airy_Bi_e(double x, gs/_mode_t mode, gsl_sf_result *result)
These routines compute the Airy function Bi(x) with an accuracy specified by mode.

double gsl_sf_airy_Ai_scaled(double x, gsl_mode_t mode)

int gsl_sf_airy_Ai_scaled_e(double x, gs/_mode_t mode, gsl_sf result *result)
These routines compute a scaled version of the Airy function S4(x)Ai(z). For > 0 the scaling factor S4(z)
is exp(+(2/3)x/2), and is 1 for 2 < 0.

double gsl_sf_airy_Bi_scaled(double X, gsi_mode_t mode)

int gsl_sf_airy_Bi_scaled_e(double x, gs/_mode_t mode, gsl_sf_result *result)
These routines compute a scaled version of the Airy function Sg(x)Bi(x). For x > 0 the scaling factor Sg(z)
is exp(—(2/3)2%/?), and is 1 for z < 0.

7.4.2 Derivatives of Airy Functions
double gsl_sf_airy_Ai_deriv(double x, gsl_mode_t mode)

int gsl_sf_airy_Ai_deriv_e(double x, gs/_mode_t mode, gsl_sf_result *result)
These routines compute the Airy function derivative Ai’(z) with an accuracy specified by mode.

double gsl_sf_airy_Bi_deriv(double x, gs/_mode_t mode)

int gsl_sf_airy_Bi_deriv_e(double x, gs/_mode_t mode, gsl_sf_result *result)
These routines compute the Airy function derivative Bi’(z) with an accuracy specified by mode.

double gsl_sf_airy_Ai_deriv_scaled(double x, gs/_mode_t mode)

int gsl_sf_airy_Ai_deriv_scaled_e(double x, gs/_mode_t mode, gsl_sf_result *result)
These routines compute the scaled Airy function derivative S 4 (x)A#’ (). For > 0 the scaling factor S4(x) is
exp(+(2/3)x3/2), and is 1 for 2 < 0.
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double gsl_sf_airy_Bi_deriv_scaled(double x, gs/_mode_t mode)

int gsl_sf_airy_Bi_deriv_scaled_e(double x, gs/_mode_t mode, gsl_sf_result *result)
These routines compute the scaled Airy function derivative Sg(z)Bi'(x). For = > 0 the scaling factor Sg(z)
is exp(—(2/3)2%/?), and is 1 for z < 0.

7.4.3 Zeros of Airy Functions
double gsl_sf_airy_zero_Ai (unsigned int s)

int gsl_sf_airy_zero_Ai_e(unsigned ints, gsl_sf result *result)
These routines compute the location of the s-th zero of the Airy function Ai(x).

double gsl_sf_airy_zero_Bi (unsigned int s)

int gsl_sf_airy_zero_Bi_e(unsigned int s, gs/_sf_result *result)
These routines compute the location of the s-th zero of the Airy function Bi(x).

7.4.4 Zeros of Derivatives of Airy Functions
double gsl_sf_airy_zero_Ai_deriv(unsigned int s)

int gsl_sf_airy_zero_Ai_deriv_e(unsigned ints, gs/_sf_result *result)
These routines compute the location of the s-th zero of the Airy function derivative Ai'(x).

double gsl_sf_airy_zero_Bi_deriv(unsigned int s)

int gsl_sf_airy_zero_Bi_deriv_e(unsigned int s, gs/_sf result *result)
These routines compute the location of the s-th zero of the Airy function derivative Bi'(z).

7.5 Bessel Functions

The routines described in this section compute the Cylindrical Bessel functions J,,(x), Y;,(z), Modified cylindrical
Bessel functions I,(z), K, (x), Spherical Bessel functions j;(z), y;(z), and Modified Spherical Bessel functions
i1(x), k;(x). For more information see Abramowitz & Stegun, Chapters 9 and 10. The Bessel functions are defined in
the header file gsl_sf_bessel.h.

7.5.1 Regular Cylindrical Bessel Functions
double gsl_sf_bessel_J0(double x)

int gsl_sf_bessel_J0_e(double x, gsl_sf_result *result)
These routines compute the regular cylindrical Bessel function of zeroth order, Jy(x).

double gsl_sf_bessel_J1(double x)

int gsl_sf_bessel_J1_e(double x, gsl_sf result *result)
These routines compute the regular cylindrical Bessel function of first order, Ji ().
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double gsl_sf_bessel_JIn(int n, double x)

int gsl_sf_bessel_Jn_e(int n, double X, gsl_sf result *result)
These routines compute the regular cylindrical Bessel function of order n, J,, (z).

int gsl_sf_bessel_Jn_array(int nmin, int nmax, double x, double result_array[])
This routine computes the values of the regular cylindrical Bessel functions J,,(z) for n from nmin to nmax
inclusive, storing the results in the array result_array. The values are computed using recurrence relations
for efficiency, and therefore may differ slightly from the exact values.

7.5.2 Irregular Cylindrical Bessel Functions
double gsl_sf_bessel_YO0(double x)

int gsl_sf_bessel_Y®_e(double x, gsl_sf result *result)
These routines compute the irregular cylindrical Bessel function of zeroth order, Yy (z), for > 0.

double gsl_sf_bessel_Y1(double x)

int gsl_sf_bessel_Y1_e(double x, gsl_sf result *result)
These routines compute the irregular cylindrical Bessel function of first order, Y7 (), for 2 > 0.

double gsl_sf_bessel_Yn(int n, double x)

int gsl_sf_bessel_Yn_e(int n, double X, gsl_sf _result *result)
These routines compute the irregular cylindrical Bessel function of order n, Y,,(z), for z > 0.

int gsl_sf_bessel_Yn_array(int nmin, int nmax, double x, double result_array[])
This routine computes the values of the irregular cylindrical Bessel functions Y, (x) for n from nmin to nmax
inclusive, storing the results in the array result_array. The domain of the function is x > 0. The values are
computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.

7.5.3 Regular Modified Cylindrical Bessel Functions
double gsl_sf_bessel_I0(double x)

int gsl_sf_bessel_I0_e(double x, gsl_sf_result *result)
These routines compute the regular modified cylindrical Bessel function of zeroth order, Iy(x).

double gsl_sf_bessel_I1(double x)

int gsl_sf_bessel_I1_e(double x, gsl_sf result *result)
These routines compute the regular modified cylindrical Bessel function of first order, I; ().

double gsl_sf_bessel_In(int n, double x)

int gsl_sf_bessel_In_e(int n, double X, gsl_sf result *result)
These routines compute the regular modified cylindrical Bessel function of order n, I,, ().

int gsl_sf_bessel_In_array(int nmin, int nmax, double x, double result_array[])
This routine computes the values of the regular modified cylindrical Bessel functions I,, () for n from nmin to
nmax inclusive, storing the results in the array result_array. The start of the range nmin must be positive or
zero. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from
the exact values.
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double gsl_sf_bessel_IO0_scaled(double x)

int gsl_sf_bessel_I0_scaled_e(double x, gsl_sf result *result)
These routines compute the scaled regular modified cylindrical Bessel function of zeroth order exp(—|z|) I (z).

double gsl_sf_bessel_TI1_scaled(double x)

int gsl_sf _bessel_I1_scaled_e(double X, gsl_sf result *result)
These routines compute the scaled regular modified cylindrical Bessel function of first order exp(—|z|)I1(z).

double gsl_sf_bessel_In_scaled(int n, double x)

int gsl_sf_bessel_In_scaled_e(int n, double X, gs/_sf result *result)
These routines compute the scaled regular modified cylindrical Bessel function of order n, exp(—|z|) I, (x)

int gsl_sf _bessel_In_scaled_array(int nmin, int nmax, double X, double result_array[])
This routine computes the values of the scaled regular cylindrical Bessel functions exp(—|z|)I,,(x) for n from
nmin to nmax inclusive, storing the results in the array result_array. The start of the range nmin must be
positive or zero. The values are computed using recurrence relations for efficiency, and therefore may differ
slightly from the exact values.

7.5.4 Irregular Modified Cylindrical Bessel Functions
double gsl_sf_bessel_KO0(double x)

int gsl_sf_bessel_KO®_e(double x, gsl_sf result *result)
These routines compute the irregular modified cylindrical Bessel function of zeroth order, Ky (x), for z > 0.

double gsl_sf_bessel_K1(double x)

int gsl_sf_bessel_K1_e(double x, gsl_sf result *result)
These routines compute the irregular modified cylindrical Bessel function of first order, K (z), for 2 > 0.

double gsl_sf_bessel_Kn(int n, double x)

int gsl_sf_bessel_Kn_e(int n, double X, gsl_sf _result *result)
These routines compute the irregular modified cylindrical Bessel function of order n, K, (x), for x > 0.

int gsl_sf_bessel_Kn_array (int nmin, int nmax, double x, double result_array[])
This routine computes the values of the irregular modified cylindrical Bessel functions K, (x) for n from nmin
to nmax inclusive, storing the results in the array result_array. The start of the range nmin must be positive
or zero. The domain of the function is x > 0. The values are computed using recurrence relations for efficiency,
and therefore may differ slightly from the exact values.

double gsl_sf_bessel_KO0_scaled(double x)

int gsl_sf_bessel_KO®_scaled_e(double x, gsl_sf result *result)
These routines compute the scaled irregular modified cylindrical Bessel function of zeroth order exp(z)Ko(z)
for z > 0.

double gsl_sf_bessel_K1_scaled(double x)

int gsl_sf _bessel_K1_scaled_e(double x, gsl_sf _result *result)
These routines compute the scaled irregular modified cylindrical Bessel function of first order exp(x) K () for
x> 0.
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double gsl_sf_bessel_Kn_scaled(int n, double x)

int gsl_sf_bessel_Kn_scaled_e(int n, double X, gs/_sf result *result)
These routines compute the scaled irregular modified cylindrical Bessel function of order n, exp(x) K, (z), for
z > 0.

int gsl_sf_bessel_Kn_scaled_array(int nmin, int nmax, double x, double result_array[])
This routine computes the values of the scaled irregular cylindrical Bessel functions exp(z) K, (z) for n from
nmin to nmax inclusive, storing the results in the array result_array. The start of the range nmin must be
positive or zero. The domain of the function is x > 0. The values are computed using recurrence relations for
efficiency, and therefore may differ slightly from the exact values.

7.5.5 Regular Spherical Bessel Functions
double gsl_sf_bessel_j0(double x)

int gsl_sf_bessel_j0®_e(double x, gsl_sf result *result)
These routines compute the regular spherical Bessel function of zeroth order, jo(z) = sin(z)/x.

double gsl_sf_bessel_jl(double x)

int gsl_sf_bessel_jl1_e(double x, gsl_sf_result *result)
These routines compute the regular spherical Bessel function of first order, j;(z) = (sin(x)/x — cos(z))/z.

double gsl_sf_bessel_j2(double x)

int gsl_sf_bessel_j2_e(double x, gsl_sf result *result)
These routines compute the regular spherical Bessel function of second order, ja(x) = ((3/2% — 1) sin(z) —

3cos(z)/x)/x.
double gsl_sf_bessel_jl(int1, double x)

int gsl_sf_bessel_jl_e(int 1, double x, gs/_sf_result *result)
These routines compute the regular spherical Bessel function of order 1, j;(z), for{ > 0 and = > 0.

int gsl_sf_bessel_jl_array(int Imax, double x, double result_array[])
This routine computes the values of the regular spherical Bessel functions j; () for [ from 0 to Imax inclusive for
Imax > 0and x > 0, storing the results in the array result_array. The values are computed using recurrence
relations for efficiency, and therefore may differ slightly from the exact values.

int gsl_sf_bessel_jl_steed_array (int Imax, double x, double *result_array)
This routine uses Steed’s method to compute the values of the regular spherical Bessel functions j; () for [ from
0 to Imax inclusive for Imaxz > 0 and > 0, storing the results in the array result_array. The Steed/Barnett
algorithm is described in Comp. Phys. Comm. 21, 297 (1981). Steed’s method is more stable than the recurrence
used in the other functions but is also slower.
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7.5.6 Irregular Spherical Bessel Functions
double gsl_sf_bessel_y0(double x)

int gsl_sf_bessel_y®_e(double x, gsl_sf result *result)
These routines compute the irregular spherical Bessel function of zeroth order, yo(z) = — cos(z)/x.

double gsl_sf_bessel_y1l(double x)

int gsl_sf_bessel_yl_e(double x, gsl_sf result *result)
These routines compute the irregular spherical Bessel function of first order, y1 () = —(cos(z)/x + sin(z)) /.

double gsl_sf_bessel_y2(double x)

int gsl_sf_bessel_y2_e(double x, gsl_sf result *result)
These routines compute the irregular spherical Bessel function of second order, y2 () = (—3/2%+1/z) cos(x)—
(3/2?) sin(z).

double gsl_sf_bessel_yl (int 1, double x)

int gsl_sf_bessel_yl_e(int 1, double x, gs/_sf_result *result)
These routines compute the irregular spherical Bessel function of order 1, y;(z), for I > 0.

int gsl_sf_bessel_yl_array(int Imax, double x, double result_array[])
This routine computes the values of the irregular spherical Bessel functions y;(x) for { from 0 to Imax inclusive
for lmax > 0, storing the results in the array result_array. The values are computed using recurrence
relations for efficiency, and therefore may differ slightly from the exact values.

7.5.7 Regular Modified Spherical Bessel Functions

The regular modified spherical Bessel functions i;(x) are related to the modified Bessel functions of fractional order,
() = /) (20) 141 /2(7)

double gsl_sf_bessel_i0_scaled(double x)

int gsl_sf_bessel_i®_scaled_e(double x, gsl_sf result *result)
These routines compute the scaled regular modified spherical Bessel function of zeroth order, exp(—|x|)ig ().

double gsl_sf_bessel_il_scaled(double x)

int gsl_sf _bessel_il_scaled_e(double X, gsl_sf result *result)
These routines compute the scaled regular modified spherical Bessel function of first order, exp(—|z|)i1 ().

double gsl_sf_bessel_i2_scaled(double x)

int gsl_sf_bessel_i2_scaled_e(double x, gsl_sf result *result)
These routines compute the scaled regular modified spherical Bessel function of second order, exp(—|z|)ia(x)

double gsl_sf_bessel_il_scaled(int I, double x)

int gsl_sf_bessel_il_scaled_e(int 1, double x, gs/_sf_result *result)
These routines compute the scaled regular modified spherical Bessel function of order 1, exp(—|z|)¢;(z)
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int gsl_sf_bessel_il_scaled_array(int Imax, double x, double result_array[])
This routine computes the values of the scaled regular modified spherical Bessel functions exp(—|xz|)¢;(z) for I
from 0 to Imax inclusive for lmax > 0, storing the results in the array result_array. The values are computed
using recurrence relations for efficiency, and therefore may differ slightly from the exact values.

7.5.8 Irregular Modified Spherical Bessel Functions

The irregular modified spherical Bessel functions k;(x) are related to the irregular modified Bessel functions of frac-
tional order, k;(x) = \/7/(22) K11 /2(x).
double gsl_sf_bessel_k®_scaled(double x)

int gsl_sf_bessel_k®_scaled_e(double x, gsl_sf result *result)
These routines compute the scaled irregular modified spherical Bessel function of zeroth order, exp(z)ko(z),
for z > 0.

double gsl_sf_bessel_k1_scaled(double x)

int gsl_sf_bessel_k1_scaled_e(double X, gsl_sf result *result)
These routines compute the scaled irregular modified spherical Bessel function of first order, exp(z)k1 (), for
x> 0.

double gsl_sf_bessel_k2_scaled(double x)

int gsl_sf_bessel_k2_scaled_e(double x, gsl_sf result *result)
These routines compute the scaled irregular modified spherical Bessel function of second order, exp(z)ks(x),
forz > 0.

double gsl_sf_bessel_kl_scaled(int I, double x)

int gsl_sf_bessel_kl_scaled_e(int 1, double x, gsl_sf_result *result)
These routines compute the scaled irregular modified spherical Bessel function of order 1, exp(z)k;(z), for
x> 0.

int gsl_sf_bessel_kl_scaled_array(int Imax, double x, double result_array[])
This routine computes the values of the scaled irregular modified spherical Bessel functions exp(x)k;(x) for
from 0 to Imax inclusive for Imaz > 0 and = > 0, storing the results in the array result_array. The values
are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.

7.5.9 Regular Bessel Function—Fractional Order
double gsl_sf_bessel_Jnu(double nu, double x)

int gsl_sf_bessel_Jnu_e(double nu, double x, gsl_sf result *result)
These routines compute the regular cylindrical Bessel function of fractional order v, J, (z).

int gsl_sf_bessel_sequence_Jnu_e (double nu, gs/_mode_t mode, size_t size, double v[])
This function computes the regular cylindrical Bessel function of fractional order v, J,, (x), evaluated at a series
of x values. The array v of length size contains the x values. They are assumed to be strictly ordered and
positive. The array is over-written with the values of J,, (z;).
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7.5.10 Irregular Bessel Functions—Fractional Order
double gsl_sf_bessel_Ynu(double nu, double x)

int gsl_sf_bessel_Ynu_e(double nu, double x, gsl_sf result *result)
These routines compute the irregular cylindrical Bessel function of fractional order v, Y, (z).

7.5.11 Regular Modified Bessel Functions—Fractional Order
double gsl_sf_bessel_Inu(double nu, double x)

int gsl_sf_bessel_Inu_e(double nu, double x, gsl_sf result *result)
These routines compute the regular modified Bessel function of fractional order v, I,,(x) for z > 0, v > 0.

double gsl_sf_bessel_Inu_scaled(double nu, double x)

int gsl_sf_bessel_Inu_scaled_e(double nu, double X, gs/_sf result *result)
These routines compute the scaled regular modified Bessel function of fractional order v, exp(—|z|)I, () for
z>0,v>0.

7.5.12 Irregular Modified Bessel Functions—Fractional Order
double gsl_sf_bessel_Knu(double nu, double x)

int gsl_sf_bessel_Knu_e(double nu, double x, gsl_sf_result *result)
These routines compute the irregular modified Bessel function of fractional order v, K, (z) for z > 0, v > 0.

double gsl_sf_bessel_lnKnu(double nu, double x)

int gsl_sf_bessel_lnKnu_e (double nu, double x, gsi_sf result *result)
These routines compute the logarithm of the irregular modified Bessel function of fractional order v, In(K, (x))
forz > 0,v > 0.

double gsl_sf_bessel_Knu_scaled(double nu, double x)

int gsl_sf_bessel_Knu_scaled_e(double nu, double X, gs/_sf_result *result)
These routines compute the scaled irregular modified Bessel function of fractional order v, exp(+|x|) K, (x) for
z>0,v>0.

7.5.13 Zeros of Regular Bessel Functions
double gsl_sf_bessel_zero_J0(unsigned int s)

int gsl_sf_bessel_zero_JO_e(unsigned int s, gs/_sf result *result)
These routines compute the location of the s-th positive zero of the Bessel function Jy(z).

double gsl_sf_bessel_zero_J1(unsigned int s)

int gsl_sf _bessel_zero_J1_e(unsigned int s, gsl_sf result *result)
These routines compute the location of the s-th positive zero of the Bessel function J (z).
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double gsl_sf_bessel_zero_Jnu(double nu, unsigned int s)

int gsl_sf_bessel_zero_Jnu_e(double nu, unsigned int s, gs/_sf result *result)
These routines compute the location of the s-th positive zero of the Bessel function J, (x). The current imple-
mentation does not support negative values of nu.

7.6 Clausen Functions

The Clausen function is defined by the following integral,

Cla(z) = — /0 " dtlog (2sin (£/2))

It is related to the dilogarithm by Cls(0) = SLis(exp(if)). The Clausen functions are declared in the header file
gsl_sf _clausen.h.

double gsl_sf_clausen(double x)

int gsl_sf_clausen_e(double x, gsl_sf result *result)
These routines compute the Clausen integral Cly ().

7.7 Coulomb Functions

The prototypes of the Coulomb functions are declared in the header file gs1_sf_coulomb.h. Both bound state and
scattering solutions are available.

7.7.1 Normalized Hydrogenic Bound States
double gsl_sf_hydrogenicR_1(double Z, double r)

int gsl_sf_hydrogenicR_1_e(double Z, double r, gsi_sf _result *result)
These routines compute the lowest-order normalized hydrogenic bound state radial wavefunction R; :=
277 exp(—2Zr).

double gsl_sf_hydrogenicR(int n, int 1, double Z, double r)

int gsl_sf_hydrogenicR_e(int n, int I, double Z, double r, gsl_sf result *result)
These routines compute the n-th normalized hydrogenic bound state radial wavefunction,

2232 (22r\' |(n—1—-1)
= —_ —_— -7 L2t (27 .
R, 3 < - ) CEm) exp(—Zr/n)L; " (2Zr/n)

where L{(x) is the generalized Laguerre polynomial. The normalization is chosen such that the wavefunction
1 is given by ¥(n,l,r) = R, Yim.
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7.7.2 Coulomb Wave Functions

The Coulomb wave functions Fi,(n, z), G (n, z) are described in Abramowitz & Stegun, Chapter 14. Because there
can be a large dynamic range of values for these functions, overflows are handled gracefully. If an overflow occurs,
GSL_EOVRFLV is signalled and exponent(s) are returned through the modifiable parameters exp_F, exp_G. The full
solution can be reconstructed from the following relations,

Fr(n,z) = felkr] * exp(expr)
Gr(n,x) = gclkr] * exp(expa)

Fi(n,xz) = feplkr] * exp(expp)
G7,(n,x) = geplkr] * exp(expa)

int gsl_sf_coulomb_wave_FG_e (double eta, double x, double L_F, int k, gsl_sf_result *F, gsl_sf_result *Fp,
gsl_sf _result *G, gsl_sf_result *Gp, double *exp_F, double *exp_G)
This function computes the Coulomb wave functions F (7, ), GL_;(n,z) and their derivatives Fj (n, ),
G, _;.(n, x) with respect to =. The parameters are restricted to L, L — k > —1/2, z > 0 and integer k. Note that
L itself is not restricted to being an integer. The results are stored in the parameters F, G for the function values
and Fp, Gp for the derivative values. If an overflow occurs, GSL_EOVRFLW is returned and scaling exponents are
stored in the modifiable parameters exp_F, exp_G.

int gs1_sf_coulomb_wave_F_array (double L_min, int kmax, double eta, double x, double fc_array[], double
*F_exponent)
This function computes the Coulomb wave function F(n, ) for L = Lmin ... Lmin + kmaz, storing the
results in fc_array. In the case of overflow the exponent is stored in F_exponent.

int gs1l_sf_coulomb_wave_FG_array (double L_min, int kmax, double eta, double x, double fc_array[], double
gc_array[], double *F_exponent, double *G_exponent)
This function computes the functions Fr,(n, z), Gr(n, x) for L = Lmin... Lmin + kmax storing the results
in fc_array and gc_array. In the case of overflow the exponents are stored in F_exponent and G_exponent.

int gs1_sf_coulomb_wave_FGp_array (double L_min, int kmax, double eta, double x, double fc_array[], double
fcp_array[], double gc_array[], double gcp_array[], double *F_exponent,
double *G_exponent)
This function computes the functions Fr,(n,z), Gr(n, ) and their derivatives F} (n,z), G} (n,z) for L =
Lmin ... Lmin + kmax storing the results in fc_array, gc_array, fcp_array and gcp_array. In the case
of overflow the exponents are stored in F_exponent and G_exponent.

int gsl_sf_coulomb_wave_sphF_array(double L_min, int kmax, double eta, double x, double fc_array[], double
F_exponent[])
This function computes the Coulomb wave function divided by the argument F(n,z)/x for L =
Lmin ... Lmin + kmaz, storing the results in fc_array. In the case of overflow the exponent is stored in
F_exponent. This function reduces to spherical Bessel functions in the limit  — 0.

7.7.3 Coulomb Wave Function Normalization Constant

The Coulomb wave function normalization constant is defined in Abramowitz 14.1.7.

int gsl_sf_coulomb_CL_e(double L, double eta, gsi_sf_result *result)
This function computes the Coulomb wave function normalization constant C,(n) for L > —1.

int gsl_sf_coulomb_CL_array(double Lmin, int kmax, double eta, double cl[])
This function computes the Coulomb wave function normalization constant C'r (1) for L = Lmin ... Lmin +
kmax, Lmin > —1.
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7.8 Coupling Coefficients

The Wigner 3-j, 6-j and 9-j symbols give the coupling coefficients for combined angular momentum vectors. Since
the arguments of the standard coupling coefficient functions are integer or half-integer, the arguments of the follow-
ing functions are, by convention, integers equal to twice the actual spin value. For information on the 3-j coeffi-
cients see Abramowitz & Stegun, Section 27.9. The functions described in this section are declared in the header file
gsl_sf _coupling.h.

7.8.1 3-j Symbols
double gsl_sf_coupling_3j (int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc)
int gsl_sf_coupling_3j_e(int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc, gsl_sf result

*result)
These routines compute the Wigner 3-j coeflicient,

Ja jb  je
ma mb mc

where the arguments are given in half-integer units, ja = two_ja/2, ma = two_ma/2, etc.

7.8.2 6-j Symbols
double gsl_sf_coupling_6j (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf)
int gsl_sf_coupling_6j_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, gsl_sf result

*result)
These routines compute the Wigner 6-j coeflicient,

{ Ja jb jc }
Jd je jf
where the arguments are given in half-integer units, ja = two_ja/2, ma = two_ma/2, etc.

7.8.3 9-j Symbols

double gsl_sf_coupling_9j (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int
two_jh, int two_ji)

int gsl_sf_coupling_9j_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int
two_jh, int two_ji, gsl_sf_result *result)
These routines compute the Wigner 9-j coeflicient,

ja jgb jc
jd je jf
Jjg jh gi

where the arguments are given in half-integer units, ja = two_ja/2, ma = two_ma/2, etc.
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7.9 Dawson Function

The Dawson integral is defined by

exp(—a?) /02? dt exp(t?)

A table of Dawson’s integral can be found in Abramowitz & Stegun, Table 7.5. The Dawson functions are declared in

the header file gs1_sf_dawson.h.
double gsl_sf_dawson(double x)

int gsl_sf_dawson_e (double x, gsl_sf result *result)
These routines compute the value of Dawson’s integral for x.

7.10 Debye Functions

The Debye functions D,,(x) are defined by the following integral,

n (7 "
D,(z)=— [ dt
(@) ™ Jo et —1

For further information see Abramowitz & Stegun, Section 27.1. The Debye functions are declared in the header file

gsl_sf_debye.h.
double gsl_sf_debye_1(double x)

int gsl_sf_debye_1_e(double x, gs/_sf_result *result)
These routines compute the first-order Debye function D1 ().

double gsl_sf_debye_2(double x)

int gsl_sf_debye_2_e(double x, gs/_sf result *result)
These routines compute the second-order Debye function Ds ().

double gsl_sf_debye_3(double x)

int gsl_sf_debye_3_e(double x, gsl_sf_result *result)
These routines compute the third-order Debye function D3 (z).

double gsl_sf_debye_4(double x)

int gsl_sf_debye_4_e(double x, gsl_sf result *result)
These routines compute the fourth-order Debye function Dy(x).

double gsl_sf_debye_5 (double x)

int gsl_sf_debye_5_e(double x, gs/_sf_result *result)
These routines compute the fifth-order Debye function D5 (x).

double gsl_sf_debye_6(double x)

int gsl_sf_debye_6_e(double x, gsl/_sf result *result)
These routines compute the sixth-order Debye function Dg().
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7.11 Dilogarithm

The dilogarithm is defined as
# log(l—
Lin(2) = — / gslos(l—s)
0

S

The functions described in this section are declared in the header file gs1_sf_dilog.h.

7.11.1 Real Argument
double gsl_sf_dilog(double x)

int gsl_sf_dilog_e(double x, gsl_sf result *result)
These routines compute the dilogarithm for a real argument. In Lewin’s notation this is Lis(x), the real part of
the dilogarithm of a real z. It is defined by the integral representation

Lisy(z) = ?R/OI dslog(l —s)/s

Note that S(Liz(x)) = 0 for < 1, and —7 log(x) for z > 1.

Note that Abramowitz & Stegun refer to the Spence integral S(z) = Lio(1 — x) as the dilogarithm rather than

7.11.2 Complex Argument

int gsl_sf_complex_dilog_e(double r, double theta, gs/_sf result *result_re, gsl_sf result *result_im)
This function computes the full complex-valued dilogarithm for the complex argument z = r exp(¢6). The real
and imaginary parts of the result are returned in result_re, result_im.

7.12 Elementary Operations

The following functions allow for the propagation of errors when combining quantities by multiplication. The functions
are declared in the header file gsl_sf_elementary.h.

double gsl_sf multiply(double x, double y)

int gsl_sf multiply_e(double x, double y, gs/_sf_result *result)
This function multiplies x and y storing the product and its associated error in result.

int gsl_sf multiply_err_e(double x, double dx, double y, double dy, gs/_sf_result *result)
This function multiplies x and y with associated absolute errors dx and dy. The product zy +
zy+/(dz/x)% + (dy/y)? is stored in result.
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7.13 Elliptic Integrals

The functions described in this section are declared in the header file gs1_sf_ellint.h. Further information about
the elliptic integrals can be found in Abramowitz & Stegun, Chapter 17.

7.13.1 Definition of Legendre Forms

The Legendre forms of elliptic integrals F'(¢, k), E(¢, k) and II(¢, k, n) are defined by,

¢ 1
F(p, k)= [ dt
/0 (1 — k2 sin?(t))

¢
E(¢7k)=/0 dty/ (1 — k2sin%(t))
¢

1

116, k, n) = / dt
0 (1+mnsin?(t))4/1 — k2sin’(¢)
The complete Legendre forms are denoted by K (k) = F(n/2,k) and E(k) = E(7w/2,k).

The notation used here is based on Carlson, “Numerische Mathematik™ 33 (1979) 1 and differs slightly from that used
by Abramowitz & Stegun, where the functions are given in terms of the parameter m = k2 and n is replaced by —n.

7.13.2 Definition of Carlson Forms

The Carlson symmetric forms of elliptical integrals RC(z,y), RD(z,y, z), RF(x,y, z) and RJ(z, y, z, p) are defined
by,

RC(z,y) = 1/2 /OOo dt(t + ) V2t +y) !

RD(z,y,2) :3/2/ dt(t +z) V2t +y) V2 (4 2) 732
0

RF(z,y,z2) = 1/2/ dt(t + ) V2t +y) V2t + 2)7Y?
0

R(2,y,,p) = 3/2 / dt(t +2) 2t )2 (4 )R (4 p)
0

7.13.3 Legendre Form of Complete Elliptic Integrals
double gsl_sf_ellint_Kcomp (double k, gs/_mode_t mode)

int gsl_sf_ellint_Kcomp_e (double k, gs/_mode_t mode, gsl_sf result *result)
These routines compute the complete elliptic integral K (k) to the accuracy specified by the mode variable mode.
Note that Abramowitz & Stegun define this function in terms of the parameter m = k2.

double gsl_sf_ellint_Ecomp (double k, gs/_mode_t mode)

int gsl_sf_ellint_Ecomp_e (double k, gs/_mode_t mode, gsl_sf_result *result)
These routines compute the complete elliptic integral £ (k) to the accuracy specified by the mode variable mode.
Note that Abramowitz & Stegun define this function in terms of the parameter m = k2.
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double gsl_sf_ellint_Pcomp (double k, double n, gs/_mode_t mode)

int gsl_sf_ellint_Pcomp_e (double k, double n, gs/_mode_t mode, gsl_sf_result *result)
These routines compute the complete elliptic integral II(k,n) to the accuracy specified by the mode variable
mode. Note that Abramowitz & Stegun define this function in terms of the parameters m = k2 and sin® (a) = k2,
with the change of sign n — —n.

7.13.4 Legendre Form of Incomplete Elliptic Integrals
double gsl_sf_ellint_F (double phi, double k, gs/_mode_t mode)

int gsl_sf_ellint_F_e(double phi, double k, gs/_mode_t mode, gsl_sf_result *result)
These routines compute the incomplete elliptic integral F'(¢, k) to the accuracy specified by the mode variable
mode. Note that Abramowitz & Stegun define this function in terms of the parameter m = k2.

double gsl_sf_ellint_E(double phi, double k, gs/_mode_t mode)

int gsl_sf_ellint_E_e(double phi, double k, gsi_mode_t mode, gsi_sf_result *result)
These routines compute the incomplete elliptic integral E (¢, k) to the accuracy specified by the mode variable
mode. Note that Abramowitz & Stegun define this function in terms of the parameter m = k2.

double gsl_sf_ellint_P(double phi, double k, double n, gs/_mode_t mode)

int gsl_sf_ellint_P_e(double phi, double k, double n, gsi_mode_t mode, gsl_sf_result *result)
These routines compute the incomplete elliptic integral II(¢, k, n) to the accuracy specified by the mode variable
mode. Note that Abramowitz & Stegun define this function in terms of the parameters m = k? and sin®(a) = k2,
with the change of sign n — —n.

double gsl_sf_ellint_D(double phi, double k, gs/_mode_t mode)

int gsl_sf_ellint_D_e(double phi, double k, gsi_mode_t mode, gsl_sf result *result)
These functions compute the incomplete elliptic integral D(¢, k) which is defined through the Carlson form
RD(z,y, z) by the following relation,

D(6,K) = 3 (sin 6)*RD(1 —sin?(6), 1~ K2 sin®(5), 1)

7.13.5 Carlson Forms
double gsl_sf_ellint_RC(double x, double y, gs/_mode_t mode)

int gsl_sf_ellint_RC_e(double x, double y, gs/_mode_t mode, gsl_sf result *result)
These routines compute the incomplete elliptic integral RC(x, y) to the accuracy specified by the mode variable
mode.

double gsl_sf_ellint_RD(double x, double y, double z, gs/_mode_t mode)

int gsl_sf_ellint_RD_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result *result)
These routines compute the incomplete elliptic integral RD(x, y, z) to the accuracy specified by the mode vari-
able mode.

double gsl_sf_ellint_RF (double x, double y, double z, gs/_mode_t mode)
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int gsl_sf_ellint_RF_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result *result)
These routines compute the incomplete elliptic integral RF'(z, y, z) to the accuracy specified by the mode vari-
able mode.

double gsl_sf_ellint_RJ(double x, double y, double z, double p, gs/_mode_t mode)

int gsl_sf_ellint_RJ_e(double x, double y, double z, double p, gsl_mode_t mode, gsi_sf_result *result)
These routines compute the incomplete elliptic integral RJ(z,y, z,p) to the accuracy specified by the mode
variable mode.

7.14 Elliptic Functions (Jacobi)

The Jacobian Elliptic functions are defined in Abramowitz & Stegun, Chapter 16. The functions are declared in the
header file gsl_sf_elljac.h.

int gsl_sf_elljac_e(double u, double m, double *sn, double *cn, double *dn)
This function computes the Jacobian elliptic functions sn(u|m), en(u|m), dn(u|m) by descending Landen trans-
formations.

7.15 Error Functions

The error function is described in Abramowitz & Stegun, Chapter 7. The functions in this section are declared in the
header file gsl_sf_erf.h.

7.15.1 Error Function
double gsl_sf_erf (double x)

int gsl_sf_erf_e(double x, gsl_sf result *result)
These routines compute the error function erf(z), where erf(z) = (2//7) fom dt exp(—t?).

7.15.2 Complementary Error Function
double gsl_sf_erfc(double x)

int gsl_sf_erfc_e(double x, gsl_sf_result *result)
These routines compute the complementary error function erfc(z) = 1 — erf(z) = (2/y/7) [ exp(—t?)

7.15.3 Log Complementary Error Function
double gsl_sf_log_erfc(double x)

int gsl_sf_log_erfc_e(double x, gsl_sf result *result)
These routines compute the logarithm of the complementary error function log(erfc(z)).
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7.15.4 Probability functions

The probability functions for the Normal or Gaussian distribution are described in Abramowitz & Stegun, Section 26.2.

double gsl_sf_erf_Z(double x)

int gsl_sf_erf_ Z_e(double x, gsl_sf_result *result)
These routines compute the Gaussian probability density function Z(z) = (1/v/27) exp(—2?/2)

double gsl_sf_erf_Q(double x)

int gsl_sf_erf Q_e(double x, gsl_sf_result *result)
These routines compute the upper tail of the Gaussian probability function Q(z) = (1/v/2) [° dt exp(—t?/2)

The hazard function for the normal distribution, also known as the inverse Mills’ ratio, is defined as,

o) = 20 [Zowis)
Q(x) T erfe(z/v/2)
It decreases rapidly as = approaches —oo and asymptotes to h(z) ~ x as  approaches +oc.

double gsl_sf_hazard(double x)

int gsl_sf_hazard_e(double x, gsl_sf result *result)
These routines compute the hazard function for the normal distribution.

7.16 Exponential Functions

The functions described in this section are declared in the header file gs1_sf_exp.h.

7.16.1 Exponential Function
double gsl_sf_exp (double x)

int gsl_sf_exp_e(double x, gsl_sf result *result)
These routines provide an exponential function exp(x) using GSL semantics and error checking.

int gsl_sf_exp_el0_e(double x, gsl_sf result_el0 *result)
This function computes the exponential exp(x) using the gsl_sf_result_el0 type to return a result with
extended range. This function may be useful if the value of exp(x) would overflow the numeric range of double.

double gsl_sf_exp_mult(double x, double y)

int gsl_sf_exp_mult_e(double x, double y, gsl_sf result *result)
These routines exponentiate x and multiply by the factor y to return the product y exp(x).

int gsl_sf_exp_mult_el0®_e(const double x, const double y, gsl_sf result_el0 *result)
This function computes the product y exp(x) using the gsl_sf_result_el0 type to return a result with ex-
tended numeric range.
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7.16.2 Relative Exponential Functions
double gsl_sf_expml (double x)

int gsl_sf_expml_e(double x, gsl_sf result *result)
These routines compute the quantity exp(z) — 1 using an algorithm that is accurate for small z.

double gsl_sf_exprel (double x)

int gsl_sf_exprel_e(double X, gsl_sf_result *result)
These routines compute the quantity (exp(x) — 1)/ using an algorithm that is accurate for small x. For small
x the algorithm is based on the expansion (exp(z) — 1)/z =1+ x/2 + 22 /(2% 3) +23/(2% 3% 4) + ...

double gsl_sf_exprel_2(double x)

int gsl_sf_exprel_2_e(double x, gsl_sf result *result)
These routines compute the quantity 2(exp(z) — 1 — ) /2% using an algorithm that is accurate for small x. For
small x the algorithm is based on the expansion 2(exp(x) —1—x) /2% = 142 /3422 /(3%4)+2>/(3%4%5)+. . ..

double gsl_sf_exprel_n(int n, double x)

int gsl_sf_exprel_n_e(int n, double x, gs/_sf_result *result)
These routines compute the N-relative exponential, which is the n-th generalization of the functions
gsl_sf_exprel() and gsl_sf_exprel_2(). The N-relative exponential is given by,

N-1
exprel y (2) = N!/aN (exp(m) — Z :z:k/k!>

k=0
=14+z/(N+1)+2*/(N+1)(N+2)+...
= 1F1(1,1 +N,.T)

7.16.3 Exponentiation With Error Estimate

int gsl_sf_exp_err_e(double x, double dx, gsl_sf_result *result)
This function exponentiates x with an associated absolute error dx.

int gsl_sf_exp_err_el0_e(double x, double dx, gsl_sf result_el0 *result)
This function exponentiates a quantity x with an associated absolute error dx using the gsI_sf_result_el@®
type to return a result with extended range.

int gsl_sf_exp_mult_err_e(double x, double dx, double y, double dy, gs/_sf_result *result)
This routine computes the product y exp(x) for the quantities x, y with associated absolute errors dx, dy.

int gsl_sf_exp_mult_err_el®_e(double x, double dx, double y, double dy, gs/_sf_result_el0 *result)
This routine computes the product y exp(z) for the quantities x, y with associated absolute errors dx, dy using
the gsl_sf_result_el0 type to return a result with extended range.
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7.17 Exponential Integrals

Information on the exponential integrals can be found in Abramowitz & Stegun, Chapter 5. These functions are declared
in the header file gsl_sf_expint.h.

7.17.1 Exponential Integral
double gsl_sf_expint_E1l(double x)

int gsl_sf_expint_E1_e(double x, gsl_sf_result *result)
These routines compute the exponential integral F1 (z),

Ey(z) = 3%/100 dt exp(—xt)/t.

double gsl_sf_expint_E2 (double x)

int gsl_sf_expint_E2_e(double x, gsl_sf result *result)
These routines compute the second-order exponential integral F(z),

Es(x) := §R/100 dt exp(—xt) /t?

double gsl_sf_expint_En(int n, double x)

int gsl_sf_expint_En_e(int n, double X, gs/_sf result *result)
These routines compute the exponential integral E,, (x) of order n,

E,(z):= 3‘3/100 dt exp(—at)/t".

7.17.2 Ei(x)
double gsl_sf_expint_Ei (double x)

int gsl_sf_expint_Ei_e(double x, gsl_sf result *result)
These routines compute the exponential integral E'i(z),

o0

Ei(z) = —PV ( dt exp(—t)/t)

—T

where PV denotes the principal value of the integral.

7.17.3 Hyperbolic Integrals
double gsl_s£f_Shi (double x)

int gsl_sf_Shi_e(double x, gsl_sf result *result)
These routines compute the integral

Shi(x) = /Uf” dt sinh(t)/t
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double gsl_sf_Chi (double x)

int gsl_sf_Chi_e(double x, gsl_sf result *result)
These routines compute the integral

Chi(z) :=R ['yE + log(z) + /Of dt(cosh(t) — 1)/t

where g is the Euler constant (available as the macro M_EULER).

7.17.4 Ei_3(x)
double gsl_sf_expint_3(double x)

int gsl_sf_expint_3_e(double x, gsl_sf result *result)
These routines compute the third-order exponential integral

Eiz(z) = /Ox dt exp(—t*)

for x > 0.

7.17.5 Trigonometric Integrals
double gsl_s£f_Si(const double x)

int gsl_sf_Si_e(double x, gsl_sf result *result)
These routines compute the Sine integral

Si(z) = /O " dtsin(t)t

double gsl_s£f_Ci (const double x)

int gsl_sf_Ci_e(double x, gsl_sf result *result)
These routines compute the Cosine integral

Ci(z) = 7/00 dt cos(t)/t

forz >0

7.17.6 Arctangent Integral
double gsl_sf_atanint (double x)

int gsl_sf_atanint_e(double x, gs/_sf result *result)
These routines compute the Arctangent integral, which is defined as

AtanlInt(x) :/ dt arctan(t)/t
0
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7.18 Fermi-Dirac Function

The functions described in this section are declared in the header file gsl_sf_fermi_dirac.h.

7.18.1 Complete Fermi-Dirac Integrals

The complete Fermi-Dirac integral F; (x) is given by,

F 1 h d v

i(r) = t

(@) F(j+1)/0 (exp(t —x) +1)

Note that the Fermi-Dirac integral is sometimes defined without the normalisation factor in other texts.

double gsl_sf_fermi_dirac_ml(double x)

int gsl_sf_fermi_dirac_ml_e(double x, gsl_sf_result *result)
These routines compute the complete Fermi-Dirac integral with an index of —1. This integral is given by
F_i(z)=¢e"/(1+¢€").

double gsl_sf_fermi_dirac_0(double x)

int gsl_sf_fermi_dirac_0_e(double x, gs/_sf_result *result)
These routines compute the complete Fermi-Dirac integral with an index of 0. This integral is given by Fy(x) =
In(1 + €%).

double gsl_sf_fermi_dirac_1(double x)

int gsl_sf_fermi_dirac_1_e(double x, gs/_sf result *result)
These routines compute the complete Fermi-Dirac integral with an index of 1, Fy (z) = [, dt(t/(exp(t — z) +

1)).
double gsl_sf_fermi_dirac_2(double x)

int gsl_sf_fermi_dirac_2_e(double X, gsl_sf result *result)

These routines compute the complete Fermi-Dirac integral with an index of 2, F»(x) = (1/2) [, dt(t*/(exp(t—
x) +1)).

double gsl_sf_fermi_dirac_int (int j, double x)

int gsl_sf_fermi_dirac_int_e(int j, double x, gs/_sf result *result)
These routines compute the complete Fermi-Dirac integral with an integer index of j, F;(z) = (1/T'(j +

1) fy7 dt(t? /(exp(t — z) + 1)).
double gsl_sf_fermi_dirac_mhalf (double x)

int gsl_sf_fermi_dirac_mhalf_e(double x, gs/_sf result *result)
These routines compute the complete Fermi-Dirac integral F_; /5(x).

double gsl_sf_fermi_dirac_half (double x)

int gsl_sf_fermi_dirac_half_e(double X, gsl_sf result *result)
These routines compute the complete Fermi-Dirac integral Fy /().

double gsl_sf_fermi_dirac_3half (double x)
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int gsl_sf_fermi_dirac_3half_e(double x, gsl_sf_result *result)
These routines compute the complete Fermi-Dirac integral F3 /5 ().

7.18.2 Incomplete Fermi-Dirac Integrals

The incomplete Fermi-Dirac integral F;(z, b) is given by,

1 > t
Fy@,b) = rmy /b Mot —a) + 1)

double gsl_sf_fermi_dirac_inc_0(double x, double b)

int gsl_sf_fermi_dirac_inc_0_e(double x, double b, gs/_sf_result *result)
These routines compute the incomplete Fermi-Dirac integral with an index of zero, Fy(x,b) = In(1 4 e*~%) —
(b—x)

7.19 Gamma and Beta Functions

The following routines compute the gamma and beta functions in their full and incomplete forms, as well as various
kinds of factorials. The functions described in this section are declared in the header file gs1_sf_gamma.h.

7.19.1 Gamma Functions

The Gamma function is defined by the following integral,

I(z) = /000 dtt™ ! exp(—t)

It is related to the factorial function by I'(n) = (n — 1)! for positive integer n. Further information on the Gamma
function can be found in Abramowitz & Stegun, Chapter 6.

double gsl_sf_gamma (double x)

int gsl_sf_gamma_e (double x, gsl_sf result *result)
These routines compute the Gamma function I'(z), subject to « not being a negative integer or zero. The function
is computed using the real Lanczos method. The maximum value of x such that I'(z) is not considered an
overflow is given by the macro GSL_SF_GAMMA_XMAX and is 171.0.

double gsl_sf_lngamma(double x)

int gsl_sf_1ngamma_e(double x, gs/_sf_result *result)
These routines compute the logarithm of the Gamma function, log(I'(x)), subject to z not being a negative integer
or zero. For z < 0 the real part of log(T'(z)) is returned, which is equivalent to log(|T’(x)|). The function is
computed using the real Lanczos method.

int gsl_sf_lngamma_sgn_e(double x, gs/_sf_result *result_lg, double *sgn)
This routine computes the sign of the gamma function and the logarithm of its magnitude, subject to x not being
a negative integer or zero. The function is computed using the real Lanczos method. The value of the gamma
function and its error can be reconstructed using the relation I'(z) = sgn * exp(result_lg), taking into account
the two components of result_Ig.
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double gsl_sf_gammastar (double x)

int gsl_sf_gammastar_e(double x, gsi_sf result *result)
These routines compute the regulated Gamma Function I'* () for z > 0. The regulated gamma function is given
by,

I"(2) = T(2)/ (V272" /% exp(~2))

1
=(1+—+... f
( + 12x+ ) or r — 00

and is a useful suggestion of Temme.

double gsl_sf_gammainv(double x)

int gsl_sf_gammainv_e(double x, gsl_sf_result *result)
These routines compute the reciprocal of the gamma function, 1/T'(x) using the real Lanczos method.

int gsl_sf_lngamma_complex_e (double zr, double zi, gsi_sf_result *Inr, gsl_sf_result *arg)
This routine computes log(I'(z)) for complex z = z,+1iz; and z not a negative integer or zero, using the complex
Lanczos method. The returned parameters are [nr = log |I'(z)| and arg = arg(T'(z)) in (—m, w]. Note that the
phase part (arg) is not well-determined when | z| is very large, due to inevitable roundoff in restricting to (—, ].
This will result in a GSL_ELOSS error when it occurs. The absolute value part (1nr), however, never suffers from
loss of precision.

7.19.2 Factorials

Although factorials can be computed from the Gamma function, using the relation n! = I'(n + 1) for non-negative
integer n, it is usually more efficient to call the functions in this section, particularly for small values of n, whose
factorial values are maintained in hardcoded tables.

double gsl_sf_fact (unsigned int n)

int gsl_sf_fact_e(unsigned int n, gs/_sf_result *result)
These routines compute the factorial n!. The factorial is related to the Gamma function by n! = I'(n + 1). The
maximum value of n such that n! is not considered an overflow is given by the macro GSL_SF_FACT_NMAX and
is 170.

double gsl_sf_doublefact (unsigned int n)

int gsl_sf_doublefact_e(unsigned int n, gsl_sf _result *result)
These routines compute the double factorial n!! = n(n — 2)(n — 4) .. .. The maximum value of n such that n!!
is not considered an overflow is given by the macro GSL_SF_DOUBLEFACT_NMAX and is 297.

double gsl_sf_ 1nfact (unsigned int n)

int gsl_sf_Infact_e(unsigned int n, gsi_sf_result *result)
These routines compute the logarithm of the factorial of n, log(n!). The algorithm is faster than computing
In(T'(n + 1)) via gs1_sf_Ingamma() for n < 170, but defers for larger n.

double gsl_sf_lndoublefact (unsigned int n)

int gsl_sf_lndoublefact_e(unsigned int n, gs/_sf result *result)
These routines compute the logarithm of the double factorial of n, log(n!!).

double gsl_sf_choose (unsigned int n, unsigned int m)
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int gsl_sf_choose_e (unsigned int n, unsigned int m, gs/_sf result *result)
These routines compute the combinatorial factor n choose m = n!/(m!(n — m)!)

double gs1_sf_lnchoose (unsigned int n, unsigned int m)

int gsl_sf_1nchoose_e(unsigned int n, unsigned int m, gsi_sf"_result *result)
These routines compute the logarithm of n choose m. This is equivalent to the sum log(n!) — log(m!) —

log((n —m)!).
double gsl_sf_taylorcoeff (int n, double x)

int gsl_sf_taylorcoeff_e(int n, double x, gsl_sf result *result)
These routines compute the Taylor coefficient 2™ /n! forx > 0,n > 0

7.19.3 Pochhammer Symbol
double gsl_sf_poch(double a, double x)

int gsl_sf_poch_e(double a, double x, gsl_sf result *result)
These routines compute the Pochhammer symbol (a), = I'(a + x)/T'(a). The Pochhammer symbol is also
known as the Apell symbol and sometimes written as (a, ). When a and a + x are negative integers or zero,
the limiting value of the ratio is returned.

double gsl_sf_lnpoch(double a, double x)

int gsl_sf_lnpoch_e(double a, double x, gs/_sf_result *result)
These routines compute the logarithm of the Pochhammer symbol, log((a),) = log(T'(a + z)/T'(a)).

int gsl_sf_lnpoch_sgn_e(double a, double x, gs/_sf result *result, double *sgn)
These routines compute the sign of the Pochhammer symbol and the logarithm of its magnitude. The computed
parameters are result = log(|(a).|) with a corresponding error term, and sgn = sgn((a),) where (a), =
I'(a+ z)/T(a).

double gsl_sf_pochrel (double a, double x)

int gsl_sf_pochrel_e(double a, double x, gsl_sf_result *result)
These routines compute the relative Pochhammer symbol ((a), — 1)/« where (a), = I'(a + z)/T'(a).

7.19.4 Incomplete Gamma Functions
double gsl_sf_gamma_inc(double a, double x)

int gsl_sf_gamma_inc_e (double a, double x, gsl_sf_result *result)
These functions compute the unnormalized incomplete Gamma Function I'(a, z) = [° dtt(*=1) exp(—t) for a
real and z > 0.

double gsl_sf_gamma_inc_Q(double a, double x)

int gsl_sf_gamma_inc_Q_e(double a, double x, gs/_sf result *result)
These routines compute the normalized incomplete Gamma Function Q(a, z) = 1/T'(a) [° dtt(*=1) exp(—t)
fora >0,z > 0.

double gsl_sf_gamma_inc_P(double a, double x)
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int gsl_sf_gamma_inc_P_e(double a, double x, gs/_sf result *result)
These routines compute the complementary normalized incomplete Gamma Function P(a,x) =1 — Q(a, z) =
1/T(a) [, dtt@= exp(—t) fora > 0, z > 0.

Note that Abramowitz & Stegun call P(a, x) the incomplete gamma function (section 6.5).
7.19.5 Beta Functions
double gsl_sf_beta(double a, double b)

int gsl_sf_beta_e(double a, double b, gsl_sf result *result)
These routines compute the Beta Function, B(a, b) = I'(a)I'(b) /T'(a + b) subject to a and b not being negative
integers.

double gsl_sf_lnbeta(double a, double b)

int gsl_sf_lnbeta_e(double a, double b, gsl_sf_result *result)
These routines compute the logarithm of the Beta Function, log(B(a, b)) subject to a and b not being negative
integers.

7.19.6 Incomplete Beta Function
double gsl_sf_beta_inc(double a, double b, double x)

int gsl_sf_beta_inc_e(double a, double b, double x, gs/_sf_result *result)
These routines compute the normalized incomplete Beta function I,,(a,b) = B, (a,b)/B(a,b) where

B, (a,b) :/ =11 = )=l
0

for0 <z < 1. Fora > 0, b > 0 the value is computed using a continued fraction expansion. For all other
values it is computed using the relation

I.(a,b,z) = (1/a)x®2F1(a,1 —b,a+ 1,2)/B(a,b)

7.20 Gegenbauer Functions

The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter 22, where they are known as Ultraspherical
polynomials. The functions described in this section are declared in the header file gs1_sf_gegenbauer.h.

double gsl_sf_gegenpoly_1(double lambda, double x)
double gsl_sf_gegenpoly_2 (double lambda, double x)
double gsl_sf_gegenpoly_3(double lambda, double x)
int gsl_sf_gegenpoly_1_e(double lambda, double x, gsi_sf result *result)

int gsl_sf_gegenpoly_2_e(double lambda, double x, gsi_sf result *result)
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int gsl_sf_gegenpoly_3_e(double lambda, double X, gsi_sf result *result)

These functions evaluate the Gegenbauer polynomials C’,({\) (z) using explicit representations for n = 1,2, 3.

double gsl_sf_gegenpoly_n(int n, double lambda, double x)

int gsl_sf_gegenpoly_n_e(int n, double lambda, double x, gsl_sf result *result)

These functions evaluate the Gegenbauer polynomial C’,({\)(m) for a specific value of n, I1ambda, x subject to
A>—-1/2,n>0.

int gsl_sf_gegenpoly_array (int nmax, double lambda, double x, double result_array[])

This function computes an array of Gegenbauer polynomials C’f{\) (z) forn = 0,1,2,...,nmaxz, subject to
A > —1/2, nmax > 0.

7.21 Hermite Polynomials and Functions

Hermite polynomials and functions are discussed in Abramowitz & Stegun, Chapter 22 and Szego, Gabor (1939, 1958,
1967), Orthogonal Polynomials, American Mathematical Society. The Hermite polynomials and functions are defined
in the header file gs1_sf_hermite.h.

7.21.1 Hermite Polynomials

The Hermite polynomials exist in two variants: the physicist version H,, (x) and the probabilist version He, (z). They
are defined by the derivatives

Hy () = (—1)"e” (;i)ne—w?

d\" -
Hep(z) = (—1)"¢”"/? (d:c> o

They are connected via

H,(z) = 2"/?He, (\/ix)

He,(z) = 2-"/2H, (55)

and satisfy the ordinary differential equations

H!(z) — 2xH],(z) + 2nH,(z) =0
He!'(x) —xHel (z) + nHe,(z) =0

double gsl_sf_hermite(const int n, const double x)

int gsl_sf_hermite_e(const int n, const double x, gsl_sf_result *result)
These routines evaluate the physicist Hermite polynomial H,,(z) of order n at position x. If an overflow is
detected, GSL_EOVRFLUW is returned without calling the error handler.

int gsl_sf_hermite_array(const int nmax, const double x, double *result_array)
This routine evaluates all physicist Hermite polynomials H,, up to order nmax at position x. The results are
stored in result_array.

double gsl_sf_hermite_series(const int n, const double x, const double *a)
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int gsl_sf_hermite_series_e(const int n, const double x, const double *a, gsl_sf_result *result)
These routines evaluate the series Z?:O a;H;(x) with H; being the j-th physicist Hermite polynomial using
the Clenshaw algorithm.

double gsl_sf_hermite_prob (const int n, const double x)

int gsl_sf_hermite_prob_e(const int n, const double x, gsl_sf result *result)
These routines evaluate the probabilist Hermite polynomial He,, (x) of order n at position x. If an overflow is
detected, GSL_EOVRFLW is returned without calling the error handler.

int gsl_sf_hermite_prob_array(const int nmax, const double x, double *result_array)
This routine evaluates all probabilist Hermite polynomials He,, () up to order nmax at position x. The results
are stored in result_array.

double gsl_sf_hermite_prob_series(const int n, const double x, const double *a)

int gsl_sf_hermite_prob_series_e(const int n, const double x, const double *a, gs/_sf result *result)
These routines evaluate the series Z?:o a;Hej(x) with He; being the j-th probabilist Hermite polynomial
using the Clenshaw algorithm.

7.21.2 Derivatives of Hermite Polynomials
double gsl_sf_hermite_deriv(const int m, const int n, const double x)

int gsl_sf_hermite_deriv_e(const int m, const int n, const double X, gsl_sf result *result)
These routines evaluate the m-th derivative of the physicist Hermite polynomial H,,(z) of order n at position x.

int gsl_sf _hermite_array_deriv(const int m, const int nmax, const double x, double *result_array)
This routine evaluates the m-th derivative of all physicist Hermite polynomials H,,(x) from orders 0, .. . , nmax
at position x. The result d"/dz™ H,, () is stored in result_array[n]. The output result_array must have
length at least nmax + 1.

int gsl_sf hermite_deriv_array(const int mmax, const int n, const double x, double *result_array)
This routine evaluates all derivative orders from 0, ..., mmax of the physicist Hermite polynomial of order n,
H,, at position x. The result d™/dx™ H,,(x) is stored in result_array[m]. The output result_array must
have length at least mmax + 1.

double gsl_sf_hermite_prob_deriv(const int m, const int n, const double x)

int gsl_sf_hermite_prob_deriv_e(const int m, const int n, const double x, gsl_sf result *result)
These routines evaluate the m-th derivative of the probabilist Hermite polynomial He,, (z) of order n at position
X.

int gsl_sf_hermite_prob_array_deriv(const int m, const int nmax, const double x, double *result_array)
This routine evaluates the m-th derivative of all probabilist Hermite polynomials He,(x) from orders
0,...,nmax at position x. The result d™/dx™He,(x) is stored in result_array[n]. The output
result_array must have length at least nmax + 1.

int gsl_sf hermite_prob_deriv_array(const int mmax, const int n, const double x, double *result_array)
This routine evaluates all derivative orders from 0, . .., mmax of the probabilist Hermite polynomial of order n,
He,, at position x. The result d"/dx" He,,(x) is stored in result_array[m]. The output result_array
must have length at least mmax + 1.
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7.21.3 Hermite Functions

The Hermite functions are defined by

n(x) = (2 nym) "2 e 2 H, ()

and satisfy the Schrodinger equation for a quantum mechanical harmonic oscillator
U(@) + (2n+1 = a?)pa(z) =0

They are orthonormal,
[ on@n@ds = b,

and form an orthonormal basis of L?(R). The Hermite functions are also eigenfunctions of the continuous Fourier
transform. GSL offers two methods for evaluating the Hermite functions. The first uses the standard three-term recur-
rence relation which has O(n) complexity and is the most accurate. The second uses a Cauchy integral approach due
to Bunck (2009) which has O(y/n) complexity which represents a significant speed improvement for large n, although
it is slightly less accurate.

double gsl_sf_hermite_func(const int n, const double x)

int gsl_sf_hermite_func_e(const int n, const double X, gsl_sf result *result)
These routines evaluate the Hermite function ), () of order n at position x using a three term recurrence relation.
The algorithm complexity is O(n).

double gsl_sf_hermite_func_fast(const int n, const double x)

int gsl_sf_hermite_func_fast_e(const int n, const double x, gsl_sf result *result)
These routines evaluate the Hermite function v, (x) of order n at position x using a the Cauchy integral algorithm
due to Bunck, 2009. The algorithm complexity is O(y/n).

int gsl_sf_hermite_func_array(const int nmax, const double x, double *result_array)
This routine evaluates all Hermite functions v, (x) for orders n = 0, . . . , nmax at position x, using the recurrence
relation algorithm. The results are stored in result_array which has length at least nmax + 1.

double gsl_sf_hermite_func_series(const int n, const double x, const double *a)

int gsl_sf_hermite_func_series_e(const int n, const double x, const double *a, gs/_sf result *result)
These routines evaluate the series Z;’:O a;1;(x) with 1; being the j-th Hermite function using the Clenshaw
algorithm.

7.21.4 Derivatives of Hermite Functions
double gsl_sf_hermite_func_der (const int m, const int n, const double x)

int gsl_sf_hermite_func_der_e(const int m, const int n, const double x, gsl_sf result *result)
These routines evaluate the m-th derivative of the Hermite function «,,(x) of order n at position x.
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7.21.5 Zeros of Hermite Polynomials and Hermite Functions

These routines calculate the s-th zero of the Hermite polynomial/function of order n. Since the zeros are symmetrical
around zero, only positive zeros are calculated, ordered from smallest to largest, starting from index 1. Only for odd
polynomial orders a zeroth zero exists, its value always being zero.

double gsl_sf_hermite_zero(const int n, const int s)

int gsl_sf_hermite_zero_e(const int n, const int s, gs/_sf_result *result)
These routines evaluate the s-th zero of the physicist Hermite polynomial H,,(x) of order n.

double gsl_sf_hermite_prob_zero(const int n, const int s)

int gsl_sf_hermite_prob_zero_e(const int n, const int s, gs/_sf result *result)
These routines evaluate the s-th zero of the probabilist Hermite polynomial He,, (x) of order n.

double gsl_sf_hermite_func_zero(const int n, const int s)

int gsl_sf_hermite_func_zero_e(const int n, const int s, gs/_sf result *result)
These routines evaluate the s-th zero of the Hermite function 1, (x) of order n.

7.22 Hypergeometric Functions

Hypergeometric functions are described in Abramowitz & Stegun, Chapters 13 and 15. These functions are declared
in the header file gsl_sf_hyperg.h.

double gsl_sf_hyperg_O0F1(double c, double x)

int gsl_sf_hyperg_O0F1_e(double c, double x, gsl_sf result *result)
These routines compute the hypergeometric function

OFI (Cv .’E)
double gsl_sf_hyperg_1F1_int (int m, int n, double x)

int gsl_sf_hyperg_1F1_int_e(int m, int n, double x, gsl_sf_result *result)
These routines compute the confluent hypergeometric function

1Fi(m,n,z) = M(m,n,x)

for integer parameters m, n.

double gsl_sf_hyperg_1F1(double a, double b, double x)

int gsl_sf_hyperg_1F1_e(double a, double b, double x, gsl_sf result *result)
These routines compute the confluent hypergeometric function

1Fi(a,b,2) = M(a,b, x)

for general parameters a, b.

double gsl_sf_hyperg_U_int (int m, int n, double x)
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int gsl_sf_hyperg_U_int_e(int m, int n, double X, gsl_sf result *result)
These routines compute the confluent hypergeometric function U(m, n, z) for integer parameters m, n.

int gsl_sf_hyperg_U_int_e10®_e(int m, int n, double X, gs/_sf result_el0 *result)
This routine computes the confluent hypergeometric function U(m, n, ) for integer parameters m, n using the
gsl_sf_result_el0 type to return a result with extended range.

double gsl_sf_hyperg_U(double a, double b, double x)

int gsl_sf_hyperg_U_e(double a, double b, double x, gs/_sf_result *result)
These routines compute the confluent hypergeometric function U (a, b, z).

int gsl_sf_hyperg_U_e10®_e(double a, double b, double x, gsl_sf_result_el0 *result)
This routine computes the confluent hypergeometric function U (a, b, ) using the gs1_sf_result_el0 type to
return a result with extended range.

double gsl_sf_hyperg_2F1(double a, double b, double c, double x)

int gsl_sf_hyperg_2F1_e(double a, double b, double c, double x, gs/_sf_result *result)
These routines compute the Gauss hypergeometric function

2F1(a7 b7 C, Jf) = F(a'a b) c, .13)
for |z| < 1. If the arguments (a, b, ¢, z) are too close to a singularity then the function can return the error

code GSL_EMAXITER when the series approximation converges too slowly. This occurs in the region of x = 1,
¢ — a — b = m for integer m.

double gsl_sf_hyperg_2F1_conj (double aR, double al, double ¢, double x)

int gsl_sf_hyperg_2F1_conj_e(double aR, double al, double ¢, double x, gsl_sf result *result)
These routines compute the Gauss hypergeometric function

oF(ag + iay,aR —ial,c, x)

with complex parameters for |z| < 1.

double gsl_sf_hyperg_2F1_renorm(double a, double b, double c, double x)

int gsl_sf_hyperg_2F1_renorm_e(double a, double b, double ¢, double x, gsl_sf_result *result)
These routines compute the renormalized Gauss hypergeometric function

2F1(a‘7 b7 & JT)/F(C)
for |z| < 1.

double gsl_sf_hyperg_2F1_conj_renorm(double aR, double al, double ¢, double x)

int gsl_sf_hyperg_2F1_conj_renorm_e (double aR, double al, double ¢, double X, gsl_sf _result *result)
These routines compute the renormalized Gauss hypergeometric function

oF1(ar +iar,ag —iar,c,x)/T(c)

for |z < 1.
double gsl_sf_hyperg_2F0(double a, double b, double x)
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int gsl_sf_hyperg_2F0_e(double a, double b, double x, gsl_sf result *result)
These routines compute the hypergeometric function

2F 0 (a’a b7 z )
The series representation is a divergent hypergeometric series. However, for z < 0 we have

oFo(a,b,z) = (=1/2)*U(a, 14+ a—b,—1/x)

7.23 Laguerre Functions

The generalized Laguerre polynomials, sometimes referred to as associated Laguerre polynomials, are defined in terms
of confluent hypergeometric functions as

D
La) = D B a1

where (a),, is the Pochhammer symbol (rising factorial). They are related to the plain Laguerre polynomials L, (x) by
LY(z) = Ly (x) and L% () = (—1)*(d* /dz*) L(, &) () For more information see Abramowitz & Stegun, Chapter
22.

The functions described in this section are declared in the header file gs1_sf_laguerre.h.

double gsl_sf_laguerre_1(double a, double x)
double gsl_sf_laguerre_2 (double a, double x)
double gsl_sf_laguerre_3(double a, double x)
int gsl_sf_laguerre_1_e(double a, double x, gsl_sf_result *result)
int gsl_sf_laguerre_2_e(double a, double x, gsl_sf_result *result)

int gsl_sf_laguerre_3_e(double a, double x, gsl_sf result *result)
These routines evaluate the generalized Laguerre polynomials L§(x), L§(x), L% (x) using explicit representa-
tions.

double gsl_sf_laguerre_n(const int n, const double a, const double x)

int gsl_sf_laguerre_n_e(int n, double a, double x, gsl_sf result *result)
These routines evaluate the generalized Laguerre polynomials L¢ (z) fora > —1,n > 0.

7.24 Lambert W Functions

Lambert’s W functions, W (z), are defined to be solutions of the equation W (z) exp(W (z)) = «. This function has
multiple branches for z < 0; however, it has only two real-valued branches. We define Wy (z) to be the principal
branch, where W > —1 for < 0, and W_ () to be the other real branch, where W < —1 for z < 0. The Lambert
functions are declared in the header file gsl_sf_lambert.h.

double gsl_sf_lambert_WO (double x)
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int gsl_sf_lambert_WO_e(double x, gs/_sf_result *result)
These compute the principal branch of the Lambert W function, Wy (z).

double gsl_sf_lambert_Wml (double x)

int gsl_sf_lambert_Wml_e(double x, gs/_sf_result *result)
These compute the secondary real-valued branch of the Lambert W function, W_; (z).

7.25 Legendre Functions and Spherical Harmonics

The Legendre Functions and Legendre Polynomials are described in Abramowitz & Stegun, Chapter 8. These functions
are declared in the header file gsl_sf_legendre.h.

7.25.1 Legendre Polynomials
double gsl_sf_legendre_P1(double x)
double gsl_sf_legendre_P2 (double x)
double gsl_sf_legendre_P3 (double x)
int gsl_sf_legendre_P1_e(double x, gsl_sf result *result)
int gsl_sf_legendre_P2_e(double x, gs/_sf_result *result)

int gsl_sf_legendre_P3_e(double x, gsl_sf_result *result)
These functions evaluate the Legendre polynomials P;(x) using explicit representations for [ = 1,2, 3.

double gsl_sf_legendre_P1 (int I, double x)

int gsl_sf_legendre_Pl_e(int 1, double X, gsl_sf result *result)
These functions evaluate the Legendre polynomial P, (x) for a specific value of 1, x subjectto! > O and |z| < 1.

int gsl_sf_legendre_Pl_array (int Imax, double x, double result_array[])

int gsl_sf_legendre_Pl_deriv_array (int Imax, double x, double result_array[], double result_deriv_array[])
These functions compute arrays of Legendre polynomials P;(x) and derivatives dP,(z)/dz forl = 0, ..., lmaz
and |z| < 1.

double gsl_sf_legendre_Q0 (double x)

int gsl_sf_legendre_QO_e(double x, gsl_sf result *result)
These routines compute the Legendre function Qo (z) for x > —1 and x # 1.

double gsl_sf_legendre_Q1(double x)

int gsl_sf_legendre_Q1_e(double x, gsl_sf_result *result)
These routines compute the Legendre function Q; () for x > —1 and = # 1.

double gsl_sf_legendre_Ql (int I, double x)
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int gsl_sf_legendre_Ql_e(int I, double X, gsi_sf result *result)
These routines compute the Legendre function Q;(x) forz > —1, 2 # 1l and [ > 0.

7.25.2 Associated Legendre Polynomials and Spherical Harmonics

The following functions compute the associated Legendre polynomials P/™ () which are solutions of the differential
equation

2 d2 m d m m2 m

where the degree [ and order m satisfy 0 < [ and 0 < m < [. The functions P/ (z) grow combinatorially with { and
can overflow for [ larger than about 150. Alternatively, one may calculate normalized associated Legendre polynomials.
There are a number of different normalization conventions, and these functions can be stably computed up to degree
and order 2700. The following normalizations are provided:

¢ Schmidt semi-normalization

Schmidt semi-normalized associated Legendre polynomials are often used in the magnetics community and are
defined as

S'@) = (@)
5P () = (<1 [2

The factor of (—1)™ is called the Condon-Shortley phase factor and can be excluded if desired by setting the
parameter csphase = 1 in the functions below.

* Spherical Harmonic Normalization

The associated Legendre polynomials suitable for calculating spherical harmonics are defined as

Y (o) = (o [P )

where again the phase factor (—1)™ can be included or excluded if desired.
* Full Normalization

The fully normalized associated Legendre polynomials are defined as

N (@) = (-0 [a

and have the property
1
/ N™(z)%dx =1
-1

The normalized associated Legendre routines below use a recurrence relation which is stable up to a degree and order
of about 2700. Beyond this, the computed functions could suffer from underflow leading to incorrect results. Rou-
tines are provided to compute first and second derivatives dP/"(z)/dz and d? P/ (z)/dz?* as well as their alternate
versions d P/ (cos 0)/df and d*> P (cos §)/d6*. While there is a simple scaling relationship between the two forms,
the derivatives involving 6 are heavily used in spherical harmonic expansions and so these routines are also provided.

In the functions below, a parameter of type gsl_sf_legendre_t specifies the type of normalization to use. The
possible values are
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type gsl_sf_legendre_t

Value Description

GSL_SF_LEGENDRE_NONE The unnormalized associated Legendre polynomials P/™(x)
GSL_SF_LEGENDRE_SCHMIDT | The Schmidt semi-normalized associated Legendre polynomials 57" ()
GSL_SF_LEGENDRE_SPHARM | The spherical harmonic associated Legendre polynomials Y, (z)
GSL_SF_LEGENDRE_FULL The fully normalized associated Legendre polynomials N;™(x)

int gsl_sf_legendre_array (const gs/_sf legendre_t norm, const size_t Imax, const double x, double

result_array[])

int gsl_sf_legendre_array_e(const gs/_sf legendre_t norm, const size_t Imax, const double x, const double

csphase, double result_array[])
These functions calculate all normalized associated Legendre polynomials for 0 < [ < Imaz and 0 < m <
for |x| < 1. The norm parameter specifies which normalization is used. The normalized P/"(z) values are
stored in result_array, whose minimum size can be obtained from calling gs1_sf_legendre_array_n().
The array index of P/™(z) is obtained from calling gs1_sf_legendre_array_index (1, m). To include or
exclude the Condon-Shortley phase factor of (—1)™, set the parameter csphase to either —1 or 1 respectively
in the _e function. This factor is excluded by default.

int gsl_sf_legendre_deriv_array(const gs/_sf_legendre_t norm, const size_t Imax, const double x, double

result_array[], double result_deriv_array[])

int gsl_sf_legendre_deriv_array_e(const gsi_sf legendre_t norm, const size_t Imax, const double x, const

double csphase, double result_array[], double result_deriv_array[])
These functions calculate all normalized associated Legendre functions and their first derivatives up to degree
Imax for |x| < 1. The parameter norm specifies the normalization used. The normalized P/ (x) values and
their derivatives dP;" (x)/dx are stored in result_array and result_deriv_array respectively. To include
or exclude the Condon-Shortley phase factor of (—1)™, set the parameter csphase to either —1 or 1 respectively
in the _e function. This factor is excluded by default.

int gsl_sf_legendre_deriv_alt_array(const gsl_sf legendre_t norm, const size_t Imax, const double x, double

result_array[], double result_deriv_array[])

int gsl_sf_legendre_deriv_alt_array_e(const gs/_sf legendre_t norm, const size_t Imax, const double x,

const double csphase, double result_array[], double
result_deriv_array[])
These functions calculate all normalized associated Legendre functions and their (alternate) first derivatives up
to degree Imax for |z| < 1. The normalized P/ (x) values and their derivatives dP/"(cos#)/df are stored
in result_array and result_deriv_array respectively. To include or exclude the Condon-Shortley phase
factor of (—1)™, set the parameter csphase to either —1 or 1 respectively in the _e function. This factor is
excluded by default.

int gsl_sf_legendre_deriv2_array(const gs/_sf_legendre_t norm, const size_t Imax, const double x, double

result_array[], double result_deriv_array[], double result_deriv2_array[])

int gsl_sf_legendre_deriv2_array_e(const gs/_sf legendre_t norm, const size_t Imax, const double x, const

double csphase, double result_array[], double result_deriv_array[],
double result_deriv2_array[])
These functions calculate all normalized associated Legendre functions and their first and second derivatives up
to degree Imax for |x| < 1. The parameter norm specifies the normalization used. The normalized P/™(z),
their first derivatives dP/™(z)/dz, and their second derivatives d?P/™(x)/dx? are stored in result_array,
result_deriv_array, and result_deriv2_array respectively. To include or exclude the Condon-Shortley
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phase factor of (—1)™, set the parameter csphase to either —1 or 1 respectively in the _e function. This factor
is excluded by default.

int gsl_sf_legendre_deriv2_alt_array(const gsi_sf_legendre_t norm, const size_t Imax, const double x,
double result_array[], double result_deriv_array[], double
result_deriv2_array[])

int gsl_sf_legendre_deriv2_alt_array_e(const gs/_sf legendre_t norm, const size_t Imax, const double x,
const double csphase, double result_array[], double
result_deriv_array[], double result_deriv2_array[])

These functions calculate all normalized associated Legendre functions and their (alternate) first and second
derivatives up to degree Imax for |x| < 1. The parameter norm specifies the normalization used. The normal-
ized P/™(z), their first derivatives d P/™ (cos §) /df, and their second derivatives d>P/"(cos 6)) /d6? are stored in
result_array, result_deriv_array, and result_deriv2_array respectively. To include or exclude the
Condon-Shortley phase factor of (—1)™, set the parameter csphase to either —1 or 1 respectively in the _e
function. This factor is excluded by default.

size_t gsl_sf_legendre_nlm(const size_t Imax)
This function returns the total number of associated Legendre functions P/ () for a given Imax. The number
is (Imax+1) * (Imax+2) / 2.

size_t gsl_sf_legendre_array_n(const size_t Imax)
This function returns the minimum array size for maximum degree Imax needed for the array versions
of the associated Legendre functions. Size is calculated as the total number of P/"(x) functions (see
gsl_sf_legendre_nlm()), plus extra space for precomputing multiplicative factors used in the recurrence
relations.

size_t gsl_sf_legendre_array_index(const size_t I, const size_t m)
This function returns the index into result_array, result_deriv_array, or result_deriv2_array cor-
responding to P/ (x), P, (z), or P, ™(x). The index is given by I(I + 1)/2 + m.

An inline version of this function is used if HAVE_INLINE is defined.

double gsl_sf_legendre_Plm(int I, int m, double x)

int gsl_sf_legendre_Plm_e(int 1, int m, double x, gs/_sf_result *result)
These routines compute the associated Legendre polynomial P/ (z) for m > 0,1 > m, and |z| < 1.

double gsl_sf_legendre_sphPlm(int 1, int m, double x)

int gs1_sf_legendre_sphPlm_e (int I, int m, double x, gsi_sf_result *result)
These routines compute the normalized associated Legendre polynomial
V(20 +1)/(4m)\/(I = m)!/(I + m)!P/(x) suitable for use in spherical harmonics. ~The parameters
must satisfy m > 0,1 > m, and |x| < 1. These routines avoid the overflows that occur for the standard
normalization of P/ (x).

int gs1l_sf_legendre_Plm_array (int Imax, int m, double x, double result_array[])

int gs1l_sf_legendre_Plm_deriv_array (int Imax, int m, double x, double result_array[], double
result_deriv_array[])
These functions are now deprecated and will be removed in a future release; see gs1_sf_legendre_array()
and gsl_sf_legendre_deriv_array().

int gsl_sf_legendre_sphPlm_array(int Imax, int m, double X, double result_array[])
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int gs1_sf_legendre_sphP1lm_deriv_array (int Imax, int m, double x, double result_array[], double
result_deriv_array[])
These functions are now deprecated and will be removed in a future release; see gsl_sf_legendre_array()
and gsl_sf_legendre_deriv_array().

int gsl_sf_legendre_array_size(const int Imax, const int m)
This function is now deprecated and will be removed in a future release.

7.25.3 Conical Functions

The Conical Functions P* (1/2)+i /\(x) and Q" (1/2)+ix ar€ described in Abramowitz & Stegun, Section 8.12.

double gsl_sf_conicalP_half (double lambda, double x)

int gsl_sf_conicalP_half_e(double lambda, double x, gsl_sf result *result)

These routines compute the irregular Spherical Conical Function pl/2

_1/2+i)\(x) forz > —1.

double gsl_sf_conicalP_mhalf (double lambda, double x)

int gsl_sf_conicalP_mhalf_e(double lambda, double X, gsl_sf result *result)

These routines compute the regular Spherical Conical Function P__l1 //22 i (z) forz > —1.

double gsl_sf_conicalP_0(double lambda, double x)

int gsl_sf_conicalP_0_e(double lambda, double x, gsl_sf result *result)
These routines compute the conical function P°, 2+ y(x) forz > —1.

double gsl_sf_conicalP_1(double lambda, double x)

int gsl_sf_conicalP_1_e(double lambda, double x, gsl_sf result *result)
These routines compute the conical function P! J2+4i y(z) forz > —1.

double gsl_sf_conicalP_sph_reg(int I, double lambda, double x)

int gsl_sf_conicalP_sph_reg_e(int 1, double lambda, double X, gsl_sf result *result)

17271 (z) forx > —1land > —1.

These routines compute the Regular Spherical Conical Function P J24ix

double gsl_sf_conicalP_cyl_reg(int m, double lambda, double x)

int gsl_sf_conicalP_cyl_reg_e(int m, double lambda, double x, gsl_sf_result *result)

These routines compute the Regular Cylindrical Conical Function P__l"/L2 yia(@) forz > —Tandm > —1.

7.25.4 Radial Functions for Hyperbolic Space

The following spherical functions are specializations of Legendre functions which give the regular eigenfunctions of
the Laplacian on a 3-dimensional hyperbolic space H?. Of particular interest is the flat limit, A\ — oo,  — 0, Ay
fixed.

double gsl_sf_legendre_H3d_0 (double lambda, double eta)
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int gsl_sf_legendre_H3d_0_e(double lambda, double eta, gsl_sf result *result)
These routines compute the zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space,

in(\r)
1 H3d — sin(An
o (Am) Asinh(n)

for > 0. In the flat limit this takes the form L{34(\, 1) = jo(An).

double gsl_sf_legendre_H3d_1(double lambda, double eta)

int gsl_sf_legendre_H3d_1_e(double lambda, double eta, gsl_sf result *result)
These routines compute the first radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space,

H3d o 1 sin(An) o

for 7 > 0 In the flat limit this takes the form L3¢(\, n) = j;(\n).
double gsl_sf_legendre_H3d(int 1, double lambda, double eta)

int gsl_sf_legendre_H3d_e(int 1, double lambda, double eta, gsl_sf_result *result)
These routines compute the I-th radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space
n > 0and ! > 0. In the flat limit this takes the form LI34(\, n) = j;(An).

int gsl_sf_legendre_H3d_array (int Imax, double lambda, double eta, double result_array[])
This function computes an array of radial eigenfunctions L/3¢(\,n) for 0 < I < Imax.

7.26 Logarithm and Related Functions

Information on the properties of the Logarithm function can be found in Abramowitz & Stegun, Chapter 4. The func-
tions described in this section are declared in the header file gsl1_sf log.h.

double gsl_sf_log(double x)

int gsl_sf_log_e(double x, gsl_sf result *result)
These routines compute the logarithm of x, log(x), for z > 0.

double gsl_sf_log_abs(double x)

int gsl_sf_log_abs_e(double x, gsl_sf_result *result)
These routines compute the logarithm of the magnitude of x, log(|z|), for = # 0.

int gsl_sf_complex_log_e(double zr, double zi, gs/_sf_result *Inr, gsl_sf result *theta)
This routine computes the complex logarithm of z = z,. + ¢2;. The results are returned as Inr, theta such that
exp(lnr 4+ i0) = z, + iz;, where 0 lies in the range [—7, 7].

double gsl_sf_log_1lplusx(double x)

int gsl_sf_log_1lplusx_e(double x, gs/_sf_result *result)
These routines compute log(1 + ) for x > —1 using an algorithm that is accurate for small x.

double gsl_sf_log_1lplusx_mx(double x)

int gsl_sf_log_lplusx_mx_e(double X, gs/_sf result *result)
These routines compute log(1 + z) — x for x > —1 using an algorithm that is accurate for small x.
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7.27 Mathieu Functions

The routines described in this section compute the angular and radial Mathieu functions, and their characteristic values.
Mathieu functions are the solutions of the following two differential equations:

d2

dT)z + (a — 2qcos2v)y =0
d2

d—u‘z — (a—2qcosh2u)f =0

The angular Mathieu functions ce,(z, q), se,-(z, q) are the even and odd periodic solutions of the first equation, which
is known as Mathieu’s equation. These exist only for the discrete sequence of characteristic values a = a,.(¢) (even-
periodic) and a = b,.(¢q) (odd-periodic).

The radial Mathieu functions M ¢ ) (2,q) and M sg.j ) (z,q) are the solutions of the second equation, which is referred
to as Mathieu’s modified equation. The radial Mathieu functions of the first, second, third and fourth kind are denoted
by the parameter j, which takes the value 1, 2, 3 or 4.

For more information on the Mathieu functions, see Abramowitz and Stegun, Chapter 20. These functions are defined
in the header file gsl_sf_mathieu.h.

7.27.1 Mathieu Function Workspace

The Mathieu functions can be computed for a single order or for multiple orders, using array-based routines. The
array-based routines require a preallocated workspace.

type gsl_sf_mathieu_workspace
Workspace required for array-based routines

gsl_sf_mathieu_workspace *gsl_s£f_mathieu_alloc(size_t n, double gmax)
This function returns a workspace for the array versions of the Mathieu routines. The arguments n and gmax
specify the maximum order and ¢-value of Mathieu functions which can be computed with this workspace.

void gsl_sf_mathieu_f£free(gsl_sf mathieu_workspace *work)
This function frees the workspace work.

7.27.2 Mathieu Function Characteristic Values
int gsl_sf_mathieu_a(int n, double q)
int gsl_sf_mathieu_a_e(int n, double q, gs/_sf result *result)
int gs1_sf_mathieu_b(int n, double q)

int gsl_sf_mathieu_b_e(int n, double q, gs/_sf_result *result)
These routines compute the characteristic values a,,(q), b, (g) of the Mathieu functions ce, (g, z) and se, (g, x),
respectively.

int gsl_sf_mathieu_a_array(int order_min, int order_max, double q, gsi_sf_mathieu_workspace *work, double
result_array[])

int gsl_sf_mathieu_b_array(int order_min, int order_max, double q, gsi_sf_mathieu_workspace *work, double
result_array[])
These routines compute a series of Mathieu characteristic values a,(q), b,(q) for n from order_min to
order_max inclusive, storing the results in the array result_array.
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7.27.3 Angular Mathieu Functions
int gsl_sf_mathieu_ce(int n, double g, double x)
int gsl_sf_mathieu_ce_e(int n, double q, double x, gs/_sf _result *result)
int gsl_sf_mathieu_se(int n, double g, double x)
int gsl_sf_mathieu_se_e(int n, double q, double x, gsl_sf _result *result)
These routines compute the angular Mathieu functions ce, (¢, ) and se, (g, x), respectively.
int gsl_sf_mathieu_ce_array (int nmin, int nmax, double q, double x, gs/_sf _mathieu_workspace *work, double

result_array[])

int gsl_sf_mathieu_se_array(int nmin, int nmax, double q, double X, gsi_sf_mathieu_workspace *work, double
result_array[])
These routines compute a series of the angular Mathieu functions ce,, (¢, «) and se,, (g, ) of order n from nmin
to nmax inclusive, storing the results in the array result_array.

7.27.4 Radial Mathieu Functions

int gs1l_sf_mathieu_Mc(int j, int n, double g, double x)

int gsl_sf_mathieu_Mc_e(int j, int n, double g, double x, gs/_sf_result *result)
int gsl_sf_mathieu_Ms(int j, int n, double g, double x)

int gsl_sf_mathieu_Ms_e(int j, int n, double g, double x, gsl_sf_result *result)

These routines compute the radial j-th kind Mathieu functions M ) (¢,x) and M s (g, x) of order n.

The allowed values of j are 1 and 2. The functions for j = 3,4 can be computed as beg) = M,(ll) + @'Mff) and
M = M —im$?), where MY = Mc$) or Ms$).

int gsl_sf_mathieu_Mc_array(int j, int nmin, int nmax, double q, double x, gsi_sf_mathieu_workspace *work,
double result_array[])

int gsl_sf_mathieu_Ms_array(int j, int nmin, int nmax, double q, double x, gsi_sf_mathieu_workspace *work,
double result_array[])
These routines compute a series of the radial Mathieu functions of kind j, with order from nmin to nmax inclu-
sive, storing the results in the array result_array.

7.28 Power Function

The following functions are equivalent to the function gs1_pow_int () with an error estimate. These functions are
declared in the header file gs1_sf_pow_int.h.

double gsl_sf_pow_int (double x, int n)
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int gsl_sf_pow_int_e(double x, int n, gs/_sf_result *result)
These routines compute the power z” for integer n. The power is computed using the minimum number of
multiplications. For example, x® is computed as ((22)?)2, requiring only 3 multiplications. For reasons of
efficiency, these functions do not check for overflow or underflow conditions. The following is a simple example:

#include <gsl/gsl_sf_pow_int.h>
/% compute 3.0%%12 */
double y = gsl_sf_pow_int(3.0, 12);

7.29 Psi (Digamma) Function

The polygamma functions of order n are defined by

6@ = () v = (£) " ostr

where () = T(z)/T'(x) is known as the digamma function. These functions are declared in the header file
gsl_sf psi.h.

7.29.1 Digamma Function
double gsl_sf_psi_int(int n)

int gsl_sf_psi_int_e(int n, gs/_sf_result *result)
These routines compute the digamma function (n) for positive integer n. The digamma function is also called
the Psi function.

double gsl_sf_psi(double x)

int gsl_sf_psi_e(double x, gsl_sf result *result)
These routines compute the digamma function ¢ (z) for general x, z # 0.

double gsl_sf_psi_lpiy(double y)

int gsl_sf_psi_lpiy_e(doubley, gsi_sf result *result)
These routines compute the real part of the digamma function on the line 1 + iy, R (1 + iy)].

7.29.2 Trigamma Function
double gsl_sf_psi_1_int(int n)

int gsl_sf_psi_1_int_e(intn, gsi_sf result *result)
These routines compute the Trigamma function v’ (n) for positive integer n.

double gsl_sf_psi_1(double x)

int gsl_sf_psi_1_e(double x, gsl_sf_result *result)
These routines compute the Trigamma function v’ (z) for general x.
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7.29.3 Polygamma Function
double gsl_sf_psi_n(int n, double x)
int gsl_sf_psi_n_e(int n, double x, gsl_sf result *result)

These routines compute the polygamma function ¢("™) (z) for n > 0, z > 0.

7.30 Synchrotron Functions

The functions described in this section are declared in the header file gsl_sf_synchrotron.h.

double gsl_sf_synchrotron_1(double x)

int gsl_sf_synchrotron_1_e(double x, gs/_sf_result *result)
These routines compute the first synchrotron function x f;o dtK53(t) for z > 0.

double gsl_sf_synchrotron_2 (double x)

int gsl_sf_synchrotron_2_e(double x, gs/_sf result *result)
These routines compute the second synchrotron function 2 K 3(x) for z > 0.

7.31 Transport Functions

The transport functions J(n, ) are defined by the integral representations

J(n,z) = /O-T t"el/ (et —1)%dt

They are declared in the header file gsl_sf_transport.h.

double gsl_sf_transport_2 (double x)

int gsl_sf_transport_2_e(double x, gsl_sf result *result)
These routines compute the transport function J(2, x).

double gsl_sf_transport_3(double x)

int gsl_sf_transport_3_e(double x, gsl_sf_result *result)
These routines compute the transport function J(3, ).

double gsl_sf_transport_4(double x)

int gsl_sf_transport_4_e(double x, gsl_sf_result *result)
These routines compute the transport function J (4, x).

double gsl_sf_transport_5 (double x)

int gsl_sf_transport_5_e(double x, gsl_sf_result *result)
These routines compute the transport function J (5, x).
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7.32 Trigonometric Functions

The library includes its own trigonometric functions in order to provide consistency across platforms and reliable error
estimates. These functions are declared in the header file gs1_sf_trig.h.

7.32.1 Circular Trigonometric Functions
double gsl_sf_sin(double x)

int gsl_sf_sin_e(double x, gsi_sf result *result)
These routines compute the sine function sin(x).

double gsl_sf_cos(double x)

int gsl_sf_cos_e(double x, gsl_sf result *result)
These routines compute the cosine function cos(z).

double gs1_sf_hypot (double x, double y)

int gsl_sf_hypot_e(double x, double y, gsl_sf_result *result)
These routines compute the hypotenuse function y/x2 + y2 avoiding overflow and underflow.

double gsl_sf_sinc(double x)

int gsl_sf_sinc_e(double x, gsl_sf result *result)
These routines compute sinc(x) = sin(nz)/(nzx) for any value of x.

7.32.2 Trigonometric Functions for Complex Arguments

int gsl_sf_complex_sin_e(double zr, double zi, gsl_sf result *szr, gsl_sf result *szi)
This function computes the complex sine, sin(z, + iz;) storing the real and imaginary parts in szr, szi.

int gsl_sf_complex_cos_e(double zr, double zi, gsl_sf_result *czr, gsl_sf_result *czi)
This function computes the complex cosine, cos(z, + iz;) storing the real and imaginary parts in czr, czi.

int gsl_sf_complex_logsin_e(double zr, double zi, gs/_sf_result *1szr, gsl_sf_result *1szi)
This function computes the logarithm of the complex sine, log(sin(z, +iz;)) storing the real and imaginary parts
in Iszr, 1szi.

7.32.3 Hyperbolic Trigonometric Functions
double gsl_sf_lnsinh(double x)

int gsl_sf_lnsinh_e(double x, gs/_sf result *result)
These routines compute log(sinh(x)) for z > 0.

double gsl_sf_lncosh(double x)

int gsl_sf_lncosh_e(double x, gsl_sf result *result)
These routines compute log(cosh(z)) for any x.
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7.32.4 Conversion Functions

int gsl_sf_polar_to_rect(double r, double theta, gs/_sf result *x, gsl_sf_result *y)
This function converts the polar coordinates (r, theta) to rectilinear coordinates (x, y), z = rcos(f), y =
rsin(6).

int gsl_sf_rect_to_polar(double x, double y, gsi_sf_result *r, gsl_sf_result *theta)
This function converts the rectilinear coordinates (x, y) to polar coordinates (r, theta), such that z = r cos(6),
y = rsin(f). The argument theta lies in the range [—, 7].

7.32.5 Restriction Functions
double gsl_sf_angle_restrict_symm(double theta)

int gsl_sf_angle_restrict_symm_e(double *theta)
These routines force the angle theta to lie in the range (—, 7).

Note that the mathematical value of 7 is slightly greater than M_PI, so the machine numbers M_PI and -M_PI
are included in the range.

double gsl_sf_angle_restrict_pos(double theta)

int gsl_sf_angle_restrict_pos_e(double *theta)
These routines force the angle theta to lie in the range [0, 27).

Note that the mathematical value of 27 is slightly greater than 2*M_PI, so the machine number 2*M_PTI is in-
cluded in the range.

7.32.6 Trigonometric Functions With Error Estimates

int gsl_sf_sin_err_e(double x, double dx, gsl_sf result *result)
This routine computes the sine of an angle x with an associated absolute error dx, sin(z & dx). Note that this
function is provided in the error-handling form only since its purpose is to compute the propagated error.

int gsl_sf_cos_err_e(double x, double dx, gsi_sf result *result)
This routine computes the cosine of an angle x with an associated absolute error dx, cos(x £ dx). Note that this
function is provided in the error-handling form only since its purpose is to compute the propagated error.

7.33 Zeta Functions

The Riemann zeta function is defined in Abramowitz & Stegun, Section 23.2. The functions described in this section
are declared in the header file gsl_sf_zeta.h.
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7.33.1 Riemann Zeta Function

The Riemann zeta function is defined by the infinite sum

o0

OED D
k=1

double gsl_sf_zeta_int(int n)
int gsl_sf_zeta_int_e(int n, gsl_sf result *result)
These routines compute the Riemann zeta function {(n) for integer n, n # 1.

double gsl_sf_zeta(double s)

int gsl_sf_zeta_e(double s, gsl_sf_result *result)
These routines compute the Riemann zeta function ((s) for arbitrary s, s # 1.

7.33.2 Riemann Zeta Function Minus One
For large positive argument, the Riemann zeta function approaches one. In this region the fractional part is interesting,
and therefore we need a function to evaluate it explicitly.

double gsl_sf_zetaml_int (int n)

int gsl_sf_zetaml_int_e(int n, gs/_sf_result *result)
These routines compute ((n) — 1 for integer n, n # 1.

double gsl_sf_zetaml (double s)

int gsl_sf_zetaml_e(double s, gs/_sf result *result)
These routines compute ((s) — 1 for arbitrary s, s # 1.

7.33.3 Hurwitz Zeta Function

The Hurwitz zeta function is defined by

o0

((s,9) =) (k+q)

0

double gsl_sf_hzeta(double s, double q)

int gsl_sf_hzeta_e(double s, double q, gsi_sf_result *result)
These routines compute the Hurwitz zeta function ((s, ¢) for s > 1, ¢ > 0.
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7.33.4 Eta Function

The eta function is defined by

n(s) = (1 —2'7°)¢(s)

double gsl_sf_eta_int(int n)

int gsl_sf_eta_int_e(int n, gs/_sf_result *result)

These routines compute the eta function 7(n) for integer n.

double gsl_sf_eta(double s)

int gsl_sf_eta_e(double s, gsl_sf result *result)

These routines compute the eta function 7(s) for arbitrary s.

7.34 Examples

The following example demonstrates the use of the error handling form of the special functions, in this case to compute
the Bessel function Jy(5.0),

#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_bessel.h>

int
main (void)

{

double x = 5.0;
gsl_sf_result result;

double expected = -0.17759677131433830434739701;

int status = gsl_sf _bessel_JO_e (x, &result);

printf ("status = \n", gsl_strerror(status));
printf ("J0(5.0) = \n"

" +/- \n",

result.val, result.err);
printf ("exact = \n", expected);

return status;

Here are the results of running the program,

status = success
JO(5.0) = -0.177596771314338264

exact

0.000000000000000193
-0.177596771314338292

+/

The next program computes the same quantity using the natural form of the function.

result.err and return status are not accessible.

In this case the error term

7.34. Examples
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#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>

int

main (void)

{

double x = 5.0;
double expected = -0.17759677131433830434739701;

double y = gsl_sf bessel_J0 (x);

printf ("J0(5.0)
printf ("exact

\n", y);
\n", expected);

return 0;

}

The results of the function are the same,

JO(5.0)

-0.177596771314338264

exact = -0.177596771314338292

7.35 References and Further Reading

The library follows the conventions of the following book where possible,

Handbook of Mathematical Functions, edited by Abramowitz & Stegun, Dover, ISBN 0486612724.

The following papers contain information on the algorithms used to compute the special functions,

Allan J. MacLeod, MISCFUN: A software package to compute uncommon special functions. ACM Trans. Math.
Soft., vol.: 22, 1996, 288-301

Bunck, B. F., A fast algorithm for evaluation of normalized Hermite functions, BIT Numer. Math, 49: 281-295,
20009.

G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Edition (Cambridge University Press, 1944).
G. Nemeth, Mathematical Approximations of Special Functions, Nova Science Publishers, ISBN 1-56072-052-2
B.C. Carlson, Special Functions of Applied Mathematics (1977)

N. M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical Physics (1996),
ISBN 978-0471113133.

W.J. Thompson, Atlas for Computing Mathematical Functions, John Wiley & Sons, New York (1997).
Y.Y. Luke, Algorithms for the Computation of Mathematical Functions, Academic Press, New York (1977).

S. A. Holmes and W. E. Featherstone, A unified approach to the Clenshaw summation and the recursive com-
putation of very high degree and order normalised associated Legendre functions, Journal of Geodesy, 76, pg.
279-299, 2002.
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EIGHT

VECTORS AND MATRICES

The functions described in this chapter provide a simple vector and matrix interface to ordinary C arrays. The memory
management of these arrays is implemented using a single underlying type, known as a block. By writing your functions
in terms of vectors and matrices you can pass a single structure containing both data and dimensions as an argument
without needing additional function parameters. The structures are compatible with the vector and matrix formats used

by BLAS routines.

8.1 Data types

All the functions are available for each of the standard data-types.

The versions for double have the prefix

gsl_block, gsl_vector and gsl_matrix. Similarly the versions for single-precision float arrays have the pre-
fix gsl_block_float, gsl_vector_float and gsl_matrix_float. The full list of available types is given below,

Prefix Type
gsl_block double
gsl_block_float float
gsl_block_long_double long double
gsl_block_int int
gsl_block_uint unsigned int
gsl_block_long long
gsl_block_ulong unsigned long
gsl_block_short short
gsl_block_ushort unsigned short
gsl_block_char char

gsl_block_uchar

unsigned char

gsl_block_complex

complex double

gsl_block_complex_float

complex float

gsl_block_complex_long_double

complex long double

Corresponding types exist for the gsl_vector and gsl_matrix functions.
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8.2 Blocks

For consistency all memory is allocated through a gs1_block structure. The structure contains two components, the
size of an area of memory and a pointer to the memory. The gs1_block structure looks like this,

type gsl_block

typedef struct
{
size_t size;
double * data;
} gsl_block;

Vectors and matrices are made by slicing an underlying block. A slice is a set of elements formed from an initial offset
and a combination of indices and step-sizes. In the case of a matrix the step-size for the column index represents the
row-length. The step-size for a vector is known as the stride.

The functions for allocating and deallocating blocks are defined in gs1_block.h.

8.2.1 Block allocation

The functions for allocating memory to a block follow the style of malloc and free. In addition they also perform
their own error checking. If there is insufficient memory available to allocate a block then the functions call the GSL
error handler (with an error number of GSL_ENOMEN) in addition to returning a null pointer. Thus if you use the library
error handler to abort your program then it isn’t necessary to check every alloc.

gsl_block *gsl_block_alloc(size_t n)
This function allocates memory for a block of n double-precision elements, returning a pointer to the block
struct. The block is not initialized and so the values of its elements are undefined. Use the function
gsl_block_calloc() if you want to ensure that all the elements are initialized to zero.

Zero-sized requests are valid and return a non-null result. A null pointer is returned if insufficient memory is
available to create the block.

gsl_block *gsl_block_calloc(size_t n)
This function allocates memory for a block and initializes all the elements of the block to zero.

void gs1_block_free(gs/_block *b)
This function frees the memory used by a block b previously allocated with gsI_block_alloc() or
gsl_block_calloc().

8.2.2 Reading and writing blocks

The library provides functions for reading and writing blocks to a file as binary data or formatted text.

int gsl_block_fwrite(FILE *stream, const gs/_block *b)
This function writes the elements of the block b to the stream stream in binary format. The return value is 0
for success and GSL_EFAILED if there was a problem writing to the file. Since the data is written in the native
binary format it may not be portable between different architectures.

int gsl_block_£fread (FILE *stream, gs/_block *b)
This function reads into the block b from the open stream stream in binary format. The block b must be
preallocated with the correct length since the function uses the size of b to determine how many bytes to read.
The return value is 0 for success and GSL_EFATILED if there was a problem reading from the file. The data is
assumed to have been written in the native binary format on the same architecture.
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int gsl_block_£fprintf (FILE *stream, const gs/_block *b, const char *format)
This function writes the elements of the block b line-by-line to the stream stream using the format specifier
format, which should be one of the %g, %e or %f formats for floating point numbers and %d for integers. The
function returns O for success and GSL_EFAILED if there was a problem writing to the file.

int gsl_block_£fscanf (FILE *stream, gs/_block *b)
This function reads formatted data from the stream stream into the block b. The block b must be preallocated
with the correct length since the function uses the size of b to determine how many numbers to read. The function
returns O for success and GSL_EFAILED if there was a problem reading from the file.

8.2.3 Example programs for blocks

The following program shows how to allocate a block,

#include <stdio.h>
#include <gsl/gsl_block.h>

int

main (void)

{
gsl_block * b = gsl_block_alloc (100);

printf ("length of block = %zu\n", b->size);
printf ("block data address = %p\n", b->data);

gsl_block_free (b);
return 0;

}

Here is the output from the program,

length of block = 100
block data address = 0x804b0d8

8.3 Vectors

Vectors are defined by a gsl_vector structure which describes a slice of a block. Different vectors can be created
which point to the same block. A vector slice is a set of equally-spaced elements of an area of memory.

The gsl_vector structure contains five components, the size, the stride, a pointer to the memory where the elements
are stored, data, a pointer to the block owned by the vector, block, if any, and an ownership flag, owner. The structure
is very simple and looks like this,

type gsl_vector

typedef struct

{
size_t size;
size_t stride;
double * data;
gsl_block * block;

(continues on next page)
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(continued from previous page)

int owner;
} gsl_vector;

The size is simply the number of vector elements. The range of valid indices runs from O to size-1. The stride
is the step-size from one element to the next in physical memory, measured in units of the appropriate datatype. The
pointer data gives the location of the first element of the vector in memory. The pointer block stores the location of
the memory block in which the vector elements are located (if any). If the vector owns this block then the owner field
is set to one and the block will be deallocated when the vector is freed. If the vector points to a block owned by another
object then the owner field is zero and any underlying block will not be deallocated with the vector.

The functions for allocating and accessing vectors are defined in gsl_vector.h.

8.3.1 Vector allocation

The functions for allocating memory to a vector follow the style of malloc and free. In addition they also perform
their own error checking. If there is insufficient memory available to allocate a vector then the functions call the GSL
error handler (with an error number of GSL_ENOMEI) in addition to returning a null pointer. Thus if you use the library
error handler to abort your program then it isn’t necessary to check every alloc.

gsl_vector *gsl_vector_alloc(size_t n)
This function creates a vector of length n, returning a pointer to a newly initialized vector struct. A new block
is allocated for the elements of the vector, and stored in the block component of the vector struct. The block is
“owned” by the vector, and will be deallocated when the vector is deallocated. Zero-sized requests are valid and
return a non-null result.

gsl_vector *gsl_vector_calloc(size_t n)
This function allocates memory for a vector of length n and initializes all the elements of the vector to zero.

void gsl_vector_£free(gsl_vector *v)
This function frees a previously allocated vector v. If the vector was created using gsI_vector_alloc() then
the block underlying the vector will also be deallocated. If the vector has been created from another object then
the memory is still owned by that object and will not be deallocated.

8.3.2 Accessing vector elements

Unlike Fortran compilers, C compilers do not usually provide support for range checking of vectors and matrices.' The
functions gsI_vector_get() and gsl_vector_set() can perform portable range checking for you and report an
error if you attempt to access elements outside the allowed range.

The functions for accessing the elements of a vector or matrix are defined in gsl_vector.h and declared
extern inline to eliminate function-call overhead. You must compile your program with the preprocessor macro
HAVE_INLINE defined to use these functions.

GSL_RANGE_CHECK_OFF
If necessary you can turn off range checking completely without modifying any source files by recompil-
ing your program with the preprocessor definition GSL_RANGE_CHECK_OFF. Provided your compiler supports
inline functions the effect of turning off range checking is to replace calls to gsl_vector_get(v,i) by
v->data[i*v->stride] and calls to gsl_vector_set(v,i,x) by v->data[i*v->stride]=x. Thus there
should be no performance penalty for using the range checking functions when range checking is turned off.

GSL_C99_INLINE
If you use a C99 compiler which requires inline functions in header files to be declared inline instead of extern

I Range checking is available in the GNU C Compiler bounds-checking extension, but it is not part of the default installation of GCC. Memory
accesses can also be checked with Valgrind or the gcc -fmudflap memory protection option.
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inline, define the macro GSL_C99_INLINE (see Inline functions). With GCC this is selected automatically
when compiling in C99 mode (-std=c99).

int gsl_check_range
If inline functions are not used, calls to the functions gs1_vector_get () and gsl_vector_set () will link to
the compiled versions of these functions in the library itself. The range checking in these functions is controlled
by the global integer variable gs1_check_range. It is enabled by default—to disable it, set gs1_check_range
to zero. Due to function-call overhead, there is less benefit in disabling range checking here than for inline
functions.

double gsl_vector_get (const gsl_vector *v, const size_t i)
This function returns the i-th element of a vector v. If i lies outside the allowed range of 0 to size - 1 then
the error handler is invoked and O is returned. An inline version of this function is used when HAVE_INLINE is
defined.

void gsl_vector_set (gs/_vector *v, const size_t i, double x)
This function sets the value of the i-th element of a vector v to x. If 1 lies outside the allowed range of O to size
- 1 then the error handler is invoked. An inline version of this function is used when HAVE_INLINE is defined.

double *gsl_vector_ptr(gs/_vector *v, size_t i)

const double *gsl_vector_const_ptr(const gsl_vector *v, size_t i)
These functions return a pointer to the i-th element of a vector v. If 1 lies outside the allowed range of O to size
- 1 then the error handler is invoked and a null pointer is returned. Inline versions of these functions are used
when HAVE_INLINE is defined.

8.3.3 Initializing vector elements

void gsl_vector_set_all (gs/_vector *v, double x)
This function sets all the elements of the vector v to the value x.

void gsl_vector_set_zero(gsl_vector *v)
This function sets all the elements of the vector v to zero.

int gsl_vector_set_basis(gs/_vector *v, size_t i)
This function makes a basis vector by setting all the elements of the vector v to zero except for the i-th element
which is set to one.

8.3.4 Reading and writing vectors

The library provides functions for reading and writing vectors to a file as binary data or formatted text.

int gsl_vector_fwrite (FILE *stream, const gs/_vector *v)
This function writes the elements of the vector v to the stream stream in binary format. The return value is 0
for success and GSL_EFAILED if there was a problem writing to the file. Since the data is written in the native
binary format it may not be portable between different architectures.

int gsl_vector_fread (FILE *stream, gs/_vector *v)
This function reads into the vector v from the open stream stream in binary format. The vector v must be
preallocated with the correct length since the function uses the size of v to determine how many bytes to read.
The return value is O for success and GSL_EFAILED if there was a problem reading from the file. The data is
assumed to have been written in the native binary format on the same architecture.

int gsl_vector_fprintf (FILE *stream, const gs/_vector *v, const char *format)
This function writes the elements of the vector v line-by-line to the stream stream using the format specifier
format, which should be one of the %g, %e or %f formats for floating point numbers and %d for integers. The
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function returns O for success and GSL_EFAILED if there was a problem writing to the file.

int gsl_vector_fscanf (FILE *stream, gs/_vector *v)

This function reads formatted data from the stream stream into the vector v. The vector v must be preallocated
with the correct length since the function uses the size of v to determine how many numbers to read. The function
returns O for success and GSL_EFAILED if there was a problem reading from the file.

8.3.5 Vector views

In addition to creating vectors from slices of blocks it is also possible to slice vectors and create vector views. For
example, a subvector of another vector can be described with a view, or two views can be made which provide access
to the even and odd elements of a vector.

type gsl_vector_view

type gsl_vector_const_view

A vector view is a temporary object, stored on the stack, which can be used to operate on a subset of vector
elements. Vector views can be defined for both constant and non-constant vectors, using separate types that
preserve constness. A vector view has the type gsl_vector_view and a constant vector view has the type
gsl_vector_const_view. In both cases the elements of the view can be accessed as a gs1_vector using the
vector component of the view object. A pointer to a vector of type gsl_vector * or const gsl_vector *
can be obtained by taking the address of this component with the & operator.

When using this pointer it is important to ensure that the view itself remains in scope—the simplest way to do
so is by always writing the pointer as &view.vector, and never storing this value in another variable.

gsl_vector_view gsl_vector_subvector (gs/_vector *v, size_t offset, size_t n)

gsl_vector_const_view gsl_vector_const_subvector (const gs/_vector *v, size_t offset, size_t n)

These functions return a vector view of a subvector of another vector v. The start of the new vector is offset by
offset elements from the start of the original vector. The new vector has n elements. Mathematically, the i-th
element of the new vector v' is given by:

v'(i) = v->data[(offset + i)*v->stride]

where the index i runs fromOton - 1.

The data pointer of the returned vector struct is set to null if the combined parameters (offset, n) overrun the
end of the original vector.

The new vector is only a view of the block underlying the original vector, v. The block containing the elements
of v is not owned by the new vector. When the view goes out of scope the original vector v and its block will
continue to exist. The original memory can only be deallocated by freeing the original vector. Of course, the
original vector should not be deallocated while the view is still in use.

The function gs1_vector_const_subvector() is equivalent to gsI_vector_subvector () but can be used
for vectors which are declared const.

gsl_vector_view gsl_vector_subvector_with_stride(gsi_vector *v, size_t offset, size_t stride, size_t n)

gsl_vector_const_view gsl_vector_const_subvector_with_stride(const gs/_vector *v, size_t offset, size_t

stride, size_t n)
These functions return a vector view of a subvector of another vector v with an additional stride argument. The
subvector is formed in the same way as for gs1_vector_subvector () but the new vector has n elements with
a step-size of stride from one element to the next in the original vector. Mathematically, the i-th element of
the new vector v' is given by:
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v'(i) = v->data[(offset + i*stride)*v->stride]

where the index i runs fromOton - 1.

Note that subvector views give direct access to the underlying elements of the original vector. For example, the
following code will zero the even elements of the vector v of length n, while leaving the odd elements untouched:

gsl_vector_view v_even = gsl_vector_subvector_with_stride (v, 0, 2, n/2);
gsl_vector_set_zero (&v_even.vector);

A vector view can be passed to any subroutine which takes a vector argument just as a directly allocated vector
would be, using &view.vector. For example, the following code computes the norm of the odd elements of v
using the BLAS routine dnrm2:

gsl_vector_view v_odd = gsl_vector_subvector_with_stride (v, 1, 2, n/2);
double r = gsl_blas_dnrm2 (&v_odd.vector);

The function gsl_vector_const_subvector_with_stride() is equivalent to
gsl_vector_subvector_with_stride() but can be used for vectors which are declared const.

gsl_vector_view gsl_vector_complex_real (gsl_vector_complex *v)

gsl_vector_const_view gsl_vector_complex_const_real (const gsl_vector_complex *v)
These functions return a vector view of the real parts of the complex vector v.

The function gsI_vector_complex_const_real() is equivalent to gsI_vector_complex_real () but can
be used for vectors which are declared const.

gsl_vector_view gsl_vector_complex_imag(gsl_vector_complex *v)

gsl_vector_const_view gsl_vector_complex_const_imag(const gsl_vector_complex *v)
These functions return a vector view of the imaginary parts of the complex vector v.

The function gsI_vector_complex_const_imag() is equivalent to gsI_vector_complex_imag() but can
be used for vectors which are declared const.

gsl_vector_view gsl_vector_view_array(double *base, size_t n)

gsl_vector_const_view gsl_vector_const_view_array (const double *base, size_t n)
These functions return a vector view of an array. The start of the new vector is given by base and has n elements.
Mathematically, the i-th element of the new vector v' is given by:

v'(i) = base[i]

where the index i runs fromOton - 1.

The array containing the elements of v is not owned by the new vector view. When the view goes out of scope
the original array will continue to exist. The original memory can only be deallocated by freeing the original
pointer base. Of course, the original array should not be deallocated while the view is still in use.

The function gsl_vector_const_view_array() is equivalent to gsl_vector_view_array() but can be
used for arrays which are declared const.

gsl_vector_view gsl_vector_view_array_with_stride(double *base, size_t stride, size_t n)
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gsl_vector_const_view gsl_vector_const_view_array_with_stride(const double *base, size_t stride, size_t
n)
These functions return a vector view of an array base with an additional stride argument. The subvector is
formed in the same way as for gs1_vector_view_array () but the new vector has n elements with a step-size
of stride from one element to the next in the original array. Mathematically, the i-th element of the new vector
v' is given by:

v'(i) = base[i*stride]

where the index i runs fromOton - 1.

Note that the view gives direct access to the underlying elements of the original array. A vector view can be
passed to any subroutine which takes a vector argument just as a directly allocated vector would be, using &view.
vector.

The function gsl_vector_const_view_array_with_stride() is equivalent to
gsl_vector_view_array_with_stride() but can be used for arrays which are declared const.

8.3.6 Copying vectors

Common operations on vectors such as addition and multiplication are available in the BLAS part of the library (see
BLAS Support). However, it is useful to have a small number of utility functions which do not require the full BLAS
code. The following functions fall into this category.

int gsl_vector_memcpy (gs/_vector *dest, const gsl_vector *src)
This function copies the elements of the vector src into the vector dest. The two vectors must have the same
length.

int gsl_vector_swap (gs/_vector *v, gsl_vector ¥*w)
This function exchanges the elements of the vectors v and w by copying. The two vectors must have the same
length.

8.3.7 Exchanging elements

The following functions can be used to exchange, or permute, the elements of a vector.

int gsl_vector_swap_elements (gs/_vector *v, size_t i, size_t j)
This function exchanges the i-th and j-th elements of the vector v in-place.

int gsl_vector_reverse (gsi_vector *v)
This function reverses the order of the elements of the vector v.

8.3.8 Vector operations

int gsl_vector_add(gs/_vector *a, const gsl_vector *b)
This function adds the elements of vector b to the elements of vector a. The result a; < a; + b; is stored in a
and b remains unchanged. The two vectors must have the same length.

int gsl_vector_sub(gs/_vector *a, const gsl_vector *b)
This function subtracts the elements of vector b from the elements of vector a. The result a; < a; — b; is stored
in a and b remains unchanged. The two vectors must have the same length.

int gsl_vector_mul (gs/_vector *a, const gsl_vector *b)
This function multiplies the elements of vector a by the elements of vector b. The result a; <— a; * b; is stored
in a and b remains unchanged. The two vectors must have the same length.
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int gsl_vector_div(gsl_vector *a, const gsl_vector *b)
This function divides the elements of vector a by the elements of vector b. The result a; < a;/b; is stored in a
and b remains unchanged. The two vectors must have the same length.

int gsl_vector_scale(gs/_vector *a, const double x)
This function multiplies the elements of vector a by the constant factor x. The result a; <— xa; is stored in a.

int gsl_vector_add_constant (gs/_vector *a, const double x)
This function adds the constant value x to the elements of the vector a. The result a; + a; + x is stored in a.

double gsl_vector_sum(const gs/_vector *a)
This function returns the sum of the elements of a, defined as 2?21 a;

int gsl_vector_axpby (const double alpha, const gs/_vector *x, const double beta, gs/_vector *y)
This function performs the operation y <— ax + By. The vectors x and y must have the same length.

8.3.9 Finding maximum and minimum elements of vectors

The following operations are only defined for real vectors.

double gsl_vector_max(const gsl_vector *v)
This function returns the maximum value in the vector v.

double gsl_vector_min(const gs/_vector *v)
This function returns the minimum value in the vector v.

void gsl_vector_minmax (const gs/_vector *v, double *min_out, double *max_out)
This function returns the minimum and maximum values in the vector v, storing them in min_out and max_out.

size_t gsl_vector_max_index(const gs/_vector *v)
This function returns the index of the maximum value in the vector v. When there are several equal maximum
elements then the lowest index is returned.

size_t gsl_vector_min_index(const gsl_vector *v)
This function returns the index of the minimum value in the vector v. When there are several equal minimum
elements then the lowest index is returned.

void gsl_vector_minmax_index (const gs/_vector *v, size_t *imin, size_t *imax)
This function returns the indices of the minimum and maximum values in the vector v, storing them in imin and
imax. When there are several equal minimum or maximum elements then the lowest indices are returned.

8.3.10 Vector properties
The following functions are defined for real and complex vectors. For complex vectors both the real and imaginary
parts must satisfy the conditions.

int gsl_vector_isnull (const gsi_vector *v)
int gsl_vector_ispos (const gsl_vector *v)
int gsl_vector_isneg(const gsl_vector *v)

int gsl_vector_isnonneg(const gs/_vector *v)
These functions return 1 if all the elements of the vector v are zero, strictly positive, strictly negative, or non-
negative respectively, and O otherwise.

int gsl_vector_equal (const gs/_vector *u, const gsi_vector *v)
This function returns 1 if the vectors u and v are equal (by comparison of element values) and O otherwise.
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8.3.11 Example programs for vectors

This program shows how to allocate, initialize and read from a vector using the functions gsl_vector_alloc(),
gsl_vector_set() and gsl_vector_get().

#include <stdio.h>
#include <gsl/gsl_vector.h>

int
main (void)
{

int i;

gsl_vector * v = gsl_vector_alloc (3);

for (4 = 0; 1 < 3; i++)

{
gsl_vector_set (v, i, 1.23 + i);
3
for (i = 0; i < 100; i++) /* OUT OF RANGE ERROR */
{
printf ("v_%d = %g\n", i, gsl_vector_get (v, i));
}

gsl_vector_free (v);
return 0;

Here is the output from the program. The final loop attempts to read outside the range of the vector v, and the error is
trapped by the range-checking code in gsI_vector_get()

$ ./a.out
v_® = 1.23
v_l = 2.23
v_2 = 3.23

gsl: vector_source.c:12: ERROR: index out of range
Default GSL error handler invoked.
Aborted (core dumped)

The next program shows how to write a vector to a file.

#include <stdio.h>
#include <gsl/gsl_vector.h>

int
main (void)
{

int i;

gsl_vector * v = gsl_vector_alloc (100);

for (i = 0; 1 < 100; i++)
{

gsl_vector_set (v, i, 1.23 + i);

}

(continues on next page)
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(continued from previous page)

{
FILE * f = fopen ("test.dat", "w");
gsl_vector_fprintf (£, v, " "y
fclose (£);

}

gsl_vector_free (v);
return 0;

}

After running this program the file test.dat should contain the elements of v, written using the format specifier %.5g.
The vector could then be read back in using the function gsl_vector_fscanf (£, v) as follows:

#include <stdio.h>
#include <gsl/gsl_vector.h>

int
main (void)
{

int i;

gsl_vector * v = gsl_vector_alloc (10);

{
FILE * f = fopen ("test.dat", "r'");
gsl_vector_fscanf (f, v);
fclose (£);

}

for (i = 0; i < 10; i++)

{

printf ("%g\n", gsl_vector_get(v, i));

}

gsl_vector_free (v);
return 0;

8.4 Matrices

Matrices are defined by a gsl_matrix structure which describes a generalized slice of a block. Like a vector it
represents a set of elements in an area of memory, but uses two indices instead of one.

type gsl_matrix

The gs1_matrix structure contains six components, the two dimensions of the matrix, a physical dimension, a
pointer to the memory where the elements of the matrix are stored, data, a pointer to the block owned by the
matrix block, if any, and an ownership flag, owner. The physical dimension determines the memory layout and
can differ from the matrix dimension to allow the use of submatrices. The gsI_matrix structure is very simple

and looks like this:
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typedef struct

{
size_t sizel;
size_t size2;
size_t tda;
double * data;
gsl_block * block;
int owner;

} gsl_matrix;

Matrices are stored in row-major order, meaning that each row of elements forms a contiguous block in memory. This is
the standard “C-language ordering” of two-dimensional arrays. Note that Fortran stores arrays in column-major order.
The number of rows is sizel. The range of valid row indices runs from O to sizel - 1. Similarly size2 is the
number of columns. The range of valid column indices runs from 0 to size2 - 1. The physical row dimension tda,
or trailing dimension, specifies the size of a row of the matrix as laid out in memory.

For example, in the following matrix sizel is 3, size2 is 4, and tda is 8. The physical memory layout of the matrix
begins in the top left hand-corner and proceeds from left to right along each row in turn.

00 01 02 03 XX XX XX XX
10 11 12 13 XX XX XX XX
20 21 22 23 XX XX XX XX

Each unused memory location is represented by “XX”. The pointer data gives the location of the first element of the
matrix in memory. The pointer block stores the location of the memory block in which the elements of the matrix are
located (if any). If the matrix owns this block then the owner field is set to one and the block will be deallocated when
the matrix is freed. If the matrix is only a slice of a block owned by another object then the owner field is zero and any
underlying block will not be freed.

The functions for allocating and accessing matrices are defined in gs1l_matrix.h.

8.4.1 Matrix allocation

The functions for allocating memory to a matrix follow the style of malloc and free. They also perform their own
error checking. If there is insufficient memory available to allocate a matrix then the functions call the GSL error
handler (with an error number of GSL_ENONMEN) in addition to returning a null pointer. Thus if you use the library error
handler to abort your program then it isn’t necessary to check every alloc.

gsl_matrix *gsl_matrix_alloc(size_t nl, size_t n2)
This function creates a matrix of size n1 rows by n2 columns, returning a pointer to a newly initialized matrix
struct. A new block is allocated for the elements of the matrix, and stored in the block component of the matrix
struct. The block is “owned” by the matrix, and will be deallocated when the matrix is deallocated. Requesting
zero for n1 or n2 is valid and returns a non-null result.

gsl_matrix *gsl_matrix_calloc(size_t nl, size_t n2)
This function allocates memory for a matrix of size nl rows by n2 columns and initializes all the elements of
the matrix to zero.

void gsl_matrix_free(gsl_matrix *m)
This function frees a previously allocated matrix m. If the matrix was created using gsI_matrix_alloc() then
the block underlying the matrix will also be deallocated. If the matrix has been created from another object then
the memory is still owned by that object and will not be deallocated.
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8.4.2 Accessing matrix elements
The functions for accessing the elements of a matrix use the same range checking system as vectors. You can turn off
range checking by recompiling your program with the preprocessor definition GSL_RANGE_CHECK_OFF.

The elements of the matrix are stored in “C-order”, where the second index moves continuously through memory. More
precisely, the element accessed by the function gs1_matrix_get(m,i,j) and gsl_matrix_set(m,i,j,x) is:

m->data[i * m->tda + j]

where tda is the physical row-length of the matrix.

double gsl_matrix_get (const gs/_matrix *m, const size_t i, const size_t j)
This function returns the (4, j)-th element of a matrix m. If i or j lie outside the allowed range of O tonl - 1
and O ton2 - 1 then the error handler is invoked and O is returned. An inline version of this function is used
when HAVE_INLINE is defined.

void gsl_matrix_set (gs/_matrix *m, const size_t i, const size_t j, double x)
This function sets the value of the (4, j)-th element of a matrix m to x. If 1 or j lies outside the allowed range of
Otonl - 1land Oton2 - 1 then the error handler is invoked. An inline version of this function is used when
HAVE_INLINE is defined.

double *gsl_matrix_ptr(gs/_matrix *m, size_t i, size_t j)

const double *gsl_matrix_const_ptr(const gs/_matrix *m, size_t i, size_t j)
These functions return a pointer to the (7, j)-th element of a matrix m. If i or j lie outside the allowed range of
Otonl - 1andOton2 - 1 then the error handler is invoked and a null pointer is returned. Inline versions of
these functions are used when HAVE_INLINE is defined.

8.4.3 Initializing matrix elements

void gsl_matrix_set_all (gsi_matrix *m, double x)
This function sets all the elements of the matrix m to the value x.

void gsl_matrix_set_zero(gsl_matrix *m)
This function sets all the elements of the matrix m to zero.

void gsl_matrix_set_identity(gs/_matrix *m)
This function sets the elements of the matrix m to the corresponding elements of the identity matrix, m(i,j) =
0(i,7), i.e. a unit diagonal with all off-diagonal elements zero. This applies to both square and rectangular
matrices.

8.4.4 Reading and writing matrices

The library provides functions for reading and writing matrices to a file as binary data or formatted text.

int gsl_matrix_fwrite (FILE *stream, const gs/_matrix *m)
This function writes the elements of the matrix m to the stream stream in binary format. The return value is 0
for success and GSL_EFAILED if there was a problem writing to the file. Since the data is written in the native
binary format it may not be portable between different architectures.

int gsl_matrix_fread(FILE *stream, gs/_matrix *m)
This function reads into the matrix m from the open stream stream in binary format. The matrix m must be
preallocated with the correct dimensions since the function uses the size of m to determine how many bytes to
read. The return value is O for success and GSL_EFAILED if there was a problem reading from the file. The data
is assumed to have been written in the native binary format on the same architecture.
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int gsl_matrix_fprintf (FILE *stream, const gs/_matrix *m, const char *format)
This function writes the elements of the matrix m line-by-line to the stream stream using the format specifier
format, which should be one of the %g, %e or %f formats for floating point numbers and %d for integers. The
function returns O for success and GSL_EFAILED if there was a problem writing to the file.

int gsl_matrix_fscanf (FILE *stream, gs/_matrix *m)
This function reads formatted data from the stream stream into the matrix m. The matrix m must be preallocated
with the correct dimensions since the function uses the size of m to determine how many numbers to read. The
function returns O for success and GSL_EFAILED if there was a problem reading from the file.

8.4.5 Matrix views

type gsl_matrix_view

type gsl_matrix_const_view

A matrix view is a temporary object, stored on the stack, which can be used to operate on a subset of matrix
elements. Matrix views can be defined for both constant and non-constant matrices using separate types that
preserve constness. A matrix view has the type gsl_matrix_view and a constant matrix view has the type
gsl_matrix_const_view. Inboth cases the elements of the view can by accessed using the matrix component
of the view object. A pointer gsl_matrix * or const gsl_matrix * can be obtained by taking the address
of the matrix component with the & operator. In addition to matrix views it is also possible to create vector
views of a matrix, such as row or column views.

gsl_matrix_view gsl_matrix_submatrix(gs/_matrix *m, size_t k1, size_t k2, size_t nl, size_t n2)

gsl_matrix_const_view gsl_matrix_const_submatrix(const gs/_matrix *m, size_t k1, size_t k2, size_t nl, size_t
n2)
These functions return a matrix view of a submatrix of the matrix m. The upper-left element of the submatrix is
the element (k1, k2) of the original matrix. The submatrix has nI rows and n2 columns. The physical number
of columns in memory given by tda is unchanged. Mathematically, the (4, j)-th element of the new matrix is
given by:

m'(i,j) = m—>datal[(kl*m->tda + k2) + i*m->tda + j]

where the index i runs from O tonl - 1 and the index j runs from O ton2 - 1.

The data pointer of the returned matrix struct is set to null if the combined parameters (i, j, nl, n2, tda)
overrun the ends of the original matrix.

The new matrix view is only a view of the block underlying the existing matrix, m. The block containing the
elements of m is not owned by the new matrix view. When the view goes out of scope the original matrix m and
its block will continue to exist. The original memory can only be deallocated by freeing the original matrix. Of
course, the original matrix should not be deallocated while the view is still in use.

The function gsl_matrix_const_submatrix() is equivalent to gsl_matrix_submatrix() but can be used
for matrices which are declared const.

gsl_matrix_view gsl_matrix_view_array(double *base, size_t nl, size_t n2)

gsl_matrix_const_view gsl_matrix_const_view_array (const double *base, size_t nl, size_t n2)
These functions return a matrix view of the array base. The matrix has nl rows and n2 columns. The physical
number of columns in memory is also given by n2. Mathematically, the (7, j)-th element of the new matrix is
given by:

m'(i,j) = base[i*n2 + j]
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where the index i runs from O tonl - 1 and the index j runs from O ton2 - 1.

The new matrix is only a view of the array base. When the view goes out of scope the original array base will
continue to exist. The original memory can only be deallocated by freeing the original array. Of course, the
original array should not be deallocated while the view is still in use.

The function gsI_matrix_const_view_array() is equivalent to gsl_matrix_view_array() but can be
used for matrices which are declared const.

gsl_matrix_view gsl_matrix_view_array_with_tda(double *base, size_t nl, size_t n2, size_t tda)

gsl_matrix_const_view gsl_matrix_const_view_array_with_tda(const double *base, size_t nl, size_t n2,
size_ttda)
These functions return a matrix view of the array base with a physical number of columns tda which may differ
from the corresponding dimension of the matrix. The matrix has nl rows and n2 columns, and the physical
number of columns in memory is given by tda. Mathematically, the (7, j)-th element of the new matrix is given
by:

m'(i,j) = base[i*tda + j]

where the index i runs from O tonl - 1 and the index j runs from O ton2 - 1.

The new matrix is only a view of the array base. When the view goes out of scope the original array base will
continue to exist. The original memory can only be deallocated by freeing the original array. Of course, the
original array should not be deallocated while the view is still in use.

The function gsl_matrix_const_view_array_with_tda() is equivalent to
gsl_matrix_view_array_with_tda() but can be used for matrices which are declared const.

gsl_matrix_view gsl_matrix_view_vector (gs/_vector *v, size_t nl, size_t n2)

gsl_matrix_const_view gsl_matrix_const_view_vector (const gs/_vector *v, size_t nl, size_t n2)
These functions return a matrix view of the vector v. The matrix has n1 rows and n2 columns. The vector must
have unit stride. The physical number of columns in memory is also given by n2. Mathematically, the (i, j)-th
element of the new matrix is given by:

m'(i,j) = v->data[i*n2 + j]

where the index i runs from O tonl - 1 and the index j runs from O ton2 - 1.

The new matrix is only a view of the vector v. When the view goes out of scope the original vector v will
continue to exist. The original memory can only be deallocated by freeing the original vector. Of course, the
original vector should not be deallocated while the view is still in use.

The function gsl_matrix_const_view_vector() is equivalent to gsl_matrix_view_vector() butcan be
used for matrices which are declared const.

gsl_matrix_view gsl_matrix_view_vector_with_tda(gs/_vector *v, size_t nl, size_t n2, size_t tda)

gsl_matrix_const_view gsl_matrix_const_view_vector_with_tda(const gs/_vector *v, size_t nl, size_t n2,
size_t tda)
These functions return a matrix view of the vector v with a physical number of columns tda which may differ
from the corresponding matrix dimension. The vector must have unit stride. The matrix has nl rows and n2
columns, and the physical number of columns in memory is given by tda. Mathematically, the (4, j)-th element
of the new matrix is given by:

m'(i,j) = v->datali*tda + j]
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where the index i runs from O tonl - 1 and the index j runs from O ton2 - 1.

The new matrix is only a view of the vector v. When the view goes out of scope the original vector v will
continue to exist. The original memory can only be deallocated by freeing the original vector. Of course, the
original vector should not be deallocated while the view is still in use.

The function gsl_matrix_const_view_vector_with_tda() is equivalent to
gsl_matrix_view_vector_with_tda() but can be used for matrices which are declared const.

8.4.6 Creating row and column views

In general there are two ways to access an object, by reference or by copying. The functions described in this section
create vector views which allow access to a row or column of a matrix by reference. Modifying elements of the view
is equivalent to modifying the matrix, since both the vector view and the matrix point to the same memory block.

gsl_vector_view gsl_matrix_row(gs/_matrix *m, size_t i)

gsl_vector_const_view gsl_matrix_const_row(const gs/_matrix *m, size_t i)
These functions return a vector view of the i-th row of the matrix m. The data pointer of the new vector is set
to null if 1 is out of range.

The function gsI_matrix_const_row() is equivalent to gsI_matrix_row() but can be used for matrices
which are declared const.

gsl_vector_view gsl_matrix_column(gs/_matrix *m, size_t j)

gsl_vector_const_view gsl_matrix_const_column(const gs/_matrix *m, size_t j)
These functions return a vector view of the j-th column of the matrix m. The data pointer of the new vector is
set to null if j is out of range.

The function gsl_matrix_const_column() is equivalent to gsl_matrix_column() but can be used for ma-
trices which are declared const.

gsl_vector_view gsl_matrix_subrow(gs/_matrix *m, size_t i, size_t offset, size_t n)

gsl_vector_const_view gsl_matrix_const_subrow(const gs/_matrix *m, size_t i, size_t offset, size_t n)
These functions return a vector view of the i-th row of the matrix m beginning at offset elements past the first
column and containing n elements. The data pointer of the new vector is set to null if i, offset, or n are out
of range.

The function gsl_matrix_const_subrow() is equivalent to gsl_matrix_subrow() but can be used for ma-
trices which are declared const.

gsl_vector_view gsl_matrix_subcolumn(gs/_matrix *m, size_t j, size_t offset, size_t n)

gsl_vector_const_view gsl_matrix_const_subcolumn(const gs/_matrix *m, size_t j, size_t offset, size_t n)
These functions return a vector view of the j-th column of the matrix m beginning at offset elements past the
first row and containing n elements. The data pointer of the new vector is set to null if j, offset, or n are out
of range.

The function gs1_matrix_const_subcolumn() is equivalent to gsI_matrix_subcolumn() but can be used
for matrices which are declared const.

gsl_vector_view gsl_matrix_diagonal (gsi_matrix *m)
gsl_vector_const_view gsl_matrix_const_diagonal (const gs/_matrix *m)

These functions return a vector view of the diagonal of the matrix m. The matrix m is not required to be square.
For a rectangular matrix the length of the diagonal is the same as the smaller dimension of the matrix.

98 Chapter 8. Vectors and Matrices



GNU Scientific Library, Release 2.7

The function gsI_matrix_const_diagonal () is equivalentto gsl_matrix_diagonal () but can be used for
matrices which are declared const.

gsl_vector_view gsl_matrix_subdiagonal (gs/_matrix *m, size_t k)

gsl_vector_const_view gsl_matrix_const_subdiagonal (const gs/_matrix *m, size_t k)
These functions return a vector view of the k-th subdiagonal of the matrix m. The matrix m is not required to be
square. The diagonal of the matrix corresponds to k& = 0.

The function gs1_matrix_const_subdiagonal () is equivalent to gsl_matrix_subdiagonal () but can be
used for matrices which are declared const.

gsl_vector_view gsl_matrix_superdiagonal (gs/_matrix *m, size_t k)

gsl_vector_const_view gsl_matrix_const_superdiagonal (const gs/_matrix *m, size_t k)
These functions return a vector view of the k-th superdiagonal of the matrix m. The matrix m is not required to
be square. The diagonal of the matrix corresponds to k = 0.

The function gsl_matrix_const_superdiagonal() is equivalent to gsl_matrix_superdiagonal () but
can be used for matrices which are declared const.

8.4.7 Copying matrices

int gsl_matrix_memcpy (gs/_matrix *dest, const gsl_matrix *src)
This function copies the elements of the matrix src into the matrix dest. The two matrices must have the same
size.

int gsl_matrix_swap (gs/_matrix *ml, gsl_matrix *m2)
This function exchanges the elements of the matrices m1 and m2 by copying. The two matrices must have the
same size.

8.4.8 Copying rows and columns

The functions described in this section copy a row or column of a matrix into a vector. This allows the elements of
the vector and the matrix to be modified independently. Note that if the matrix and the vector point to overlapping
regions of memory then the result will be undefined. The same effect can be achieved with more generality using
gsl_vector_memcpy () with vector views of rows and columns.

int gsl_matrix_get_row(gsi_vector *v, const gsl_matrix *m, size_t i)
This function copies the elements of the i-th row of the matrix m into the vector v. The length of the vector must
be the same as the length of the row.

int gsl_matrix_get_col (gs/_vector *v, const gsl_matrix *m, size_t j)
This function copies the elements of the j-th column of the matrix m into the vector v. The length of the vector
must be the same as the length of the column.

int gsl_matrix_set_row(gsl/_matrix *m, size_t i, const gsl_vector *v)
This function copies the elements of the vector v into the i-th row of the matrix m. The length of the vector must
be the same as the length of the row.

int gsl_matrix_set_col (gsi_matrix *m, size_t j, const gsl_vector *v)
This function copies the elements of the vector v into the j-th column of the matrix m. The length of the vector
must be the same as the length of the column.
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8.4.9 Exchanging rows and columns

The following functions can be used to exchange the rows and columns of a matrix.

int gsl_matrix_swap_rows (gs/_matrix *m, size_t i, size_t j)
This function exchanges the i-th and j-th rows of the matrix m in-place.

int gsl_matrix_swap_columns (gs/_matrix *m, size_t i, size_t j)
This function exchanges the i-th and j-th columns of the matrix m in-place.

int gsl_matrix_swap_rowcol (gs/_matrix *m, size_t i, size_t j)
This function exchanges the i-th row and j-th column of the matrix m in-place. The matrix must be square for
this operation to be possible.

int gsl_matrix_transpose_memcpy (gs/_matrix *dest, const gs/_matrix *src)
This function makes the matrix dest the transpose of the matrix src by copying the elements of src into dest.
This function works for all matrices provided that the dimensions of the matrix dest match the transposed
dimensions of the matrix src.

int gsl_matrix_transpose(gs/_matrix *m)
This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix
must be square for this operation to be possible.

int gsl_matrix_complex_conjtrans_memcpy (gs/_matrix *dest, const gsl_matrix *src)
This function makes the matrix dest the conjugate transpose of the matrix src by copying the complex conjugate
elements of src into dest. This function works for all complex matrices provided that the dimensions of the
matrix dest match the transposed dimensions of the matrix src.

8.4.10 Matrix operations

The following operations are defined for real and complex matrices.

int gsl_matrix_add(gs/_matrix *a, const gsi_matrix *b)
This function adds the elements of matrix b to the elements of matrix a. The result a(4, j) < a(i,j) + b(4, j) is
stored in a and b remains unchanged. The two matrices must have the same dimensions.

int gsl_matrix_sub(gs/_matrix *a, const gsl_matrix *b)
This function subtracts the elements of matrix b from the elements of matrix a. The result a(i, j) < a(i,j) —
b(i, j) is stored in a and b remains unchanged. The two matrices must have the same dimensions.

int gsl_matrix_mul_elements (gs/_matrix *a, const gsl_matrix *b)
This function multiplies the elements of matrix a by the elements of matrix b. The result a(i, 7) < a(4,7)*b(i, j)
is stored in a and b remains unchanged. The two matrices must have the same dimensions.

int gsl_matrix_div_elements (gs/_matrix *a, const gsl_matrix *b)
This function divides the elements of matrix a by the elements of matrix b. The result a(¢, j) < a(i,7)/b(i, j)
is stored in a and b remains unchanged. The two matrices must have the same dimensions.

int gsl_matrix_scale(gs/_matrix *a, const double x)
This function multiplies the elements of matrix a by the constant factor x. The result a(i, j) < za(i, j) is stored
in a.

int gsl_matrix_scale_columns (gsi_matrix *A, const gsl_vector *x)
This function scales the columns of the M-by-/V matrix A by the elements of the vector x, of length V. The j-th
column of A is multiplied by x;. This is equivalent to forming

A— AX

where X = diag(x).
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int gsl_matrix_scale_rows (gsi_matrix *A, const gsl_vector *x)
This function scales the rows of the M-by-N matrix A by the elements of the vector x, of length M. The i-th
row of A is multiplied by x;. This is equivalent to forming

A— XA

where X = diag(x).

int gsl_matrix_add_constant (gs/_matrix *a, const double x)
This function adds the constant value x to the elements of the matrix a. The result a(i, j) + a(i, j) + x is stored
in a.

8.4.11 Finding maximum and minimum elements of matrices

The following operations are only defined for real matrices.

double gsl_matrix_max(const gs/_matrix *m)
This function returns the maximum value in the matrix m.

double gsl_matrix_min(const gs/_matrix *m)
This function returns the minimum value in the matrix m.

void gsl_matrix_minmax (const gs/_matrix *m, double *min_out, double *max_out)
This function returns the minimum and maximum values in the matrix m, storing them in min_out and max_out.

void gsl_matrix_max_index(const gs/_matrix *m, size_t *imax, size_t *jmax)
This function returns the indices of the maximum value in the matrix m, storing them in imax and jmax. When
there are several equal maximum elements then the first element found is returned, searching in row-major order.

void gsl_matrix_min_index(const gs/_matrix *m, size_t *imin, size_t *jmin)
This function returns the indices of the minimum value in the matrix m, storing them in imin and jmin. When
there are several equal minimum elements then the first element found is returned, searching in row-major order.

void gsl_matrix_minmax_index(const gs/_matrix *m, size_t *imin, size_t *jmin, size_t *imax, size_t *jmax)
This function returns the indices of the minimum and maximum values in the matrix m, storing them in (imin,
jmin) and (imax, jmax). When there are several equal minimum or maximum elements then the first elements
found are returned, searching in row-major order.

8.4.12 Matrix properties
The following functions are defined for real and complex matrices. For complex matrices both the real and imaginary
parts must satisfy the conditions.

int gsl_matrix_isnull (const gs/_matrix *m)
int gsl_matrix_ispos(const gs/_matrix *m)
int gsl_matrix_isneg(const gs/_matrix *m)

int gsl_matrix_isnonneg(const gs/_matrix *m)
These functions return 1 if all the elements of the matrix m are zero, strictly positive, strictly negative, or non-
negative respectively, and 0 otherwise. To test whether a matrix is positive-definite, use the Cholesky decompo-
sition.

int gsl_matrix_equal (const gs/_matrix *a, const gsl_matrix *b)
This function returns 1 if the matrices a and b are equal (by comparison of element values) and O otherwise.
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double gsl_matrix_norml (const gs/_matrix *A)
This function returns the 1-norm of the m-by-n matrix A, defined as the maximum column sum,

m
1A][1 = maxi<j<n Y |4y
1=1

8.4.13 Example programs for matrices

The program below shows how to allocate, initialize and read from a matrix using the functions gsl_matrix_alloc(),
gsl _matrix_set() and gsl_matrix_get().

#include <stdio.h>
#include <gsl/gsl_matrix.h>

int
main (void)
{

int i, j;

gsl_matrix * m = gsl_matrix_alloc (10, 3);

for (4 = 0; 1 < 10; i++)
for (j = 0; j < 3; j++)
gsl_matrix_set (m, i, j, 0.23 + 100%i + j);

for (i = 0; i < 100; i++) /* OUT OF RANGE ERROR */
for (j = 0; j < 3; j++)
printf ("m(%d,%d) = %g\n", i, j,
gsl_matrix_get (m, i, j));

gsl_matrix_free (m);

return 0;

Here is the output from the program. The final loop attempts to read outside the range of the matrix m, and the error is
trapped by the range-checking code in gsI_matrix_get().

$§ ./a.out
m(0,0) = 0.23
m(0,1) = 1.23
m(0,2) = 2.23
m(1,0) = 100.23
m(1l,1) = 101.23
m(1,2) = 102.23

m(9,2) = 902.23

gsl: matrix_source.c:13: ERROR: first index out of range
Default GSL error handler invoked.

Aborted (core dumped)

The next program shows how to write a matrix to a file.
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#include <stdio.h>
#include <gsl/gsl_matrix.h>

int

main (void)

{
int i, j, k = 0;
gsl_matrix * m = gsl_matrix_alloc (100, 100);
gsl_matrix * a = gsl_matrix_alloc (100, 100);

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
gsl_matrix_set (m, i, j, 0.23 + i + j);

{
FILE * f = fopen ("test.dat", "wb");
gsl_matrix_fwrite (£, m);
fclose (£);

}

{
FILE * f = fopen ("test.dat", "rb");
gsl_matrix_fread (£, a);
fclose (£);

}

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)

{
double mij = gsl_matrix_get (m, i, j);
double aij = gsl_matrix_get (a, i, j);
if (mij !'= aij) k++;

}

gsl_matrix_free (m);
gsl_matrix_free (a);

printf ("differences = (should be zero)\n", k);
return (k > 0);

After running this program the file test.dat should contain the elements of m, written in binary format. The matrix
which is read back in using the function gsI_matrix_fread() should be exactly equal to the original matrix.

The following program demonstrates the use of vector views. The program computes the column norms of a matrix.

#include <math.h>

#include <stdio.h>

#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

int
main (void)

(continues on next page)
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{
size_t i,j;
gsl_matrix *m = gsl_matrix_alloc (10, 10);
for (i = 0; 1 < 10; i++)
for (j = 0; j < 10; j++)
gsl _matrix_set (m, i, j, sin (i) + cos (j3));
for (j = 0; j < 10; j++)
{
gsl_vector_view column = gsl_matrix_column (m, j);
double d;
d = gsl_blas_dnrm2 (&column.vector);
printf ("matrix column %zu, norm = \n", j, d);
}
gsl_matrix_free (m);
return 0;
}

Here is the output of the program,

matrix column O, norm = 4.31461
matrix column 1, norm = 3.1205

matrix column 2, norm = 2.19316
matrix column 3, norm = 3.26114
matrix column 4, norm = 2.53416
matrix column 5, norm = 2.57281
matrix column 6, norm = 4.20469
matrix column 7, norm = 3.65202
matrix column 8, norm = 2.08524
matrix column 9, norm = 3.07313

The results can be confirmed using GNU octave:

$ octave
GNU Octave, version 2.0.16.92
octave> m = sin(0:9)' * ones(1,10)
+ ones(10,1) * cos(0:9);
octave> sqrt(sum(m./2))
ans =
4.3146 3.1205 2.1932 3.2611 2.5342 2.5728
4.2047 3.6520 2.0852 3.0731
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8.4.14 References and Further Reading
The block, vector and matrix objects in GSL follow the valarray model of C++. A description of this model can be
found in the following reference,

¢ B. Stroustrup, The C++ Programming Language (3rd Ed), Section 22.4 Vector Arithmetic. Addison-Wesley
1997, ISBN 0-201-88954-4.
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CHAPTER
NINE

PERMUTATIONS

This chapter describes functions for creating and manipulating permutations. A permutation p is represented by an
array of n integers in the range 0 to n — 1, where each value p; occurs once and only once. The application of a
permutation p to a vector v yields a new vector v’ where v, = v,,. For example, the array (0, 1,3, 2) represents a
permutation which exchanges the last two elements of a four element vector. The corresponding identity permutation
is (0,1,2,3).

Note that the permutations produced by the linear algebra routines correspond to the exchange of matrix columns, and
so should be considered as applying to row-vectors in the form v’ = v P rather than column-vectors, when permuting
the elements of a vector.

The functions described in this chapter are defined in the header file gsl_permutation.h.

9.1 The Permutation struct

type gsl_permutation
A permutation is defined by a structure containing two components, the size of the permutation and a pointer to
the permutation array. The elements of the permutation array are all of type size_t. The gsI_permutation
structure looks like this:

typedef struct

{
size_t size;
size_t * data;

} gsl_permutation;

9.2 Permutation allocation

gsl_permutation *gsl_permutation_alloc(size_t n)
This function allocates memory for a new permutation of size n. The permutation is not initialized and its
elements are undefined. Use the function gsl_permutation_calloc() if you want to create a permutation
which is initialized to the identity. A null pointer is returned if insufficient memory is available to create the
permutation.

gsl_permutation *gsl_permutation_calloc(size_t n)
This function allocates memory for a new permutation of size n and initializes it to the identity. A null pointer
is returned if insufficient memory is available to create the permutation.

void gsl_permutation_init (gs/_permutation *p)
This function initializes the permutation p to the identity, i.e. (0,1,2,...,n —1).
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void gsl_permutation_f£free(gs/_permutation *p)
This function frees all the memory used by the permutation p.

int gsl_permutation_memcpy (gs/_permutation *dest, const gsl_permutation *src)
This function copies the elements of the permutation src into the permutation dest. The two permutations must
have the same size.

9.3 Accessing permutation elements

The following functions can be used to access and manipulate permutations.

size_t gsl_permutation_get (const gs/_permutation *p, const size_t i)
This function returns the value of the i-th element of the permutation p. If i lies outside the allowed range of
0 to n — 1 then the error handler is invoked and 0 is returned. An inline version of this function is used when
HAVE_INLINE is defined.

int gsl_permutation_swap (gs/_permutation *p, const size_t i, const size_t j)
This function exchanges the i-th and j-th elements of the permutation p.

9.4 Permutation properties

size_t gsl_permutation_size(const gs/_permutation *p)
This function returns the size of the permutation p.

size_t *gsl_permutation_data(const gs/_permutation *p)
This function returns a pointer to the array of elements in the permutation p.

int gsl_permutation_valid(const gs/_permutation *p)
This function checks that the permutation p is valid. The n elements should contain each of the numbers O to n
- 1 once and only once.

9.5 Permutation functions

void gsl_permutation_reverse(gsl_permutation *p)
This function reverses the elements of the permutation p.

int gsl_permutation_inverse(gsl_permutation *inv, const gsl_permutation *p)
This function computes the inverse of the permutation p, storing the result in inv.

int gsl_permutation_next (gs/_permutation *p)
This function advances the permutation p to the next permutation in lexicographic order and returns
GSL_SUCCESS. If no further permutations are available it returns GSL_FAILURE and leaves p unmodified. Start-
ing with the identity permutation and repeatedly applying this function will iterate through all possible permu-
tations of a given order.

int gsl_permutation_prev(gs/_permutation *p)
This function steps backwards from the permutation p to the previous permutation in lexicographic order, re-
turning GSL_SUCCESS. If no previous permutation is available it returns GSL_FAILURE and leaves p unmodified.
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9.6 Applying Permutations

The following functions are defined in the header files gsl_permute.h and gsl_permute_vector.h.

int gsl_permute (const size_t *p, double *data, size_t stride, size_t n)
This function applies the permutation p to the array data of size n with stride stride.

int gsl_permute_inverse (const size_t *p, double *data, size_t stride, size_t n)
This function applies the inverse of the permutation p to the array data of size n with stride stride.

int gsl_permute_vector (const gs/_permutation *p, gsl_vector *v)
This function applies the permutation p to the elements of the vector v, considered as a row-vector acted on by a
permutation matrix from the right, v" = vP. The j-th column of the permutation matrix P is given by the p;-th
column of the identity matrix. The permutation p and the vector v must have the same length.

int gsl_permute_vector_inverse(const gs/_permutation *p, gsl_vector *v)
This function applies the inverse of the permutation p to the elements of the vector v, considered as a row-vector
acted on by an inverse permutation matrix from the right, v = vP?. Note that for permutation matrices the
inverse is the same as the transpose. The j-th column of the permutation matrix P is given by the p;-th column
of the identity matrix. The permutation p and the vector v must have the same length.

int gsl_permute_matrix(const gs/_permutation *p, gsl_matrix *A)
This function applies the permutation p to the matrix A from the right, A” = AP. The j-th column of the
permutation matrix P is given by the p;-th column of the identity matrix. This effectively permutes the columns
of A according to the permutation p, and so the number of columns of A must equal the size of the permutation

b.

int gsl_permutation_mul (gs/_permutation *p, const gsl_permutation *pa, const gsl_permutation *pb)
This function combines the two permutations pa and pb into a single permutation p, where p = pa * pb The
permutation p is equivalent to applying pb first and then pa.

9.7 Reading and writing permutations

The library provides functions for reading and writing permutations to a file as binary data or formatted text.

int gsl_permutation_fwrite (FILE *stream, const gsi_permutation *p)
This function writes the elements of the permutation p to the stream stream in binary format. The function
returns GSL_EFATLED if there was a problem writing to the file. Since the data is written in the native binary
format it may not be portable between different architectures.

int gsl_permutation_fread (FILE *stream, gs/_permutation *p)
This function reads into the permutation p from the open stream stream in binary format. The permutation p
must be preallocated with the correct length since the function uses the size of p to determine how many bytes
to read. The function returns GSL_EFAILED if there was a problem reading from the file. The data is assumed
to have been written in the native binary format on the same architecture.

int gsl_permutation_fprintf (FILE *stream, const gs/_permutation *p, const char *format)
This function writes the elements of the permutation p line-by-line to the stream stream using the format speci-
fier format, which should be suitable for a type of size_t. In ISO C99 the type modifier z represents size_t,
so "%zu\n" is a suitable format'. The function returns GSL_EFATLED if there was a problem writing to the file.

int gsl_permutation_fscanf (FILE *stream, gs/_permutation *p)
This function reads formatted data from the stream stream into the permutation p. The permutation p must be
preallocated with the correct length since the function uses the size of p to determine how many numbers to read.
The function returns GSL_EFAILED if there was a problem reading from the file.

! In versions of the GNU C library prior to the ISO C99 standard, the type modifier Z was used instead.
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9.8 Permutations in cyclic form

A permutation can be represented in both linear and cyclic notations. The functions described in this section convert
between the two forms. The linear notation is an index mapping, and has already been described above. The cyclic
notation expresses a permutation as a series of circular rearrangements of groups of elements, or cycles.

For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced by 3 and 3 is replaced by 1 in a circular fashion.
Cycles of different sets of elements can be combined independently, for example (1 2 3) (4 5) combines the cycle (1 2
3) with the cycle (4 5), which is an exchange of elements 4 and 5. A cycle of length one represents an element which
is unchanged by the permutation and is referred to as a singleton.

It can be shown that every permutation can be decomposed into combinations of cycles. The decomposition is not
unique, but can always be rearranged into a standard canonical form by a reordering of elements. The library uses the
canonical form defined in Knuth’s Art of Computer Programming (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.

The procedure for obtaining the canonical form given by Knuth is,
1. Write all singleton cycles explicitly
2. Within each cycle, put the smallest number first
3. Order the cycles in decreasing order of the first number in the cycle.

For example, the linear representation (2 4 3 0 1) is represented as (1 4) (0 2 3) in canonical form. The permutation
corresponds to an exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.

The important property of the canonical form is that it can be reconstructed from the contents of each cycle without the
brackets. In addition, by removing the brackets it can be considered as a linear representation of a different permutation.
In the example given above the permutation (24 3 0 1) would become (1 4 0 2 3). This mapping has many applications
in the theory of permutations.

int gsl_permutation_linear_to_canonical (gs/_permutation *q, const gsl_permutation *p)
This function computes the canonical form of the permutation p and stores it in the output argument q.

int gsl_permutation_canonical_to_linear (gs/_permutation *p, const gsl_permutation *q)
This function converts a permutation g in canonical form back into linear form storing it in the output argument
p.

size_t gsl_permutation_inversions (const gs/_permutation *p)
This function counts the number of inversions in the permutation p. An inversion is any pair of elements that are
not in order. For example, the permutation 2031 has three inversions, corresponding to the pairs (2,0) (2,1) and
(3,1). The identity permutation has no inversions.

size_t gsl_permutation_linear_cycles(const gs/_permutation *p)
This function counts the number of cycles in the permutation p, given in linear form.

size_t gsl_permutation_canonical_cycles(const gs/_permutation *q)
This function counts the number of cycles in the permutation g, given in canonical form.

9.9 Examples

The example program below creates a random permutation (by shuffling the elements of the identity) and finds its
inverse.

#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

(continues on next page)
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#include <gsl/gsl_permutation.h>

int

main (void)

{
const size_t N = 10;
const gsl_rng_type * T;
gsl_rng * r;

gsl_permutation * p = gsl_permutation_alloc (N);
gsl_permutation * q = gsl_permutation_alloc (N);

gsl_rng_env_setup();
T = gsl_rng_default;
r = gsl_rng_alloc (T);

printf ("initial permutation:");
gsl_permutation_init (p);
gsl_permutation_fprintf (stdout, p, " ");
printf ("\n");

printf (" random permutation:");

gsl_ran_shuffle (r, p->data, N, sizeof(size_t));
gsl_permutation_fprintf (stdout, p, " ");
printf ("\n");

printf ("inverse permutation:");
gsl_permutation_inverse (q, p);
gsl_permutation_fprintf (stdout, q, " ");
printf ("\n");

gsl_permutation_free (p);
gsl_permutation_free (q);

gsl_rng_free (r);

return 0;

Here is the output from the program:

§ ./a.out

initial permutation: ® 1 2 34567 89
random permutation: 1 3 527 60 49 8
inverse permutation: 6 ® 3172 5 4 9 8

The random permutation p[i] and its inverse q [1] are related through the identity p[q[i]] = i, which can be verified
from the output.

The next example program steps forwards through all possible third order permutations, starting from the identity,

#include <stdio.h>
#include <gsl/gsl_permutation.h>

(continues on next page)
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in
ma

{

}

t
in (void)

gsl_permutation * p = gsl_permutation_alloc (3);

gsl_permutation_init (p);

do

{
gsl_permutation_fprintf (stdout, p, " "Y;
printf ("\n");

}

while (gsl_permutation_next(p) == GSL_SUCCESS);
gsl_permutation_free (p);

return 0;

Here is the output from the program:

$

NNR RS

./a.out
1

R @ NN
SR DN =N

The permutations are generated in lexicographic order. To reverse the sequence, begin with the final permutation (which
is the reverse of the identity) and replace gsI_permutation_next () with gsI_permutation_prev().

9.10 References and Further Reading

The subject of permutations is covered extensively in the following,

e Donald E. Knuth, The Art of Computer Programming: Sorting and Searching (Vol 3, 3rd Ed, 1997), Addison-

Wesley, ISBN 0201896850.

For the definition of the canonical form see,

e Donald E. Knuth, The Art of Computer Programming: Fundamental Algorithms (Vol 1, 3rd Ed, 1997), Addison-
Wesley, ISBN 0201896850. Section 1.3.3, An Unusual Correspondence, p.178-179.
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CHAPTER
TEN

COMBINATIONS

This chapter describes functions for creating and manipulating combinations. A combination c is represented by an
array of k integers in the range 0 to n — 1, where each value ¢; occurs at most once. The combination ¢ corresponds
to indices of k elements chosen from an n element vector. Combinations are useful for iterating over all k-element
subsets of a set.

The functions described in this chapter are defined in the header file gsl_combination.h.

10.1 The Combination struct

type gsl_combination
A combination is defined by a structure containing three components, the values of n and &, and a pointer to the
combination array. The elements of the combination array are all of type size_t, and are stored in increasing
order. The gsl_combination structure looks like this:

typedef struct
{
size_t n;
size_t k;
size_t *data;
} gsl_combination;

10.2 Combination allocation

gsl_combination *gsl_combination_alloc(size_t n, size_t k)
This function allocates memory for a new combination with parameters n, k. The combination is not initialized
and its elements are undefined. Use the function gsI_combination_calloc() if you want to create a com-
bination which is initialized to the lexicographically first combination. A null pointer is returned if insufficient
memory is available to create the combination.

gsl_combination *gsl_combination_calloc(size_t n, size_t k)
This function allocates memory for a new combination with parameters n, k and initializes it to the lexicograph-
ically first combination. A null pointer is returned if insufficient memory is available to create the combination.

void gsl_combination_init_first(gs/_combination *c)
This function initializes the combination c to the lexicographically first combination, i.e. (0,1,2,...,k —1).

void gsl_combination_init_last(gsl_combination *c)
This function initializes the combination c to the lexicographically last combination, i.e. (n—k,n—k+1,...,n—

1).
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void gsl_combination_free (gsi_combination *c)
This function frees all the memory used by the combination c.

int gsl_combination_memcpy (gs/_combination *dest, const gsl_combination *src)
This function copies the elements of the combination src into the combination dest. The two combinations
must have the same size.

10.3 Accessing combination elements

The following function can be used to access the elements of a combination.

size_t gsl_combination_get (const gs/_combination *c, const size_t i)
This function returns the value of the i-th element of the combination c. If i lies outside the allowed range of
0 to k£ — 1 then the error handler is invoked and O is returned. An inline version of this function is used when
HAVE_INLINE is defined.

10.4 Combination properties

size_t gsl_combination_n(const gs/_combination *c)
This function returns the range (n) of the combination c.

size_t gsl_combination_k(const gsl_combination *c)
This function returns the number of elements (k) in the combination c.

size_t *gsl_combination_data(const gs/_combination *c)
This function returns a pointer to the array of elements in the combination c.

int gsl_combination_valid(gs/_combination *c)
This function checks that the combination c is valid. The k elements should lie in the range 0 to n — 1, with each
value occurring once at most and in increasing order.

10.5 Combination functions

int gsl_combination_next (gs/_combination *c)
This function advances the combination c to the next combination in lexicographic order and returns
GSL_SUCCESS. If no further combinations are available it returns GSL_FAILURE and leaves ¢ unmodified. Start-
ing with the first combination and repeatedly applying this function will iterate through all possible combinations
of a given order.

int gsl_combination_prev(gs/_combination *c)
This function steps backwards from the combination c to the previous combination in lexicographic order, re-
turning GSL_SUCCESS. If no previous combination is available it returns GSL_FAILURE and leaves c unmodified.
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10.6 Reading and writing combinations

The library provides functions for reading and writing combinations to a file as binary data or formatted text.

int gsl_combination_fwrite (FILE *stream, const gs/_combination *c)
This function writes the elements of the combination c to the stream stream in binary format. The function
returns GSL_EFATILED if there was a problem writing to the file. Since the data is written in the native binary
format it may not be portable between different architectures.

int gsl_combination_fread (FILE *stream, gs/_combination *c)
This function reads elements from the open stream stream into the combination c in binary format. The com-
bination ¢ must be preallocated with correct values of n and k since the function uses the size of c to determine
how many bytes to read. The function returns GSL_EFAILED if there was a problem reading from the file. The
data is assumed to have been written in the native binary format on the same architecture.

int gsl_combination_£fprintf (FILE *stream, const gs/_combination *c, const char *format)
This function writes the elements of the combination c line-by-line to the stream stream using the format
specifier format, which should be suitable for a type of size_t. In ISO C99 the type modifier z represents
size_t, so "%zu\n" is a suitable format'. The function returns GSL_EFATLED if there was a problem writing
to the file.

int gsl_combination_£fscanf (FILE *stream, gs/_combination *c)
This function reads formatted data from the stream stream into the combination c. The combination ¢ must be
preallocated with correct values of n and & since the function uses the size of ¢ to determine how many numbers
to read. The function returns GSL_EFAILED if there was a problem reading from the file.

10.7 Examples

The example program below prints all subsets of the set 0, 1, 2, 3 ordered by size. Subsets of the same size are ordered
lexicographically.

#include <stdio.h>
#include <gsl/gsl_combination.h>

int

main (void)

{
gsl_combination * c;
size_t 1i;

printf ("All subsets of {0,1,2,3} by size:\n") ;
for (i = 0; 1 <= 4; i++)

{
c = gsl_combination_calloc (4, i);
do
{
printf ("{");
gsl_combination_fprintf (stdout, c, " "Y;
printf (" }\n");
}

while (gsl_combination_next (c) == GSL_SUCCESS);

(continues on next page)

! In versions of the GNU C library prior to the ISO C99 standard, the type modifier Z was used instead.
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(continued from previous page)

gsl_combination_free (c);

}

return 0;

}

Here is the output from the program,

11 subsets of {0,1,2,3} by size:

All
{13
{0
{1
{2
{3
{0
{0
{0
{1
{1
{2
{0
{0
{0
{1
{0
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}

All 16 subsets are generated, and the subsets of each size are sorted lexicographically.

10.8 References and Further Reading

Further information on combinations can be found in,

e Donald L. Kreher, Douglas R. Stinson, Combinatorial Algorithms: Generation, Enumeration and Search, 1998,
CRC Press LLC, ISBN 084933988X
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CHAPTER
ELEVEN

MULTISETS

This chapter describes functions for creating and manipulating multisets. A multiset c is represented by an array of k
integers in the range 0 to n — 1, where each value ¢; may occur more than once. The multiset ¢ corresponds to indices
of k elements chosen from an n element vector with replacement. In mathematical terms, n is the cardinality of the
multiset while k is the maximum multiplicity of any value. Multisets are useful, for example, when iterating over the
indices of a k-th order symmetric tensor in n-space.

The functions described in this chapter are defined in the header file gsl_multiset.h.

11.1 The Multiset struct

type gsl_multiset
A multiset is defined by a structure containing three components, the values of n and &, and a pointer to the
multiset array. The elements of the multiset array are all of type size_t, and are stored in increasing order. The
gsl_multiset structure looks like this:

typedef struct

{
size_t n;
size_t k;
size_t *data;

} gsl_multiset;

11.2 Multiset allocation

gsl_multiset *gsl_multiset_alloc(size_tn, size_t k)
This function allocates memory for a new multiset with parameters n, k. The multiset is not initialized and its
elements are undefined. Use the function gsI_multiset_calloc() if you want to create a multiset which is
initialized to the lexicographically first multiset element. A null pointer is returned if insufficient memory is
available to create the multiset.

gsl_multiset *gsl_multiset_calloc(size_tn, size_t k)
This function allocates memory for a new multiset with parameters n, k and initializes it to the lexicographically
first multiset element. A null pointer is returned if insufficient memory is available to create the multiset.

void gsl_multiset_init_first(gs/_multiset *c)
This function initializes the multiset c to the lexicographically first multiset element, i.e. 0 repeated k times.

void gsl_multiset_init_last (gs/_multiset *c)
This function initializes the multiset c to the lexicographically last multiset element, i.e. n — 1 repeated k times.
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void gsl_multiset_free(gs/_multiset *c)
This function frees all the memory used by the multiset c.

int gsl_multiset_memcpy (gs/_multiser *dest, const gsi_multiset *src)
This function copies the elements of the multiset src into the multiset dest. The two multisets must have the
same size.

11.3 Accessing multiset elements

The following function can be used to access the elements of a multiset.

size_t gsl_multiset_get (const gs/_multiset *c, const size_t i)
This function returns the value of the i-th element of the multiset c. If 1 lies outside the allowed range of 0
to k£ — 1 then the error handler is invoked and O is returned. An inline version of this function is used when
HAVE_INLINE is defined.

11.4 Multiset properties

size_t gsl_multiset_n(const gs/_multiset *c)
This function returns the range (n) of the multiset c.

size_t gsl_multiset_k(const gs/_multiset *c)
This function returns the number of elements (k) in the multiset c.

size_t *gsl_multiset_data(const gs/_multiset *c)
This function returns a pointer to the array of elements in the multiset c.

int gsl_multiset_valid(gsi_multiset *c)
This function checks that the multiset c is valid. The k elements should lie in the range 0 to n — 1, with each
value occurring in nondecreasing order.

11.5 Multiset functions

int gsl_multiset_next (gs/_multiset *c)
This function advances the multiset ¢ to the next multiset element in lexicographic order and returns
GSL_SUCCESS. If no further multisets elements are available it returns GSL_FAILURE and leaves ¢ unmodified.
Starting with the first multiset and repeatedly applying this function will iterate through all possible multisets of
a given order.

int gsl_multiset_prev(gsl_multiset *c)
This function steps backwards from the multiset c to the previous multiset element in lexicographic order, re-
turning GSL_SUCCESS. If no previous multiset is available it returns GSL_FAILURE and leaves ¢ unmodified.
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11.6 Reading and writing multisets

The library provides functions for reading and writing multisets to a file as binary data or formatted text.

int gsl_multiset_fwrite(FILE *stream, const gs/_multiset *c)
This function writes the elements of the multiset c to the stream stream in binary format. The function returns
GSL_EFAILED if there was a problem writing to the file. Since the data is written in the native binary format it
may not be portable between different architectures.

int gsl_multiset_£fread (FILE *stream, gs/_multiset *c)
This function reads elements from the open stream stream into the multiset ¢ in binary format. The multiset
c must be preallocated with correct values of n and k since the function uses the size of ¢ to determine how
many bytes to read. The function returns GSL_EFAILED if there was a problem reading from the file. The data
is assumed to have been written in the native binary format on the same architecture.

int gsl_multiset_£fprintf (FILE *stream, const gs/_multiset *c, const char *format)
This function writes the elements of the multiset c line-by-line to the stream stream using the format specifier
format, which should be suitable for a type of size_t. In ISO C99 the type modifier z represents size_t, so
"%zu\n" is a suitable format'. The function returns GSL_EFAILED if there was a problem writing to the file.

int gsl_multiset_£fscanf (FILE *stream, gs/_multiset *c)
This function reads formatted data from the stream stream into the multiset c. The multiset ¢ must be preal-
located with correct values of n and k since the function uses the size of ¢ to determine how many numbers to
read. The function returns GSL_EFAILED if there was a problem reading from the file.

11.7 Examples

The example program below prints all multisets elements containing the values 0, 1,2, 3 ordered by size. Multiset
elements of the same size are ordered lexicographically.

#include <stdio.h>
#include <gsl/gsl_multiset.h>

int

main (void)

{
gsl_multiset * c;
size_t 1i;

printf ("All multisets of {0,1,2,3} by size:\n") ;
for (i = 0; 1 <= 4; i++)

{
c = gsl_multiset_calloc (4, i);
do
{
printf ("{");
gsl_multiset_fprintf (stdout, c, " "
printf (" }\n'");
}

while (gsl_multiset_next (c) == GSL_SUCCESS);
gsl_multiset_free (c);

(continues on next page)

! In versions of the GNU C library prior to the ISO C99 standard, the type modifier Z was used instead.
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return 0;
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11 multisets of {0,1,2,3} by size:

Here is the output from the program,

}
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All 70 multisets are generated and sorted lexicographically.
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CHAPTER
TWELVE

SORTING

This chapter describes functions for sorting data, both directly and indirectly (using an index). All the functions use
the heapsort algorithm. Heapsort is an O(N log V) algorithm which operates in-place and does not require any ad-
ditional storage. It also provides consistent performance, the running time for its worst-case (ordered data) being not
significantly longer than the average and best cases. Note that the heapsort algorithm does not preserve the relative
ordering of equal elements—it is an unstable sort. However the resulting order of equal elements will be consistent
across different platforms when using these functions.

12.1 Sorting objects

The following function provides a simple alternative to the standard library function gsort (). Itis intended for systems
lacking gsort (), not as a replacement for it. The function gsort() should be used whenever possible, as it will be
faster and can provide stable ordering of equal elements. Documentation for gsort () is available in the GNU C Library
Reference Manual.

The functions described in this section are defined in the header file gs1_heapsort.h.

void gs1_heapsort (void *array, size_t count, size_t size, gs/_comparison_fn_t compare)
This function sorts the count elements of the array array, each of size size, into ascending order using the
comparison function compare. The type of the comparison function is defined by

type gsl_comparison_fn_t

int (*gsl_comparison_fn_t) (const void * a, const void * b)

A comparison function should return a negative integer if the first argument is less than the second argument, 0
if the two arguments are equal and a positive integer if the first argument is greater than the second argument.

For example, the following function can be used to sort doubles into ascending numerical order.

int
compare_doubles (const double * a, const double * b)
{
if (fa > *b)
return 1;
else if (*a < *b)
return -1;
else
return 0;
}

The appropriate function call to perform the sort is:
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gsl_heapsort (array, count, sizeof(double), compare_doubles);

Note that unlike gsort () the heapsort algorithm cannot be made into a stable sort by pointer arithmetic. The trick
of comparing pointers for equal elements in the comparison function does not work for the heapsort algorithm.
The heapsort algorithm performs an internal rearrangement of the data which destroys its initial ordering.

int gs1_heapsort_index(size_t *p, const void *array, size_t count, size_t size, gsl_comparison_fn_t compare)
This function indirectly sorts the count elements of the array array, each of size size, into ascending order
using the comparison function compare. The resulting permutation is stored in p, an array of length n. The
elements of p give the index of the array element which would have been stored in that position if the array had
been sorted in place. The first element of p gives the index of the least element in array, and the last element
of p gives the index of the greatest element in array. The array itself is not changed.

12.2 Sorting vectors

The following functions will sort the elements of an array or vector, either directly or indirectly. They are de-
fined for all real and integer types using the normal suffix rules. For example, the float versions of the ar-
ray functions are gsl_sort_float() and gsl_sort_float_index(). The corresponding vector functions are
gsl_sort_vector_float() and gsl_sort_vector_float_index(). The prototypes are available in the header
files gsl_sort_float.h gsl_sort_vector_float.h. The complete set of prototypes can be included using the
header files gsl_sort.h and gsl_sort_vector.h.

There are no functions for sorting complex arrays or vectors, since the ordering of complex numbers is not uniquely
defined. To sort a complex vector by magnitude compute a real vector containing the magnitudes of the complex
elements, and sort this vector indirectly. The resulting index gives the appropriate ordering of the original complex
vector.

void gsl_sort (double *data, const size_t stride, size_t n)
This function sorts the n elements of the array data with stride stride into ascending numerical order.

void gsl_sort2 (double *datal, const size_t stridel, double *data2, const size_t stride2, size_t n)
This function sorts the n elements of the array datal with stride stridel into ascending numerical order, while
making the same rearrangement of the array data2 with stride stride2, also of size n.

void gsl_sort_vector (gsl_vector *v)
This function sorts the elements of the vector v into ascending numerical order.

void gsl_sort_vector2(gsi_vector *v1, gsl_vector *v2)
This function sorts the elements of the vector v1 into ascending numerical order, while making the same rear-
rangement of the vector v2.

void gsl_sort_index(size_t *p, const double *data, size_t stride, size_t n)
This function indirectly sorts the n elements of the array data with stride stride into ascending order, storing
the resulting permutation in p. The array p must be allocated with a sufficient length to store the n elements of
the permutation. The elements of p give the index of the array element which would have been stored in that
position if the array had been sorted in place. The array data is not changed.

int gsl_sort_vector_index(gs/_permutation *p, const gsl_vector *v)
This function indirectly sorts the elements of the vector v into ascending order, storing the resulting permutation
in p. The elements of p give the index of the vector element which would have been stored in that position if
the vector had been sorted in place. The first element of p gives the index of the least element in v, and the last
element of p gives the index of the greatest element in v. The vector v is not changed.
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12.3 Selecting the k smallest or largest elements

The functions described in this section select the £ smallest or largest elements of a data set of size N. The routines
use an O(kN) direct insertion algorithm which is suited to subsets that are small compared with the total size of the
dataset. For example, the routines are useful for selecting the 10 largest values from one million data points, but not
for selecting the largest 100,000 values. If the subset is a significant part of the total dataset it may be faster to sort all
the elements of the dataset directly with an O (N log V) algorithm and obtain the smallest or largest values that way.

int gsl_sort_smallest (double *dest, size_t k, const double *src, size_t stride, size_t n)
This function copies the k smallest elements of the array src, of size n and stride stride, in ascending numerical
order into the array dest. The size k of the subset must be less than or equal to n. The data src is not modified
by this operation.

int gsl_sort_largest (double *dest, size_t k, const double *src, size_t stride, size_t n)
This function copies the k largest elements of the array src, of size n and stride stride, in descending numerical
order into the array dest. k must be less than or equal to n. The data src is not modified by this operation.

int gsl_sort_vector_smallest (double *dest, size_t k, const gsl_vector *v)

int gsl_sort_vector_largest (double *dest, size_t k, const gsi_vector *v)
These functions copy the k smallest or largest elements of the vector v into the array dest. k must be less than
or equal to the length of the vector v.

The following functions find the indices of the k£ smallest or largest elements of a dataset.

int gsl_sort_smallest_index(size_t *p, size_t k, const double *src, size_t stride, size_t n)
This function stores the indices of the k smallest elements of the array src, of size n and stride stride, in the
array p. The indices are chosen so that the corresponding data is in ascending numerical order. k must be less
than or equal to n. The data src is not modified by this operation.

int gsl_sort_largest_index(size_t *p, size_t k, const double *src, size_t stride, size_t n)
This function stores the indices of the k largest elements of the array src, of size n and stride stride, in the
array p. The indices are chosen so that the corresponding data is in descending numerical order. k must be less
than or equal to n. The data src is not modified by this operation.

int gsl_sort_vector_smallest_index(size_t *p, size_t k, const gs/_vector *v)

int gsl_sort_vector_largest_index(size_t *p, size_t k, const gs/_vector *v)
These functions store the indices of the k smallest or largest elements of the vector v in the array p. k must be
less than or equal to the length of the vector v.

12.4 Computing the rank

The rank of an element is its order in the sorted data. The rank is the inverse of the index permutation, p. It can be
computed using the following algorithm:

for (i = 0; i < p->size; i++)
{
size_t pi = p->data[i];
rank->data[pi] = i;

3

This can be computed directly from the function gsl_permutation_inverse(rank,p).

The following function will print the rank of each element of the vector v:
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void
print_rank (gsl_vector * v)
{

size_t i;

size_t n = v->size;
gsl_permutation * perm = gsl_permutation_alloc(n);
gsl_permutation * rank = gsl_permutation_alloc(n);

gsl_sort_vector_index (perm, v);
gsl_permutation_inverse (rank, perm);

for (4 = 0; 1 < n; i++)

{
double vi = gsl_vector_get(v, i);
printf ("element = , value = , rank = \n",
i, vi, rank->data[i]);
1

gsl_permutation_free (perm);
gsl_permutation_free (rank);

12.5 Examples

The following example shows how to use the permutation p to print the elements of the vector v in ascending order:

gsl_sort_vector_index (p, Vv);

for (4 = 0; 1 < v->size; i++)
{
double vpi = gsl_vector_get (v, p->data[il]);
printf ("order = , value = %g\n", i, vpi);

3

The next example uses the function gsl_sort_smallest() to select the 5 smallest numbers from 100000 uniform
random variates stored in an array,

#include <gsl/gsl_rng.h>
#include <gsl/gsl_sort_double.h>

int

main (void)

{
const gsl_rng_type * T;
gsl_rng * r;

size_t i, k = 5, N = 100000;

double * x = malloc (N * sizeof(double));
double * small = malloc (k * sizeof(double));

(continues on next page)
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(continued from previous page)

gsl_rng_env_setup(Q);

T = gsl_rng_default;
gsl_rng_alloc (T);

]
Il

for (4 = 0; 1 < N; i++)

x[i] = gsl_rng_uniform(r);

}
gsl_sort_smallest (small, k, x, 1, N);
printf ("%zu smallest values from %zu\n", k, N);

for (i = 0; 1 < k; i++)

{
printf ("%zu: \n", i, small[i]);
}
free (x);

free (small);
gsl_rng_free (r);
return 0;

The output lists the 5 smallest values, in ascending order,

5 smallest values from 100000
0: 0.000003489200025797
1: 0.000008199829608202
2: 0.000008953968062997
3: 0.000010712770745158
4: 0.000033531803637743

12.6 References and Further Reading

The subject of sorting is covered extensively in the following,

e Donald E. Knuth, The Art of Computer Programming: Sorting and Searching (Vol 3, 3rd Ed, 1997), Addison-
Wesley, ISBN 0201896850.

The Heapsort algorithm is described in the following book,
* Robert Sedgewick, Algorithms in C, Addison-Wesley, ISBN 0201514257.
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CHAPTER
THIRTEEN

BLAS SUPPORT

The Basic Linear Algebra Subprograms (BLAS) define a set of fundamental operations on vectors and matrices which
can be used to create optimized higher-level linear algebra functionality.

The library provides a low-level layer which corresponds directly to the C-language BLAS standard, referred to here as
“CBLAS”, and a higher-level interface for operations on GSL vectors and matrices. Users who are interested in simple
operations on GSL vector and matrix objects should use the high-level layer described in this chapter. The functions
are declared in the file gs1_blas.h and should satisfy the needs of most users.

Note that GSL matrices are implemented using dense-storage so the interface only includes the corresponding dense-
storage BLAS functions. The full BLAS functionality for band-format and packed-format matrices is available through
the low-level CBLAS interface. Similarly, GSL vectors are restricted to positive strides, whereas the low-level CBLAS
interface supports negative strides as specified in the BLAS standard'.

The interface for the gs1_cblas layer is specified in the file gs1_cblas.h. This interface corresponds to the BLAS
Technical Forum’s standard for the C interface to legacy BLAS implementations. Users who have access to other
conforming CBLAS implementations can use these in place of the version provided by the library. Note that users
who have only a Fortran BLAS library can use a CBLAS conformant wrapper to convert it into a CBLAS library.
A reference CBLAS wrapper for legacy Fortran implementations exists as part of the CBLAS standard and can be
obtained from Netlib. The complete set of CBLAS functions is listed in an appendix.

There are three levels of BLAS operations,

Level 1 | Vector operations, e.g. y = ax +y
Level 2 | Matrix-vector operations, e.g. y = aAx + By
Level 3 | Matrix-matrix operations, e.g. C' = «AB + C

Each routine has a name which specifies the operation, the type of matrices involved and their precisions. Some of the
most common operations and their names are given below,

DOT scalar product, :L'Ty

AXPY | vector sum, ax + y

MV matrix-vector product, Ax

SV matrix-vector solve, inv(A)zx
MM matrix-matrix product, AB
SM matrix-matrix solve, inv(A)B

The types of matrices are,

! In the low-level CBLAS interface, a negative stride accesses the vector elements in reverse order, i.e. the i-th element is given by (N —i) |incz|
for incx < 0.
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GE | general

GB | general band

SY | symmetric

SB | symmetric band
SP | symmetric packed
HE | hermitian

HB | hermitian band
HP | hermitian packed
TR | triangular

TB | triangular band
TP | triangular packed

Each operation is defined for four precisions,

single real
double real
single complex
double complex

N| Q3| @«

Thus, for example, the name SGEMM stands for “single-precision general matrix-matrix multiply” and ZGEMM stands
for “double-precision complex matrix-matrix multiply”.

Note that the vector and matrix arguments to BLAS functions must not be aliased, as the results are undefined when
the underlying arrays overlap (Aliasing of arrays).

13.1 GSL BLAS Interface

GSL provides dense vector and matrix objects, based on the relevant built-in types. The library provides an interface to
the BLAS operations which apply to these objects. The interface to this functionality is given in the file gs1_blas.h.

13.1.1 Level 1

int gsl_blas_sdsdot (float alpha, const gsl_vector_float *x, const gsl_vector_float *y, float *result)
This function computes the sum « + z7y for the vectors x and y, returning the result in result.

int gs1_blas_sdot (const gsl_vector_float *x, const gsl_vector_float *y, float *result)
int gsl_blas_dsdot (const gsl_vector_float *x, const gsl_vector_float *y, double *result)

int gs1_blas_ddot (const gs/_vector *x, const gsl_vector *y, double *result)
These functions compute the scalar product 27y for the vectors x and y, returning the result in result.

int gsl_blas_cdotu(const gsl_vector_complex_float *x, const gsl_vector_complex_float *y, gsl_complex_float
*dotu)

int gsl_blas_zdotu(const gsl_vector_complex *x, const gsl_vector_complex *y, gsl_complex *dotu)
These functions compute the complex scalar product 27y for the vectors x and y, returning the result in dotu

int gsl_blas_cdotc(const gsl_vector_complex_float *x, const gsl_vector_complex_float *y, gsl_complex_float
*dotc)
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int gsl_blas_zdotc(const gsl_vector_complex *x, const gsl_vector_complex *y, gsl_complex *dotc)
These functions compute the complex conjugate scalar product x4 for the vectors x and y, returning the result
in dotc

float gs1_blas_snrm2 (const gsl_vector_float *x)

double gsl_blas_dnrm2 (const gsl_vector *x)
These functions compute the Euclidean norm ||z||s = /> 27 of the vector x.

float gs1_blas_scnrm2 (const gsl_vector_complex_float *x)

double gs1_blas_dznrm2 (const gsl_vector_complex *x)
These functions compute the Euclidean norm of the complex vector x,

lzll2 = /3 (R(x)? + S(:)2).

float gs1_blas_sasum(const gsl_vector_float *x)

double gsl_blas_dasum(const gs/_vector *x)
These functions compute the absolute sum » _ |x;| of the elements of the vector x.

float gs1_blas_scasum(const gsl_vector_complex_float *x)

double gsl_blas_dzasum(const gsl_vector_complex *x)
These functions compute the sum of the magnitudes of the real and imaginary parts of the complex vector x,

- (IR(@a)] + [S(a)))-
CBLAS_INDEX_t gsl_blas_isamax(const gsl_vector_float *x)

CBLAS_INDEX_t gsl_blas_idamax(const gs/_vector *x)
CBLAS_INDEX_t gsl_blas_icamax(const gsl_vector_complex_float *x)

CBLAS_INDEX_t gsl_blas_izamax (const gsl_vector_complex *x)
These functions return the index of the largest element of the vector x. The largest element is determined by its
absolute magnitude for real vectors and by the sum of the magnitudes of the real and imaginary parts |R(x;)| +
|S(x;)| for complex vectors. If the largest value occurs several times then the index of the first occurrence is
returned.

int gsl_blas_sswap (gsl_vector_float *x, gsl_vector_float *y)
int gs1l_blas_dswap (gs/_vector *x, gsl_vector *y)
int gs1_blas_cswap (gsl_vector_complex_float *x, gsl_vector_complex_float *y)

int gsl_blas_zswap (gsl_vector_complex *x, gsl_vector_complex *y)
These functions exchange the elements of the vectors x and y.

int gs1_blas_scopy (const gsl_vector_float *x, gsl_vector_float *y)
int gsl_blas_dcopy (const gsi_vector *x, gsl_vector *y)

int gs1_blas_ccopy (const gsl_vector_complex_float *x, gsl_vector_complex_float *y)
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int gsl_blas_zcopy (const gsl_vector_complex *x, gsl_vector_complex *y)
These functions copy the elements of the vector x into the vector y.

int gs1_blas_saxpy (float alpha, const gsl_vector_float *x, gsl_vector_float *y)
int gs1_blas_daxpy (double alpha, const gs/_vector *x, gsl_vector *y)

int gs1l_blas_caxpy (const gsl_complex_float alpha, const gsl_vector_complex_float *x, gsl_vector_complex_float
k
y)

int gs1_blas_zaxpy (const gsl_complex alpha, const gsl_vector_complex *x, gsl_vector_complex *y)
These functions compute the sum y = ax + y for the vectors x and y.

void gsl_blas_sscal (float alpha, gsl_vector_float *x)

void gsl_blas_dscal (double alpha, gs/_vector *x)

void gs1_blas_cscal (const gsl_complex_float alpha, gsl_vector_complex_float *x)
void gs1_blas_zscal (const gsl_complex alpha, gsl_vector_complex *x)

void gs1_blas_csscal (float alpha, gsl_vector_complex_float *x)

void gs1_blas_zdscal (double alpha, gsl_vector_complex *x)
These functions rescale the vector x by the multiplicative factor alpha.

int gsl_blas_srotg(float a[], float b[], float c[], float s[])

int gsl_blas_drotg(double a[], double b[], double c[], double s[])
These functions compute a Givens rotation (¢, s) which zeroes the vector (a, b),

(5 96)-0)

The variables a and b are overwritten by the routine.

int gsl_blas_srot (gsl_vector_float *x, gsl_vector_float *y, float c, float s)

int gsl_blas_drot (gs/_vector *x, gsl_vector *y, const double c, const double s)
These functions apply a Givens rotation (z',y’) = (cx + sy, —sx + cy) to the vectors x, y.

int gsl_blas_srotmg(float d1[], float d2[], float b1[], float b2, float P[])

int gsl_blas_drotmg(double d1[], double d2[], double b1[], double b2, double P[])
These functions compute a modified Givens transformation. The modified Givens transformation is defined in
the original Level-1 BLAS specification, given in the references.

int gsl_blas_srotm(gsl_vector_float *x, gsl_vector_float *y, const float P[])

int gsl_blas_drotm(gs/_vector *x, gsl_vector *y, const double P[])
These functions apply a modified Givens transformation.
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13.1.2 Level 2

int gs1_blas_sgemv(CBLAS_TRANSPOSE _t TransA, float alpha, const gsl_matrix_float *A, const
gsl_vector_float *x, float beta, gsl_vector_float *y)

int gs1_blas_dgemv(CBLAS_TRANSPOSE_t TransA, double alpha, const gs/_matrix *A, const gsl_vector *Xx,
double beta, gsl_vector *y)

int gsl_blas_cgemv(CBLAS_TRANSPOSE_t TransA, const gsl_complex_float alpha, const
gsl_matrix_complex_float *A, const gsl_vector_complex_float *x, const gsl_complex_float
beta, gsl_vector_complex_float *y)

int gsl_blas_zgemv(CBLAS_TRANSPOSE_t TransA, const gsl_complex alpha, const gsl_matrix_complex *A,
const gsl_vector_complex *x, const gsl_complex beta, gsl_vector_complex *y)
These functions compute the matrix-vector product and sum y = aop(A)x + By, where op(A) = A, AT, AH
for TransA = CblasNoTrans, CblasTrans, CblasConjTrans.

int gsl_blas_strmv(CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const
gsl_matrix_float *A, gsl_vector_float *x)

int gsl_blas_dtrmv(CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const
gsl_matrix *A, gsl_vector *x)

int gsl_blas_ctrmv(CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const
gsl_matrix_complex_float *A, gsl_vector_complex_float *x)

int gsl_blas_ztrmv(CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const
gsl_matrix_complex *A, gsl_vector_complex *x)
These functions compute the matrix-vector product = op(A)x for the triangular matrix A, where op(A) = A,
AT, AH for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the
upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is
CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of
the matrix A are taken as unity and are not referenced.

int gsl_blas_strsv(CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const
gsl_matrix_float *A, gsl_vector_float *x)

int gsl_blas_dtrsv(CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const
gsl_matrix *A, gsl_vector *x)

int gsl_blas_ctrsv(CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const
gsl_matrix_complex_float *A, gsl_vector_complex_float *x)

int gsl_blas_ztrsv(CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const
gsl_matrix_complex *A, gsl_vector_complex *x)
These functions compute inv(op(A))x for x, where op(A) = A, AT, A for TransA = CblasNoTrans,
CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when
Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the
matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are
not referenced.

int gsl_blas_ssymv(CBLAS_UPLO_t Uplo, float alpha, const gsl_matrix_float *A, const gsl_vector_float *x, float
beta, gsl_vector_float *y)
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int gsl_blas_dsymv(CBLAS_UPLO_t Uplo, double alpha, const gs/_matrix *A, const gsl_vector *x, double beta,
gsl_vector *y)
These functions compute the matrix-vector product and sum y = a Az + Py for the symmetric matrix A. Since
the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the
upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal
of A are used.

int gsl_blas_chemv(CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float *A,
const gsl_vector_complex_float *x, const gsl_complex_float beta, gsl_vector_complex_float
k
y)

int gs1_blas_zhemv(CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex *A, const
gsl_vector_complex *x, const gsl_complex beta, gsl_vector_complex *y)
These functions compute the matrix-vector product and sum y = aAz + Py for the hermitian matrix A. Since
the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the
upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of
A are used. The imaginary elements of the diagonal are automatically assumed to be zero and are not referenced.

int gs1l_blas_sger (float alpha, const gsl_vector_float *x, const gsl_vector_float *y, gsl_matrix_float *A)
int gs1_blas_dger (double alpha, const gs/_vector *x, const gsl_vector *y, gsl_matrix *A)

int gs1_blas_cgeru(const gsl_complex_float alpha, const gsl_vector_complex_float *x, const
gsl_vector_complex_float *y, gsl_matrix_complex_float *A)

int gs1l_blas_zgeru(const gsl_complex alpha, const gsl_vector_complex *x, const gsl_vector_complex *y,
gsl_matrix_complex *A)
These functions compute the rank-1 update A = axy” + A of the matrix A.

int gsl_blas_cgerc(const gsl_complex_float alpha, const gsl_vector_complex_float *x, const
gsl_vector_complex_float *y, gsl_matrix_complex_float *A)

int gsl_blas_zgerc(const gsl_complex alpha, const gsl_vector_complex *x, const gsl_vector_complex *y,
gsl_matrix_complex *A)
These functions compute the conjugate rank-1 update A = axy’ + A of the matrix A.

int gs1l_blas_ssyr (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_float *x, gsl_matrix_float *A)

int gsl_blas_dsyr (CBLAS_UPLO_t Uplo, double alpha, const gs/_vector *x, gsl_matrix *A)
These functions compute the symmetric rank-1 update A = axz” + A of the symmetric matrix A. Since the
matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the
upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal
of A are used.

int gs1_blas_cher (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_complex_float *x,
gsl_matrix_complex_float *A)

int gs1_blas_zher (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector_complex *x, gsl_matrix_complex *A)
These functions compute the hermitian rank-1 update A = axx®™ 4 A of the hermitian matrix A. Since the
matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the
upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal
of A are used. The imaginary elements of the diagonal are automatically set to zero.
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int gsl_blas_ssyr2 (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_float *x, const gsl_vector_float *y,
gsl_matrix_float *A)

int gsl_blas_dsyr2 (CBLAS_UPLO_t Uplo, double alpha, const gsi_vector *x, const gsl_vector *y, gsl_matrix
*A)
These functions compute the symmetric rank-2 update A = axy” + ayz” + A of the symmetric matrix A.
Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper
then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and
diagonal of A are used.

int gsl_blas_cher2 (CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_vector_complex_float *x,
const gsl_vector_complex_float *y, gsl_matrix_complex_float *A)

int gsl_blas_zher2 (CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_vector_complex *x, const
gsl_vector_complex *y, gsl_matrix_complex *A)
These functions compute the hermitian rank-2 update A = axy? +a*yxH + A of the hermitian matrix A. Since
the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the
upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal
of A are used. The imaginary elements of the diagonal are automatically set to zero.

13.1.3 Level 3

int gs1_blas_sgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE _t TransB, float alpha, const
gsl_matrix_float *A, const gsl_matrix_float *B, float beta, gsl_matrix_float *C)

int gs1_blas_dgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, double alpha, const
gsl_matrix *A, const gsl_matrix *B, double beta, gs/_matrix *C)

int gs1_blas_cgemm(CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, const gsl_complex_float
alpha, const gsl_matrix_complex_float *A, const gsl_matrix_complex_float *B, const
gsl_complex_float beta, gsl_matrix_complex_float *C)

int gsl_blas_zgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, const gsl_complex
alpha, const gsl_matrix_complex *A, const gsl_matrix_complex *B, const gsl_complex beta,
gsl_matrix_complex *C)
These functions compute the matrix-matrix product and sum C' = aop(A)op(B) + BC where op(A) = A, AT,
AH for TransA = CblasNoTrans, CblasTrans, CblasConjTrans and similarly for the parameter TransB.

int gs1_blas_ssymm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, float alpha, const gsl_matrix_float *A, const
gsl_matrix_float *B, float beta, gsl_matrix_float *C)

int gs1_blas_dsymm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, double alpha, const gs/_matrix *A, const
gsl_matrix *B, double beta, gs/_matrix *C)

int gsl_blas_csymm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const
gsl_matrix_complex_float *A, const gsl_matrix_complex_float *B, const gsl_complex_float
beta, gsl_matrix_complex_float *C)

int gsl_blas_zsymm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex alpha, const
gsl_matrix_complex *A, const gsl_matrix_complex *B, const gsl_complex beta,
gsl_matrix_complex *C)
These functions compute the matrix-matrix product and sum C' = aAB + SC for Side is CblasLeft and

13.1. GSL BLAS Interface 135



GNU Scientific Library, Release 2.7

C = aBA + pC for Side is CblasRight, where the matrix A is symmetric. When Uplo is CblasUpper
then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and
diagonal of A are used.

int gs1_blas_chemm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const
gsl_matrix_complex_float *A, const gsl_matrix_complex_float *B, const gsl_complex_float
beta, gsl_matrix_complex_float *C)

int gsl_blas_zhemm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex alpha, const
gsl_matrix_complex *A, const gsl_matrix_complex *B, const gsl_complex beta,
gsl_matrix_complex *C)
These functions compute the matrix-matrix product and sum C' = aAB + SC for Side is CblasLeft and
C = aBA + BC for Side is CblasRight, where the matrix A is hermitian. When Uplo is CblasUpper then
the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal
of A are used. The imaginary elements of the diagonal are automatically set to zero.

int gsl_blas_strmm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA,
CBLAS_DIAG_t Diag, float alpha, const gsl_matrix_float *A, gsl_matrix_float *B)

int gs1_blas_dtrmm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA,
CBLAS_DIAG_t Diag, double alpha, const gs/_matrix *A, gsl_matrix *B)

int gs1_blas_ctrmm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA,
CBLAS_DIAG_t Diag, const gsl_complex_float alpha, const gsl_matrix_complex_float *A,
gsl_matrix_complex_float *B)

int gsl_blas_ztrmm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE _t TransA,

CBLAS_DIAG_t Diag, const gsl_complex alpha, const gsl_matrix_complex *A,
gsl_matrix_complex *B)

These functions compute the matrix-matrix product B = aop(A)B for Side is CblasLeft and B = aBop(A)

for Side is CblasRight. The matrix A is triangular and op(A4) = A, AT, A for TransA = CblasNoTrans,

CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when

Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of A

is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not

referenced.

int gsl_blas_strsm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA,
CBLAS_DIAG_t Diag, float alpha, const gsl_matrix_float *A, gsl_matrix_float *B)

int gsl_blas_dtrsm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA,
CBLAS_DIAG_t Diag, double alpha, const gs/_matrix *A, gsl_matrix *B)

int gsl_blas_ctrsm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA,
CBLAS_DIAG_t Diag, const gsl_complex_float alpha, const gsl_matrix_complex_float *A,
gsl_matrix_complex_float *B)

int gsl_blas_ztrsm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA,
CBLAS_DIAG_t Diag, const gsl_complex alpha, const gsl_matrix_complex *A,
gsl_matrix_complex *B)
These functions compute the inverse-matrix matrix product B = «op(inv(A))B for Side is CblasLeft and
B = aBop(inv(A)) for Side is CblasRight. The matrix 4 is triangular and op(A) = A, AT, AH for TransA
=CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is
used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the
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diagonal of 4 is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity
and are not referenced.

int gsl_blas_ssyrk(CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_float
*A, float beta, gsl_matrix_float *C)

int gs1_blas_dsyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gs/_matrix *A,
double beta, gsi_matrix *C)

int gs1_blas_csyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const
gsl_matrix_complex_float *A, const gsl_complex_float beta, gsl_matrix_complex_float *C)

int gsl_blas_zsyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const
gsl_matrix_complex *A, const gsl_complex beta, gsl_matrix_complex *C)
These functions compute a rank-k update of the symmetric matrix C, C = aAAT + BC when Trans is
CblasNoTrans and C = aAT A + BC when Trans is ChlasTrans. Since the matrix C is symmetric only
its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal
of C are used, and when Uplo is CblasLower then the lower triangle and diagonal of C are used.

int gs1_blas_cherk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const
gsl_matrix_complex_float *A, float beta, gsl_matrix_complex_float *C)

int gsl_blas_zherk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE _t Trans, double alpha, const
gsl_matrix_complex *A, double beta, gsl_matrix_complex *C)
These functions compute a rank-k update of the hermitian matrix C, C = aAAH + BC when Trans is
CblasNoTrans and C' = oA A + BC when Trans is CblasConjTrans. Since the matrix C is hermitian
only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and di-
agonal of C are used, and when Uplo is CblasLower then the lower triangle and diagonal of C are used. The
imaginary elements of the diagonal are automatically set to zero.

int gsl_blas_ssyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_float
*A, const gsl_matrix_float *B, float beta, gsl_matrix_float *C)

int gsl_blas_dsyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix *A,
const gsl_matrix *B, double beta, gsl_matrix *C)

int gsl_blas_csyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha,
const gsl_matrix_complex_float *A, const gsl_matrix_complex_float *B, const
gsl_complex_float beta, gsl_matrix_complex_float *C)

int gsl_blas_zsyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const
gsl_matrix_complex *A, const gsl_matrix_complex *B, const gsl_complex beta,
gsl_matrix_complex *C)
These functions compute a rank-2k update of the symmetric matrix C, C = aABT + aBAT + 3C when
Trans is CblasNoTrans and C = a AT B + a BT A + BC when Trans is CblasTrans. Since the matrix C is
symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle
and diagonal of C are used, and when Uplo is CblasLower then the lower triangle and diagonal of C are used.

int gs1_blas_cher2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha,
const gsl_matrix_complex_float *A, const gsl_matrix_complex_float *B, float beta,
gsl_matrix_complex_float *C)
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int gsl_blas_zher2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const

gsl_matrix_complex *A, const gsl_matrix_complex *B, double beta, gsl_matrix_complex
*(C)

These functions compute a rank-2k update of the hermitian matrix C, C = « ABY +a* BA" 4 3C when Trans

is CblasNoTrans and C' = a A" B + o* BH A + BC when Trans is CblasConjTrans. Since the matrix C is

hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle

and diagonal of C are used, and when Uplo is CblasLower then the lower triangle and diagonal of C are used.

The imaginary elements of the diagonal are automatically set to zero.

13.2 Examples

The following program computes the product of two matrices using the Level-3 BLAS function DGEMM,

1021 1022 | =

<O.11 0.12 0.13>
1031 1031

1011 1012
0.21 0.22 0.23 <

367.76 368.12
674.06 674.72

The matrices are stored in row major order, according to the C convention for arrays.

#include <stdio.h>
#include <gsl/gsl_blas.h>

int
main (void)
{

double a[]

Il
~
(=]
=
[
[=)
[
N
[=)
—
w

double b[] = { 1011, 1012,

1021, 1022,

1031, 1032 };
double c[] = { 0.00, 0.00,

0.00, 0.00 };

gsl_matrix_view A = gsl matrix_view_array(a, 2, 3);
gsl_matrix_view B = gsl_matrix_view_array(b, 3, 2);
gsl_matrix_view C = gsl_matrix_view_array(c, 2, 2);

/% Compute C = A B */
gsl_blas_dgemm (CblasNoTrans, CblasNoTrans,

1.0, &A.matrix, &B.matrix,
0.0, &C.matrix);

printf ("[ %g, %g\n", c[0], c[11);
printf (" , \n", c[2], c[3D;
return 0;

}

Here is the output from the program,
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[ 367.76, 368.12
674.06, 674.72 ]

13.3 References and Further Reading

Information on the BLAS standards, including both the legacy and updated interface standards, is available online from
the BLAS Homepage and BLAS Technical Forum web-site.

* BLAS Homepage, http://www.netlib.org/blas/
e BLAS Technical Forum, http://www.netlib.org/blas/blast-forum/
The following papers contain the specifications for Level 1, Level 2 and Level 3 BLAS.

e C. Lawson, R. Hanson, D. Kincaid, F. Krogh, “Basic Linear Algebra Subprograms for Fortran Usage”, ACM
Transactions on Mathematical Software, Vol.: 5 (1979), Pages 308-325.

 J.J. Dongarra, J. DuCroz, S. Hammarling, R. Hanson, “An Extended Set of Fortran Basic Linear Algebra Sub-
programs”, ACM Transactions on Mathematical Software, Vol.: 14, No.: 1 (1988), Pages 1-32.

 J.J. Dongarra, I. Duff, J. DuCroz, S. Hammarling, “A Set of Level 3 Basic Linear Algebra Subprograms”, ACM
Transactions on Mathematical Software, Vol.: 16 (1990), Pages 1-28.

Postscript versions of the latter two papers are available from http://www.netlib.org/blas/. A CBLAS wrapper for
Fortran BLAS libraries is available from the same location.
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CHAPTER
FOURTEEN

LINEAR ALGEBRA

This chapter describes functions for solving linear systems. The library provides linear algebra operations which operate
directly on the gs1_vector and gsl_matrix objects. These routines use the standard algorithms from Golub & Van
Loan’s Matrix Computations with Level-1 and Level-2 BLAS calls for efficiency.

The functions described in this chapter are declared in the header file gs1_linalg.h.

14.1 LU Decomposition

A general M-by-N matrix A has an LU decomposition
PA=LU

where P is an M-by-M permutation matrix, L is M-by-min(M, N) and U is min(M, N)-by-N. For square matrices,
L is a lower unit triangular matrix and U is upper triangular. For M > N, L is a unit lower trapezoidal matrix of size
M-by-N. For M < N, U is upper trapezoidal of size M-by-N. For square matrices this decomposition can be used
to convert the linear system Ax = b into a pair of triangular systems (Ly = Pb, Uz = y), which can be solved by
forward and back-substitution. Note that the LU decomposition is valid for singular matrices.

int gsl_linalg_LU_decomp (gs/_matrix *A, gsl_permutation *p, int *signum)

int gsl_linalg_complex_LU_decomp (gsl_matrix_complex *A, gs/_permutation *p, int *signum)
These functions factorize the matrix A into the LU decomposition PA = LU. On output the diagonal and upper
triangular (or trapezoidal) part of the input matrix A contain the matrix U. The lower triangular (or trapezoidal)
part of the input matrix (excluding the diagonal) contains L. The diagonal elements of L are unity, and are not
stored.

The permutation matrix P is encoded in the permutation p on output. The j-th column of the matrix P is given
by the k-th column of the identity matrix, where £ = p; the j-th element of the permutation vector. The sign
of the permutation is given by signum. It has the value (—1)", where n is the number of interchanges in the
permutation.

The algorithm used in the decomposition is Gaussian Elimination with partial pivoting (Golub & Van Loan,
Matrix Computations, Algorithm 3.4.1), combined with a recursive algorithm based on Level 3 BLAS (Peise
and Bientinesi, 2016).

int gs1_linalg_LU_solve(const gsi_matrix *LU, const gs/_permutation *p, const gsl_vector *b, gsl_vector *x)

int gsl_linalg_complex_LU_solve(const gsl_matrix_complex *LU, const gs/_permutation *p, const
gsl_vector_complex *b, gsl_vector_complex *x)
These functions solve the square system Az = b using the LU decomposition of A into (LU, p) given by
gsl_linalg_LU_decomp() or gsl_linalg_complex_LU_decomp() as input.
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int gsl_linalg_LU_svx(const gs/_matrix *LU, const gs_permutation *p, gsl_vector *x)

int gsl_linalg_complex_LU_svx(const gsl_matrix_complex *LU, const gs/_permutation *p, gsl_vector_complex
#x)
These functions solve the square system Ax = b in-place using the precomputed LU decomposition of A into
(LU, p). On input x should contain the right-hand side b, which is replaced by the solution on output.

int gsl_linalg_LU_refine(const gs/_matrix *A, const gsl_matrix *LU, const gsl_permutation *p, const
gsl_vector *b, gsl_vector *x, gsl_vector *work)

int gsl_linalg_complex_LU_refine(const gsl_matrix_complex *A, const gsl_matrix_complex *LU, const
gsl_permutation *p, const gsl_vector_complex *b, gsl_vector_complex *x,
gsl_vector_complex *work)
These functions apply an iterative improvement to x, the solution of Az = b, from the precomputed LU decom-
position of A into (LU, p). Additional workspace of length N is required in work.

int gsl_linalg_LU_invert(const gs/_matrix *LU, const gsl_permutation *p, gsl_matrix *inverse)

int gsl_linalg_complex_LU_invert (const gsl_matrix_complex *LU, const gs/_permutation *p,
gsl_matrix_complex *inverse)
These functions compute the inverse of a matrix A from its LU decomposition (LU, p), storing the result in the
matrix inverse. The inverse is computed by computing the inverses U ~!, L~ and finally forming the product
A=l =U~'L=1P. Each step is based on Level 3 BLAS calls.

It is preferable to avoid direct use of the inverse whenever possible, as the linear solver functions can obtain
the same result more efficiently and reliably (consult any introductory textbook on numerical linear algebra for
details).

int gs1_linalg_LU_invx(gs/_matrix *LU, const gsl_permutation *p)

int gsl_linalg_complex_LU_invx(gsl_matrix_complex *LU, const gs/_permutation *p)
These functions compute the inverse of a matrix A from its LU decomposition (LU, p), storing the result in-place
in the matrix LU. The inverse is computed by computing the inverses U ~!, L~! and finally forming the product
A~1 = U~'L~'P. Each step is based on Level 3 BLAS calls.

It is preferable to avoid direct use of the inverse whenever possible, as the linear solver functions can obtain
the same result more efficiently and reliably (consult any introductory textbook on numerical linear algebra for
details).

double gsl_linalg_LU_det (gs/_matrix *LU, int signum)

gsl_complex gsl_linalg_complex_LU_det (gsl_matrix_complex *LU, int signum)
These functions compute the determinant of a matrix A from its LU decomposition, LU. The determinant is
computed as the product of the diagonal elements of U and the sign of the row permutation signum.

double gsl_linalg_LU_lndet (gs/_matrix *LU)

double gsl_linalg_complex_LU_lndet (gsl_matrix_complex *LU)
These functions compute the logarithm of the absolute value of the determinant of a matrix A, In |det(A)],
from its LU decomposition, LU. This function may be useful if the direct computation of the determinant would
overflow or underflow.

int gsl_linalg_LU_sgndet (gs/_matrix *LU, int signum)
gsl_complex gsl_linalg_complex_LU_sgndet (gsl_matrix_complex *LU, int signum)

These functions compute the sign or phase factor of the determinant of a matrix A, det(A)/|det(A)|, from its
LU decomposition, LU.
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14.2 QR Decomposition

A general rectangular M -by- N matrix A has a ) R decomposition into the product of a unitary M -by-M square matrix
Q (where QTQ = I) and an M-by-N right-triangular matrix R,

A=QR

This decomposition can be used to convert the square linear system Az = b into the triangular system Rz = QTb,
which can be solved by back-substitution. Another use of the () R decomposition is to compute an orthonormal basis
for a set of vectors. The first NV columns of ) form an orthonormal basis for the range of A, ran(A), when A has full
column rank.

When M > N, the bottom M — N rows of R are zero, and so A can be naturally partioned as

i-@ o) () -an

where R; is N-by-N upper triangular, Q)1 is M-by-N, and Q5 is M-by-(M — N). Q1 R; is sometimes called the thin
or reduced QR decomposition. The solution of the least squares problem min,, ||b — Ax||> when A has full rank is:

T = Rl_lcl

where ¢, is the first NV elements of QTb. If A is rank deficient, see OR Decomposition with Column Pivoting and
Complete Orthogonal Decomposition.

GSL offers two interfaces for the QR decomposition. The first proceeds by zeroing out columns below the diagonal
of A, one column at a time using Householder transforms. In this method, the factor () is represented as a product of
Householder reflectors:

Q:H7L"'H2H1

where each H;, = I — Twivf for a scalar 7; and column vector v;. In this method, functions which compute the full
matrix @ or apply Q' to a right hand side vector operate by applying the Householder matrices one at a time using
Level 2 BLAS.

The second interface is based on a Level 3 BLAS block recursive algorithm developed by Elmroth and Gustavson. In
this case, () is written in block form as

Q=I1-vTVt

where V' is an M-by-NN matrix of the column vectors v; and T" is an N-by-N upper triangular matrix, whose diagonal
elements are the 7;. Computing the full 7', while requiring more flops than the Level 2 approach, offers the advantage
that all standard operations can take advantage of cache efficient Level 3 BLAS operations, and so this method often
performs faster than the Level 2 approach. The functions for the recursive block algorithm have a _r suffix, and it is
recommended to use this interface for performance critical applications.

int gsl_linalg_QR_decomp_r (gs/_matrix *A, gsl_matrix *T)

int gsl_linalg_complex_QR_decomp_r (gsl_matrix_complex *A, gsl_matrix_complex *T)
These functions factor the M-by-N matrix A into the QR decomposition A = QR using the recursive Level 3
BLAS algorithm of Elmroth and Gustavson. On output the diagonal and upper triangular part of A contain the
matrix R. The N-by-NN matrix T stores the upper triangular factor appearing in ). The matrix @ is given by
Q = I — VTV, where the elements below the diagonal of A contain the columns of V on output.

This algorithm requires M > N and performs best for “tall-skinny” matrices, i.e. M > N.

int gsl_linalg_QR_solve_r(const gs/_matrix *QR, const gsi_matrix *T, const gsl_vector *b, gsl_vector *x)
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int gsl_linalg_complex_QR_solve_r (const gsl_matrix_complex *QR, const gsl_matrix_complex *T, const
gsl_vector_complex *b, gsl_vector_complex *x)
These functions solve the square system Ax = b using the QR decomposition of A held in (QR, T).
The least-squares solution for rectangular systems can be found using gsl_Ilinalg_QR_lssolve_r() or
gsl_linalg complex_QR_lssolve_r().

int gsl_linalg_QR_lssolve_r(const gsi_matrix *QR, const gs/_matrix *T, const gsl_vector *b, gsl_vector *Xx,
gsl_vector *work)

int gsl_linalg_complex_QR_lssolve_r(const gsl_matrix_complex *QR, const gsl_matrix_complex *T, const
gsl_vector_complex *b, gsl_vector_complex *x, gsl_vector_complex
*work)
These functions find the least squares solution to the overdetermined system Ax = b where the matrix A has
more rows than columns. The least squares solution minimizes the Euclidean norm of the residual, ||b — Az||.
The routine requires as input the Q) R decomposition of A into (QR, T) given by gs1_Ilinalg_QR_decomp_r()
or gsl_linalg_complex_QR_decomp_r (). The parameter x is of length M. The solution x is returned in the
first N rows of x,i.e. x = x[0], x[1], ..., X[N-1]. The last M — N rows of x contain a vector whose
norm is equal to the residual norm ||b — Ax||. This similar to the behavior of LAPACK DGELS. Additional
workspace of length NV is required in work.

int gsl_linalg_QR_QTvec_r(const gs/_matrix *QR, const gsl_matrix *T, gsl_vector *v, gsl_vector *work)

int gsl_linalg_complex_QR_QHvec_r (const gsl_matrix_complex *QR, const gsl_matrix_complex *T,
gsl_vector_complex *v, gsl_vector_complex *work)
These functions apply the matrix Q7 (or Q') encoded in the decomposition (QR, T) to the vector v, storing the
result Qv (or Qv) in v. The matrix multiplication is carried out directly using the encoding of the Householder
vectors without needing to form the full matrix Q7 (or Q). Additional workspace of size N is required in work.

int gsl_linalg_QR_QTmat_r (const gs/_matrix *QR, const gsl_matrix *T, gsl_matrix *B, gsl_matrix *work)
This function applies the matrix Q7 encoded in the decomposition (QR, T) to the M-by-K matrix B, storing the
result Q7 B in B. The matrix multiplication is carried out directly using the encoding of the Householder vectors
without needing to form the full matrix Q7. Additional workspace of size N-by-K is required in work.

int gsl_linalg_QR_unpack_r(const gs/_matrix *QR, const gsi_matrix *T, gsi_matrix *Q, gsl_matrix *R)

int gsl_linalg_complex_QR_unpack_r(const gsl_matrix_complex *QR, const gsl_matrix_complex *T,
gsl_matrix_complex *Q, gsl_matrix_complex *R)
These functions unpack the encoded Q R decomposition (QR, T) as output from gsI_Ilinalg_QR_decomp_r()
or gsl_linalg_complex_QR_decomp_1() into the matrices Q and R, where Q is M-by-M and R is N-by-IV.
Note that the full R matrix is M -by-V, however the lower trapezoidal portion is zero, so only the upper triangular
factor is stored.

int gsl_linalg_QR_rcond(const gs/_matrix *QR, double *rcond, gsi_vector *work)
This function estimates the reciprocal condition number (using the 1-norm) of the R factor, stored in the upper
triangle of QR. The reciprocal condition number estimate, defined as 1/(||R||1 - ||R™*||1), is stored in rcond.
Additional workspace of size 3V is required in work.
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14.2.1 Level 2 Interface

The functions below are for the slower Level 2 interface to the QR decomposition. It is recommended to use these
functions only for M < N, since the Level 3 interface above performs much faster for M > N.

int gsl_linalg_QR_decomp (gs/_matrix *A, gsl_vector *tau)

int gsl_linalg_complex_QR_decomp (gsl_matrix_complex *A, gsl_vector_complex *tau)

These functions factor the M -by-/N matrix A into the Q R decomposition A = Q R. On output the diagonal and
upper triangular part of the input matrix contain the matrix R. The vector tau and the columns of the lower
triangular part of the matrix A contain the Householder coefficients and Householder vectors which encode the
orthogonal matrix Q. The vector tau must be of length N. The matrix () is related to these components by
the product of & = min(M, N) reflector matrices, Q = Hy...HyH, where H; = I — Ti'l)i’l)z and v; is the
Householder vector v; = (0, ..., 1, A(i +1,1), A(i+ 2,4), ..., A(m, 7)). This is the same storage scheme as used
by LAPACK.

The algorithm used to perform the decomposition is Householder QR (Golub & Van Loan, “Matrix Computa-
tions”, Algorithm 5.2.1).

int gsl_linalg_QR_solve(const gs/_matrix *QR, const gsl_vector *tau, const gsl_vector *b, gsl_vector *x)

int gsl_linalg_complex_QR_solve(const gsl_matrix_complex *QR, const gsl_vector_complex *tau, const
gsl_vector_complex *b, gsl_vector_complex *x)
These functions solve the square system Az = b using the QR decomposition of A held in (QR, tau). The
least-squares solution for rectangular systems can be found using gs1_Iinalg _QR_Issolve().

int gsl_linalg_QR_svx(const gs/_matrix *QR, const gsl_vector *tau, gsl_vector *x)

int gs1_linalg_complex_QR_svx(const gsl_matrix_complex *QR, const gsl_vector_complex *tau,
gsl_vector_complex *x)
These functions solve the square system Az = b in-place using the ) R decomposition of A held in (QR, tau).
On input x should contain the right-hand side b, which is replaced by the solution on output.

int gsl_linalg_QR_lssolve(const gs/_matrix *QR, const gsl_vector *tau, const gsl_vector *b, gsl_vector *x,
gsl_vector *residual)

int gsl_linalg_complex_QR_lssolve(const gsl_matrix_complex *QR, const gsl_vector_complex *tau, const

gsl_vector_complex *b, gsl_vector_complex *x, gsl_vector_complex
*residual)

These functions find the least squares solution to the overdetermined system Ax = b where the matrix A has more

rows than columns. The least squares solution minimizes the Euclidean norm of the residual, || Az — b||.The

routine requires as input the QR decomposition of A into (QR, tau) given by gs1_Iinalg_QR_decomp() or

gsl_linalg_complex_QR_decomp (). The solution is returned in x. The residual is computed as a by-product

and stored in residual.

int gsl_linalg_QR_QTvec(const gs/_matrix *QR, const gsi_vector *tau, gsl_vector *v)

int gsl_linalg_complex_QR_QHvec (const gsl_matrix_complex *QR, const gsl_vector_complex *tau,
gsl_vector_complex *v)
These functions apply the matrix Q7 (or Q1) encoded in the decomposition (QR, tau) to the vector v, storing the
result Qv (or Qv) in v. The matrix multiplication is carried out directly using the encoding of the Householder
vectors without needing to form the full matrix Q7 (or Q).

int gsl_linalg_QR_Qvec(const gsi_matrix *QR, const gsl_vector *tau, gsl_vector *v)
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int gsl_linalg_complex_QR_Qvec(const gsl_matrix_complex *QR, const gsl_vector_complex *tau,
gsl_vector_complex *v)
These functions apply the matrix () encoded in the decomposition (QR, tau) to the vector v, storing the result
Qv in v. The matrix multiplication is carried out directly using the encoding of the Householder vectors without
needing to form the full matrix Q.

int gsl_linalg_QR_QTmat (const gs/_matrix *QR, const gsl_vector *tau, gsl_matrix *B)
This function applies the matrix Q7 encoded in the decomposition (QR, tau) to the M-by-K matrix B, storing
the result Q7 B in B. The matrix multiplication is carried out directly using the encoding of the Householder
vectors without needing to form the full matrix Q7.

int gsl_linalg_QR_Rsolve(const gs/_matrix *QR, const gsl_vector *b, gsl_vector *x)
This function solves the triangular system Rz = b for x. It may be useful if the product &’ = Qb has already
been computed using gs1_Iinalg_QR_QTvec().

int gsl_linalg_QR_Rsvx(const gs/_matrix *QR, gsl_vector *x)
This function solves the triangular system Rx = b for x in-place. On input x should contain the right-hand side
b and is replaced by the solution on output. This function may be useful if the product &’ = Qb has already
been computed using gsI_linalg_QR_QTvec().

int gsl_linalg_QR_unpack(const gs/_matrix *QR, const gsl_vector *tau, gsl_matrix *Q, gsl_matrix *R)
This function unpacks the encoded Q) R decomposition (QR, tau) into the matrices Q and R, where Q is M -by-M
and R is M-by-N.

int gsl_linalg_QR_QRsolve (gs/_matrix *Q, gsl_matrix *R, const gsl_vector *b, gsl_vector *x)
This function solves the system Rz = QT'b for x. It can be used when the QR decomposition of a matrix is
available in unpacked form as (Q, R).

int gsl_linalg_QR_update(gs/_matrix *Q, gsl_matrix *R, gsl_vector *w, const gsl_vector *v)
This function performs a rank-1 update wv” of the QR decomposition (Q, R). The update is given by Q'R =

Q(R+wv™) where the output matrices @ and R are also orthogonal and right triangular. Note that w is destroyed
by the update.

int gsl_linalg_R_solve(const gsi_matrix *R, const gsl_vector *b, gsl_vector *x)
This function solves the triangular system Rx = b for the N-by-N matrix R.

int gsl_linalg_R_svx(const gsi_matrix *R, gsl_vector *x)
This function solves the triangular system Rz = b in-place. On input x should contain the right-hand side b,
which is replaced by the solution on output.

14.2.2 Triangle on Top of Rectangle

This section provides routines for computing the () R decomposition of the specialized matrix

()

where U is an N-by-N upper triangular matrix, and A is an M-by-NN dense matrix. This type of matrix arises, for
example, in the sequential TSQR algorithm. The Elmroth and Gustavson algorithm is used to efficiently factor this
matrix. Due to the upper triangular factor, the () matrix takes the form

Q=1-vrvt

with

and Y is dense and of the same dimensions as A.
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int gsl_linalg_QR_UR_decomp (gs/_matrix *U, gsl_matrix *A, gsl_matrix *T)
This function computes the Q R decomposition of the matrix (U; A), where U is N-by-N upper triangular and
A is M-by-N dense. On output, U is replaced by the R factor, and A is replaced by Y. The N-by-N upper
triangular block reflector is stored in T on output.

14.2.3 Triangle on Top of Triangle

This section provides routines for computing the ) R decomposition of the specialized matrix

U
(0n) =en

where Uy, U; are N-by-N upper triangular matrices. The Elmroth and Gustavson algorithm is used to efficiently factor
this matrix. The () matrix takes the form

Q=I1-VvTV"

()

int gsl_linalg_QR_UU_decomp (gs/_matrix *Ul, gsl_matrix *U2, gsl_matrix *T)
This function computes the QR decomposition of the matrix (Uy; Us), where Uy, Us are N-by-N upper trian-
gular. On output, U1 is replaced by the R factor, and U2 is replaced by Y. The N-by-NV upper triangular block
reflector is stored in T on output.

with

and Y is N-by-N upper triangular.

int gsl_linalg_QR_UU_lssolve(const gs/_matrix *R, const gsl_matrix *Y, const gsl_matrix *T, const gsl_vector
*b, gsl_vector *x, gsl_vector *work)
This function find the least squares solution to the overdetermined system,

Uy
b— (Ug) T

where Uy, U, are N-by-IN upper triangular matrices. The routine requires as input the () R decomposition of
(U1;Us) into (R, Y, T) given by gs1_Ilinalg_QR_UU_decomp (). The parameter x is of length 2N. The solution
x is returned in the first N rows of x, i.e. x = x[0], x[1], ..., x[N-1]. The last N rows of x contain a
vector whose norm is equal to the residual norm ||b — (Uy; Uz)z||. This similar to the behavior of LAPACK
DGELS. Additional workspace of length IV is required in work.

2
min
xr

int gsl_linalg_QR_UU_QTec (const gs/_matrix *Y, const gsl_matrix *T, gsl_vector *b, gsl_vector *work)
This function computes Q7b wusing the decomposition (v, T) previously computed by
gsl_linalg_QR_UU_decomp(). On input, b contains the vector b, and on output it will contain Q7b.
Additional workspace of length [V is required in work.

14.2.4 Triangle on Top of Trapezoidal

This section provides routines for computing the () R decomposition of the specialized matrix

()

where U is an N-by-N upper triangular matrix, and A is an M-by-N upper trapezoidal matrix with M > N. A has

the structure,
_ (Aa
a= ()
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where Ay is (M — N)-by-N dense, and A, is N-by-N upper triangular. The Elmroth and Gustavson algorithm is used
to efficiently factor this matrix. The () matrix takes the form

Q=I-vTv?

()

and Y is upper trapezoidal and of the same dimensions as A.

with

int gsl_linalg_QR_UZ_decomp (gs/_matrix *U, gsl_matrix *A, gsl_matrix *T)
This function computes the Q R decomposition of the matrix (U; A), where U is N-by-N upper triangular and
A'is M-by-N upper trapezoidal. On output, U is replaced by the R factor, and A is replaced by Y. The N-by-N
upper triangular block reflector is stored in T on output.

14.2.5 Triangle on Top of Diagonal

This section provides routines for computing the () R decomposition of the specialized matrix

()

where U is an N-by-N upper triangular matrix and D is an N-by-N diagonal matrix. This type of matrix arises in
regularized least squares problems. The Elmroth and Gustavson algorithm is used to efficiently factor this matrix. The
@ matrix takes the form

Q=I1-VvTV"

with

and Y is N-by-N upper triangular.

int gsl_linalg_QR_UD_decomp (gs/_matrix *U, const gsl_vector *D, gsl_matrix *Y, gsl_matrix *T)
This function computes the Q R decomposition of the matrix (U; D), where U is N-by-N upper triangular and D
is N-by-N diagonal. On output, U is replaced by the R factor and Y is stored in Y. The IN-by-IV upper triangular
block reflector is stored in T on output.

int gsl_linalg_QR_UD_lssolve(const gs/_matrix *R, const gsl_matrix *Y, const gsl_matrix *T, const gsl_vector
*b, gsl_vector *x, gsl_vector *work)
This function find the least squares solution to the overdetermined system,

o (5)-

where U is N-by-IV upper triangular and D is N-by-N diagonal. The routine requires as input the ) R decom-
position of (U; D) into (R, ¥, T) given by gsl_linalg_QR_UD_decomp (). The parameter x is of length 2N.
The solution x is returned in the first NV rows of x, i.e. x = x[0], x[1], ..., x[N-1]. The last N rows of
x contain a vector whose norm is equal to the residual norm ||b — (U; D)x||. This similar to the behavior of
LAPACK DGELS. Additional workspace of length N is required in work.

2

min
xr
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14.3 QR Decomposition with Column Pivoting

The Q) R decomposition of an M-by-N matrix A can be extended to the rank deficient case by introducing a column
permutation P,

AP = QR

The first 7 columns of @) form an orthonormal basis for the range of A for a matrix with column rank 7. This decom-
position can also be used to convert the square linear system Az = b into the triangular system Ry = QTb,z = Py,
which can be solved by back-substitution and permutation. We denote the ) R decomposition with column pivoting by
QRPT since A = QRPT. When A is rank deficient with r = rank(A), the matrix R can be partitioned as

p— (B B (Bu Ruo
0 R 0 0
where R, is r-by-r and nonsingular. In this case, a basic least squares solution for the overdetermined system Az = b

can be obtained as
Riltel
=P ( 0

where ¢ consists of the first r elements of QTb. This basic solution is not guaranteed to be the minimum norm solution
unless R15 = 0 (see Complete Orthogonal Decomposition).

int gsl_linalg_QRPT_decomp (gs/_matrix *A, gsl_vector *tau, gsl_permutation *p, int *signum, gs/_vector
*norm)

This function factorizes the M-by-N matrix A into the QRP” decomposition A = QRPT. On output the
diagonal and upper triangular part of the input matrix contain the matrix R. The permutation matrix P is stored
in the permutation p. The sign of the permutation is given by signum. It has the value (—1)", where n is the
number of interchanges in the permutation. The vector tau and the columns of the lower triangular part of the
matrix A contain the Householder coefficients and vectors which encode the orthogonal matrix Q. The vector tau
must be of length & = min(M, N). The matrix @ is related to these components by, Q = Q...Q2@Q1 where
Q; = I — ;v;v! and v; is the Householder vector

v, = (0,...,1,A(¢ + 1,4), A(i + 2,4), ..., A(m, 7))

This is the same storage scheme as used by LAPACK. The vector norm is a workspace of length N used for
column pivoting.

The algorithm used to perform the decomposition is Householder QR with column pivoting (Golub & Van Loan,
“Matrix Computations”, Algorithm 5.4.1).

int gsl_linalg_QRPT_decomp2 (const gs/_matrix *A, gsl_matrix *q, gsl_matrix *r, gsl_vector *tau,
gsl_permutation *p, int *signum, gs/_vector *norm)
This function factorizes the matrix A into the decomposition A = QRP7T without modifying A itself and storing
the output in the separate matrices g and r.

int gs1_linalg_QRPT_solve(const gs/_matrix *QR, const gsl_vector *tau, const gs/_permutation *p, const
gsl_vector *b, gsl_vector *x)
This function solves the square system Az = b using the Q RPT decomposition of A held in (QR, tau, p) which
must have been computed previously by gs1_linalg_QRPT_decomp().

int gs1_linalg_QRPT_svx(const gs/_matrix *QR, const gsl_vector *tau, const gsl_permutation *p, gsl_vector *x)
This function solves the square system Az = b in-place using the QRPT decomposition of A held in (QR, tau,
p). On input x should contain the right-hand side b, which is replaced by the solution on output.
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int gsl_linalg_QRPT_lssolve(const gs/_matrix *QR, const gsl_vector *tau, const gs/_permutation *p, const
gsl_vector *b, gsl_vector *x, gsl_vector *residual)
This function finds the least squares solution to the overdetermined system Az = b where the matrix A has more
rows than columns and is assumed to have full rank. The least squares solution minimizes the Euclidean norm
of the residual, ||b — Ax||. The routine requires as input the Q R decomposition of A into (QR, tau, p) given
by gsl_linalg_QRPT_decomp (). The solution is returned in x. The residual is computed as a by-product and
stored in residual. For rank deficient matrices, gsl_linalg_QRPT_IssolveZ2 () should be used instead.

int gsl_linalg_QRPT_lssolve2 (const gs/_matrix *QR, const gsl_vector *tau, const gsl_permutation *p, const

gsl_vector *b, const size_t rank, gsl_vector *x, gsl_vector *residual)
This function finds the least squares solution to the overdetermined system Ax = b where the matrix A has more
rows than columns and has rank given by the input rank. If the user does not know the rank of A, the routine
gsl_linalg_QRPT _rank() can be called to estimate it. The least squares solution is the so-called “basic”
solution discussed above and may not be the minimum norm solution. The routine requires as input the QR
decomposition of A into (QR, tau, p) given by gs1_Ilinalg_QRPT_decomp (). The solution is returned in x.
The residual is computed as a by-product and stored in residual.

int gsl_linalg_QRPT_QRsolve(const gs/_matrix *Q, const gsl_matrix *R, const gsl_permutation *p, const
gsl_vector *b, gsl_vector *x)
This function solves the square system RPTx = QTb for x. It can be used when the QR decomposition of a
matrix is available in unpacked form as (Q, R).

int gsl_linalg_QRPT_update(gs/_matrix *Q, gsl_matrix *R, const gsl_permutation *p, gsl_vector *w, const
gsl_vector *v)
This function performs a rank-1 update wv? of the QRPT decomposition (Q, R, p). The update is given by
Q'R' = Q(R + wv™ P) where the output matrices Q" and R’ are also orthogonal and right triangular. Note that
w is destroyed by the update. The permutation p is not changed.

int gs1_linalg_QRPT_Rsolve(const gs/_matrix *QR, const gsi_permutation *p, const gsl_vector *b, gsl_vector
#x)

This function solves the triangular system RPTz = b for the N-by-N matrix R contained in QR.

int gsl_linalg_QRPT_Rsvx(const gs/_matrix *QR, const gsl_permutation *p, gsl_vector *x)
This function solves the triangular system RP?x = b in-place for the N-by-N matrix R contained in QR. On
input x should contain the right-hand side b, which is replaced by the solution on output.

size_t gs1_linalg_QRPT_rank(const gs/_matrix *QR, const double tol)
This function estimates the rank of the triangular matrix R contained in QR. The algorithm simply counts the
number of diagonal elements of R whose absolute value is greater than the specified tolerance tol. If the input
tol is negative, a default value of 20(M + N)eps(max(|diag(R)|)) is used.

int gsl_linalg_QRPT_rcond(const gs/_matrix *QR, double *rcond, gsl_vector *work)
This function estimates the reciprocal condition number (using the 1-norm) of the R factor, stored in the upper
triangle of QR. The reciprocal condition number estimate, defined as 1/(||R||1 - ||[R™*||1), is stored in rcond.
Additional workspace of size 3N is required in work.

14.4 LQ Decomposition
A general rectangular M-by-N matrix A has a L) decomposition into the product of a lower trapezoidal M-by-N
matrix L and an orthogonal N-by-N square matrix Q:

A=1LQ

If M < N, then L can be written as L = (L; 0) where L, is M-by-M lower triangular, and

A= (L 0) (Q

Q;) =L@
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where ()1 consists of the first M rows of ), and Q2 contains the remaining N — M rows. The L() factorization of A
is essentially the same as the OR factorization of A”.

The L@ factorization may be used to find the minimum norm solution of an underdetermined system of equations
Ax = b, where A is M-by-N and M < N. The solution is

R (L%1b>

int gsl_linalg_LQ_decomp (gs/_matrix *A, gsl_vector *tau)
This function factorizes the M-by-N matrix A into the L) decomposition A = L(@). On output the diagonal
and lower trapezoidal part of the input matrix contain the matrix L. The vector tau and the elements above
the diagonal of the matrix A contain the Householder coefficients and Householder vectors which encode the
orthogonal matrix Q. The vector tau must be of length & = min(M, N). The matrix @ is related to these
components by, Q = Q...Q2Q1 where Q; = I —7;v;v] and v; is the Householder vector v; = (0, ..., 1, A(i,i+
1), A(i,i+2), ..., A(i, N)). This is the same storage scheme as used by LAPACK.

int gsl_linalg_LQ lssolve(const gs/_matrix *LQ, const gs/_vector *tau, const gsl_vector *b, gsl_vector *Xx,
gsl_vector *residual)
This function finds the minimum norm least squares solution to the underdetermined system Ax = b, where
the M-by-N matrix A has M < N. The routine requires as input the L) decomposition of A into (LQ, tau)
given by gs1_linalg_LQ_decomp(). The solution is returned in x. The residual, b — Az, is computed as a
by-product and stored in residual.

int gsl_linalg_LQ unpack(const gs/_matrix *LQ, const gsl_vector *tau, gsl_matrix *Q, gsl_matrix *L)
This function unpacks the encoded L) decomposition (LQ, tau) into the matrices Q and L, where Q is N-by-N
and L is M-by-N.

int gsl_linalg_LQ_QTvec(const gs/_matrix *LQ, const gsl_vector *tau, gsl_vector *v)
This function applies Q7 to the vector v, storing the result Q”v in v on output.

14.5 QL Decomposition

A general rectangular M-by-N matrix A has a QL decomposition into the product of an orthogonal M-by-M square
matrix QQ (where Q7' Q = I) and an M-by-N left-triangular matrix L.

ot

where L; is N-by-N lower triangular. When M < N, the decomposition is given by

When M > N, the decomposition is given by

A=Q (L1 Ly)

where L, is a dense M-by-N — M matrix and Lo is a lower triangular M -by-M matrix.

int gsl_linalg_QL_decomp (gs/_matrix *A, gsl_vector *tau)
This function factorizes the M-by-N matrix A into the QL decomposition A = QL. The vector tau must be of
length NV and contains the Householder coefficients on output. The matrix @) is stored in packed form in A on
output, using the same storage scheme as LAPACK.

int gsl_linalg_QL_unpack(const gs/_matrix *QL, const gsl_vector *tau, gsl_matrix *Q, gsl_matrix *L)
This function unpacks the encoded @) L decomposition (QL, tau) into the matrices Q and L, where Q is M -by-M
and L is M-by-N.
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14.6 Complete Orthogonal Decomposition

The complete orthogonal decomposition of a M-by-/N matrix A is a generalization of the QR decomposition with
column pivoting, given by

where P is a N-by-N permutation matrix, Q) is M-by-M orthogonal, R1; is r-by-r upper triangular, with r = rank(A),
and Z is N-by-N orthogonal. If A has full rank, then R;; = R, Z = I and this reduces to the QR decomposition with
column pivoting.

For a rank deficient least squares problem, min,, ||b — Ax||?, the solution vector z is not unique. However if we further
require that ||||? is minimized, then the complete orthogonal decomposition gives us the ability to compute the unique
minimum norm solution, which is given by
-1
x:PZ(RH“>

0

and the vector ¢; is the first r elements of Q7'b.

The COD also enables a straightforward solution of regularized least squares problems in Tikhonov standard form,
written as

min ||b — Aac||2 + )\2Hx||2

where A > 0 is a regularization parameter which represents a tradeoff between minimizing the residual norm ||b — Az||
and the solution norm ||z||. For this system, the solution is given by

x:PZ(%)

where y; is a vector of length  which is found by solving

()= (5)

and c; is defined above. The equation above can be solved efficiently for different values of A using QR factorizations
of the left hand side matrix.

int gsl_linalg_COD_decomp (gs/_matrix *A, gsl_vector *tau_Q, gsl_vector *tau_Z, gsl_permutation *p, size_t
*rank, gsl_vector *work)

int gsl_linalg_COD_decomp_e (gs/_matrix *A, gsl_vector *tau_Q, gsi_vector *tau_Z, gsl_permutation *p, double
tol, size_t *rank, gsl_vector *work)

These functions factor the M -by-N matrix A into the decomposition A = QRZPT . The rank of A is computed
as the number of diagonal elements of R greater than the tolerance tol and output in rank. If tol is not
specified, a default value is used (see gsI_linalg QRPT_rank()). On output, the permutation matrix P is
stored in p. The matrix Ry; is stored in the upper rank-by-rank block of A. The matrices () and Z are encoded
in packed storage in A on output. The vectors tau_Q and tau_Z contain the Householder scalars corresponding
to the matrices @ and Z respectively and must be of length £ = min(M, N). The vector work is additional
workspace of length V.

int gsl_linalg_COD_lssolve(const gs/_matrix *QRZT, const gsl_vector *tau_Q, const gsl_vector *tau_Z, const
gsl_permutation *p, const size_t rank, const gsl_vector *b, gsl_vector *x,
gsl_vector *residual)
This function finds the unique minimum norm least squares solution to the overdetermined system Ax = b
where the matrix A has more rows than columns. The least squares solution minimizes the Euclidean norm
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of the residual, ||b — Az|| as well as the norm of the solution ||z||. The routine requires as input the QRZT
decomposition of A into (QRZT, tau_Q, tau_Z, p, rank) given by gs1_Ilinalg_COD_decomp (). The solution
is returned in x. The residual, b — Az, is computed as a by-product and stored in residual.

int gsl_linalg_COD_lssolve2 (const double lambda, const gsi_matrix *QRZT, const gs/_vector *tau_Q, const

gsl_vector *tau_Z, const gsl_permutation *p, const size_t rank, const gs/_vector
*b, gsl_vector *x, gsl_vector *residual, gsl_matrix *S, gsl_vector *work)

This function finds the solution to the regularized least squares problem in Tikhonov standard form, min,, ||b —

Az||? + A?||z||?. The routine requires as input the Q RZT decomposition of A into (QRZT, tau_Q, tau_Z, p,

rank) given by gs1_Ilinalg_COD_decomp (). The parameter A is supplied in 1ambda. The solution is returned

in x. The residual, b — Az, is stored in residual on output. S is additional workspace of size rank-by-rank.

work is additional workspace of length rank.

int gs1_linalg_COD_unpack (const gs/_matrix *QRZT, const gs/_vector *tau_Q, const gsl_vector *tau_Z, const
size_t rank, gsl_matrix *Q, gsl_matrix *R, gsl_matrix *Z)
This function unpacks the encoded Q RZT" decomposition (QRZT, tau_Q, tau_Z, rank) into the matrices Q, R,
and Z, where Q is M-by-M, R is M-by-N, and Z is N-by-N.

int gsl_linalg_COD_matZ(const gsi_matrix *QRZT, const gsl_vector *tau_Z, const size_t rank, gsl_matrix *A,
gsl_vector *work)
This function multiplies the input matrix A on the right by Z, A’ = AZ using the encoded Q RZT decomposition
(QRZT, tau_Z, rank). A must have N columns but may have any number of rows. Additional workspace of
length M is provided in work.

14.7 Singular Value Decomposition

A general rectangular M-by-N matrix A has a singular value decomposition (SVD) into the product of an M-by-N
orthogonal matrix U, an N-by-IN diagonal matrix of singular values S and the transpose of an N-by-N orthogonal
square matrix V,

A=USv"T
The singular values o; = S;; are all non-negative and are generally chosen to form a non-increasing sequence
01>02>...20n2>0

The singular value decomposition of a matrix has many practical uses. The condition number of the matrix is given by
the ratio of the largest singular value to the smallest singular value. The presence of a zero singular value indicates that
the matrix is singular. The number of non-zero singular values indicates the rank of the matrix. In practice singular
value decomposition of a rank-deficient matrix will not produce exact zeroes for singular values, due to finite numerical
precision. Small singular values should be edited by choosing a suitable tolerance.

For a rank-deficient matrix, the null space of A is given by the columns of V' corresponding to the zero singular values.
Similarly, the range of A is given by columns of U corresponding to the non-zero singular values.

Note that the routines here compute the “thin” version of the SVD with U as M-by-N orthogonal matrix. This allows
in-place computation and is the most commonly-used form in practice. Mathematically, the “full” SVD is defined with
U as an M -by-M orthogonal matrix and .S as an M-by-N diagonal matrix (with additional rows of zeros).

int gsl_linalg_SV_decomp (gs/_matrix *A, gsl_matrix *V, gsl_vector *S, gsl_vector *work)
This function factorizes the M-by-N matrix A into the singular value decomposition A = USVT for M > N.
On output the matrix A is replaced by U. The diagonal elements of the singular value matrix S are stored in the
vector S. The singular values are non-negative and form a non-increasing sequence from S; to Sy . The matrix V
contains the elements of V' in untransposed form. To form the product U SV T it is necessary to take the transpose
of V. A workspace of length N is required in work.

This routine uses the Golub-Reinsch SVD algorithm.
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int gsl_linalg_SV_decomp_mod (gsl_matrix *A, gsl_matrix *X, gsl_matrix *V, gsl_vector *S, gsl_vector *work)
This function computes the SVD using the modified Golub-Reinsch algorithm, which is faster for M > N. It
requires the vector work of length N and the N-by-/N matrix X as additional working space.

int gsl_linalg_SV_decomp_jacobi (gsl_matrix *A, gsl_matrix *V, gsl_vector *S)
This function computes the SVD of the M -by- N matrix A using one-sided Jacobi orthogonalization for M > N.
The Jacobi method can compute singular values to higher relative accuracy than Golub-Reinsch algorithms (see
references for details).

int gsl_linalg_SV_solve(const gs/_matrix *U, const gsi_matrix *V, const gsl_vector *S, const gsl_vector *b,
gsl_vector *x)
This function solves the system Az = b using the singular value decomposition (U, S, V) of A which must have
been computed previously with gsI_Ilinalg_SV_decomp().

Only non-zero singular values are used in computing the solution. The parts of the solution corresponding to
singular values of zero are ignored. Other singular values can be edited out by setting them to zero before calling
this function.

In the over-determined case where A has more rows than columns the system is solved in the least squares sense,
returning the solution x which minimizes || Az — b||.

int gsl_linalg_SV_leverage (const gs/_matrix *U, gsl_vector *h)
This function computes the statistical leverage values h; of a matrix A using its singular value decomposi-
tion (U, S, V) previously computed with gs1_Iinalg_SV_decomp (). h; are the diagonal values of the matrix
A(AT A)~1 AT and depend only on the matrix U which is the input to this function.

14.8 Cholesky Decomposition

A symmetric, positive definite square matrix A has a Cholesky decomposition into a product of a lower triangular
matrix L and its transpose LT,

A=LLT

This is sometimes referred to as taking the square-root of a matrix. The Cholesky decomposition can only be carried
out when all the eigenvalues of the matrix are positive. This decomposition can be used to convert the linear system
Ax = b into a pair of triangular systems (Ly = b, L™z = ), which can be solved by forward and back-substitution.

If the matrix A is near singular, it is sometimes possible to reduce the condition number and recover a more accurate
solution vector x by scaling as

(SAS) (5~'z) = Sb

where S is a diagonal matrix whose elements are given by S;; = 1/v/A;;. This scaling is also known as Jacobi
preconditioning. There are routines below to solve both the scaled and unscaled systems.

int gsl_linalg_cholesky_decompl (gs/_matrix *A)

int gsl_linalg_complex_cholesky_decomp (gsl_matrix_complex *A)
These functions factorize the symmetric, positive-definite square matrix A into the Cholesky decomposition
A= LLT (or A= LL for the complex case). On input, the values from the diagonal and lower-triangular part
of the matrix A are used (the upper triangular part is ignored). On output the diagonal and lower triangular part
of the input matrix A contain the matrix L, while the upper triangular part contains the original matrix. If the
matrix is not positive-definite then the decomposition will fail, returning the error code GSL_EDOI.

When testing whether a matrix is positive-definite, disable the error handler first to avoid triggering an error.
These functions use Level 3 BLAS to compute the Cholesky factorization (Peise and Bientinesi, 2016).
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int gsl_linalg_cholesky_decomp (gs/_matrix *A)
This function is now deprecated and is provided only for backward compatibility.

int gs1_linalg_cholesky_solve(const gs/_matrix *cholesky, const gsl_vector *b, gsl_vector *x)

int gsl_linalg_complex_cholesky_solve(const gsl_matrix_complex *cholesky, const gsl_vector_complex *b,
gsl_vector_complex *x)
These functions solve the system Az = b using the Cholesky decomposition of A held in the ma-
trix cholesky which must have been previously computed by gsl_linalg_cholesky_decomp() or
gsl_linalg_complex_cholesky_decomp().

int gs1_linalg_cholesky_svx(const gs/_matrix *cholesky, gsi_vector *x)

int gsl_linalg_complex_cholesky_svx(const gsl_matrix_complex *cholesky, gsl_vector_complex *x)
These functions solve the system Az = b in-place using the Cholesky decomposition of A held in the
matrix cholesky which must have been previously computed by gsl_Ilinalg_cholesky_decomp() or
gsl_linalg_complex_cholesky_decomp(). On input x should contain the right-hand side b, which is re-
placed by the solution on output.

int gsl_linalg_cholesky_invert (gs/_matrix *cholesky)

int gsl_linalg_complex_cholesky_invert (gsl_matrix_complex *cholesky)
These functions compute the inverse of a matrix from its Cholesky decomposition cholesky,
which must have been previously computed by gsl_linalg_cholesky_decomp()  or
gsl_linalg_complex_cholesky_decomp (). On output, the inverse is stored in-place in cholesky.

int gsl_linalg_cholesky_decomp2 (gs/_matrix *A, gsl_vector *S)

This function calculates a diagonal scaling transformation .S for the symmetric, positive-definite square matrix 4,
and then computes the Cholesky decomposition SAS = LL”. On input, the values from the diagonal and lower-
triangular part of the matrix A are used (the upper triangular part is ignored). On output the diagonal and lower
triangular part of the input matrix A contain the matrix L, while the upper triangular part of the input matrix is
overwritten with LT (the diagonal terms being identical for both L and LT'). If the matrix is not positive-definite
then the decomposition will fail, returning the error code GSL_EDOM. The diagonal scale factors are stored in S
on output.

When testing whether a matrix is positive-definite, disable the error handler first to avoid triggering an error.

int gsl_linalg_cholesky_solve2 (const gs/_matrix *cholesky, const gsl_vector *S, const gsl_vector *b,
gsl_vector *x)
This function solves the system (SAS)(S~tx) = Sb using the Cholesky decomposition of SAS held in the
matrix cholesky which must have been previously computed by gs1_Ilinalg_cholesky_decomp2().

int gsl_linalg_cholesky_svx2 (const gs/_matrix *cholesky, const gsi_vector *S, gsl_vector *x)
This function solves the system (SAS)(S~!x) = Sb in-place using the Cholesky decomposition of SAS held
in the matrix cholesky which must have been previously computed by gsI_Ilinalg_cholesky_decomp2().
On input x should contain the right-hand side b, which is replaced by the solution on output.

int gsl_linalg_cholesky_scale(const gs/_matrix *A, gsl_vector *S)
This function calculates a diagonal scaling transformation of the symmetric, positive definite matrix A, such that
S AS has a condition number within a factor of IV of the matrix of smallest possible condition number over all
possible diagonal scalings. On output, S contains the scale factors, given by S; = 1/1/A;;. Forany A;; < 0, the
corresponding scale factor .S; is set to 1.

int gsl_linalg_cholesky_scale_apply (gs/_matrix *A, const gsl_vector *S)
This function applies the scaling transformation S to the matrix A. On output, A is replaced by SAS.

int gsl_linalg_cholesky_rcond(const gs/_matrix *cholesky, double *rcond, gsi_vector *work)
This function estimates the reciprocal condition number (using the 1-norm) of the symmetric positive definite
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matrix A, using its Cholesky decomposition provided in cholesky. The reciprocal condition number estimate,
defined as 1/(||A]|1 - ||[AY||1), is stored in rcond. Additional workspace of size 3V is required in work.

14.9 Pivoted Cholesky Decomposition

A symmetric positive semi-definite square matrix A has an alternate Cholesky decomposition into a product of a lower
unit triangular matrix L, a diagonal matrix D and L, given by LD L™ . For postive definite matrices, this is equivalent
to the Cholesky formulation discussed above, with the standard Cholesky lower triangular factor given by LD?=. For
ill-conditioned matrices, it can help to use a pivoting strategy to prevent the entries of D and L from growing too large,
and also ensure Dy > Dy > --- > D,, > 0, where D, are the diagonal entries of D. The final decomposition is given
by

PAPT = LDLT

where P is a permutation matrix.

int gsl_linalg_pcholesky_decomp (gs/_matrix *A, gsl_permutation *p)
This function factors the symmetric, positive-definite square matrix A into the Pivoted Cholesky decomposition
PAPT = LDL™. On input, the values from the diagonal and lower-triangular part of the matrix A are used to
construct the factorization. On output the diagonal of the input matrix A stores the diagonal elements of D, and
the lower triangular portion of A contains the matrix L. Since L has ones on its diagonal these do not need to be
explicitely stored. The upper triangular portion of A is unmodified. The permutation matrix P is stored in p on
output.

int gs1_linalg_pcholesky_solve(const gsi_matrix *LDLT, const gs/_permutation *p, const gsl_vector *b,
gsl_vector *x)
This function solves the system Ax = b using the Pivoted Cholesky decomposition of A held in the matrix LDLT
and permutation p which must have been previously computed by gs1_Iinalg_pcholesky_decomp().

int gs1_linalg_pcholesky_svx(const gs/_matrix *LDLT, const gsl_permutation *p, gsl_vector *x)
This function solves the system Ax = b in-place using the Pivoted Cholesky decomposition of
A held in the matrix LDLT and permutation p which must have been previously computed by
gsl_linalg_pcholesky_decomp (). On input, x contains the right hand side vector b which is replaced by the
solution vector on output.

int gs1_linalg_pcholesky_decomp2 (gsi_matrix *A, gsl_permutation *p, gsl_vector *S)
This function computes the pivoted Cholesky factorization of the matrix SAS, where the input matrix A is
symmetric and positive definite, and the diagonal scaling matrix S is computed to reduce the condition number
of A as much as possible. See Cholesky Decomposition for more information on the matrix S. The Pivoted
Cholesky decomposition satisfies PSASPT = LDL”. On input, the values from the diagonal and lower-
triangular part of the matrix A are used to construct the factorization. On output the diagonal of the input matrix
A stores the diagonal elements of D, and the lower triangular portion of A contains the matrix L. Since L has
ones on its diagonal these do not need to be explicitely stored. The upper triangular portion of A is unmodified.
The permutation matrix P is stored in p on output. The diagonal scaling transformation is stored in S on output.

int gsl_linalg_pcholesky_solve2(const gsi_matrix *LDLT, const gs/_permutation *p, const gsl_vector *S,
const gsl_vector *b, gsl_vector ¥x)
This function solves the system (SAS)(S~'z) = Sb using the Pivoted Cholesky decomposition of SAS
held in the matrix LDLT, permutation p, and vector S, which must have been previously computed by
gsl_linalg_pcholesky_decomp2().

int gsl_linalg_pcholesky_svx2(const gs/_matrix *LDLT, const gsl_permutation *p, const gsl_vector *S,
gsl_vector *x)
This function solves the system (SAS)(S~1xz) = Sb in-place using the Pivoted Cholesky decomposition of
SAS held in the matrix LDLT, permutation p and vector S, which must have been previously computed by
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gsl_linalg_pcholesky_decomp2 (). On input, x contains the right hand side vector b which is replaced by
the solution vector on output.

int gsl_linalg_pcholesky_invert (const gs/_matrix *LDLT, const gsl_permutation *p, gsl_matrix * Ainv)
This function computes the inverse of the matrix A, using the Pivoted Cholesky decomposition stored in LDLT
and p. On output, the matrix Ainv contains AL

int gsl_linalg_pcholesky_rcond(const gsi_matrix *LDLT, const gsl_permutation *p, double *rcond, gsl_vector
*work)
This function estimates the reciprocal condition number (using the 1-norm) of the symmetric positive definite
matrix A, using its pivoted Cholesky decomposition provided in LDLT. The reciprocal condition number estimate,
defined as 1/(||A]|1 - ||[A~Y||1), is stored in rcond. Additional workspace of size 3NV is required in work.

14.10 Modified Cholesky Decomposition

The modified Cholesky decomposition is suitable for solving systems Az = b where A is a symmetric indefinite matrix.
Such matrices arise in nonlinear optimization algorithms. The standard Cholesky decomposition requires a positive
definite matrix and would fail in this case. Instead of resorting to a method like QR or SVD, which do not take into
account the symmetry of the matrix, we can instead introduce a small perturbation to the matrix A to make it positive
definite, and then use a Cholesky decomposition on the perturbed matrix. The resulting decomposition satisfies

P(A+ E)PT = LDL”

where P is a permutation matrix, F is a diagonal perturbation matrix, L is unit lower triangular, and D is diagonal.
If A is sufficiently positive definite, then the perturbation matrix £ will be zero and this method is equivalent to the
pivoted Cholesky algorithm. For indefinite matrices, the perturbation matrix £ is computed to ensure that A + E is
positive definite and well conditioned.

int gsl_linalg_mcholesky_decomp (gs/_matrix *A, gsl_permutation *p, gsl_vector *E)

This function factors the symmetric, indefinite square matrix A into the Modified Cholesky decomposition P( A+
E)PT = LDLT. On input, the values from the diagonal and lower-triangular part of the matrix A are used to
construct the factorization. On output the diagonal of the input matrix A stores the diagonal elements of D, and
the lower triangular portion of A contains the matrix L. Since L has ones on its diagonal these do not need to be
explicitely stored. The upper triangular portion of A is unmodified. The permutation matrix P is stored in p on
output. The diagonal perturbation matrix is stored in E on output. The parameter E may be set to NULL if it is
not required.

int gs1_linalg_mcholesky_solve(const gsi_matrix *LDLT, const gsl_permutation *p, const gsl_vector *b,
gsl_vector *x)
This function solves the perturbed system (A + E)x = b using the Cholesky decomposition of
A + E held in the matrix LDLT and permutation p which must have been previously computed by
gsl_linalg_mcholesky_decomp().

int gs1_linalg_mcholesky_svx(const gs/_matrix *LDLT, const gsl_permutation *p, gsl_vector *x)
This function solves the perturbed system (A + E)x = b in-place using the Cholesky decomposition
of A + FE held in the matrix LDLT and permutation p which must have been previously computed by
gsl_linalg_mcholesky_decomp (). On input, x contains the right hand side vector b which is replaced by the
solution vector on output.

int gsl_linalg_mcholesky_rcond(const gsi_matrix *LDLT, const gs/_permutation *p, double *rcond, gsl_vector
*work)
This function estimates the reciprocal condition number (using the 1-norm) of the perturbed matrix A + E,
using its pivoted Cholesky decomposition provided in LDLT. The reciprocal condition number estimate, defined
as 1/(||A+ E||1 - ||[(A+ E)~1||1), is stored in rcond. Additional workspace of size 3N is required in work.
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14.11 LDLT Decomposition

If A is a symmetric, nonsingular square matrix, then it has a unique factorization of the form
A=LDL"

where L is a unit lower triangular matrix and D is diagonal. If A is positive definite, then this factorization is equivalent
to the Cholesky factorization, where the lower triangular Cholesky factor is LD?. Some indefinite matrices for which
no Cholesky decomposition exists have an LD LT decomposition with negative entries in D. The LDL" algorithm
is sometimes referred to as the square root free Cholesky decomposition, as the algorithm does not require the com-
putation of square roots. The algorithm is stable for positive definite matrices, but is not guaranteed to be stable for
indefinite matrices.

int gsl_linalg_ldlt_decomp (gsl_matrix *A)
This function factorizes the symmetric, non-singular square matrix A into the decomposition A = LDL”. On
input, the values from the diagonal and lower-triangular part of the matrix A are used. The upper triangle of A
is used as temporary workspace. On output the diagonal of A contains the matrix D and the lower triangle of
A contains the unit lower triangular matrix L. The matrix 1-norm, ||A||; is stored in the upper right corner on
output, for later use by gs1_Iinalg_ldlt_rcond().

If the matrix is detected to be singular, the function returns the error code GSL_EDOMN.

int gsl_linalg_ldlt_solve(const gs/_matrix *LDLT, const gsl_vector *b, gsl_vector *x)
This function solves the system Az = b using the LDLT decomposition of A held in the matrix LDLT which
must have been previously computed by gs1_linalg_ldlt_decomp().

int gsl_linalg_ldlt_svx(const gsi_matrix *LDLT, gsl_vector *x)
This function solves the system Az = b in-place using the LDL” decomposition of A held in the matrix LDLT
which must have been previously computed by gs1_Iinalg_IldIlt_decomp(). On input x should contain the
right-hand side b, which is replaced by the solution on output.

int gsl_linalg_ldlt_rcond(const gs/_matrix *LDLT, double *rcond, gs/_vector *work)
This function estimates the reciprocal condition number (using the 1-norm) of the symmetric nonsingular matrix
A, using its LDLT decomposition provided in LDLT. The reciprocal condition number estimate, defined as
1/(||A|]1 - ||A71]|1), is stored in rcond. Additional workspace of size 3N is required in work.

14.12 Tridiagonal Decomposition of Real Symmetric Matrices

A symmetric matrix A can be factorized by similarity transformations into the form,

A=QTQ"
where () is an orthogonal matrix and 7" is a symmetric tridiagonal matrix.

int gsl_linalg_symmtd_decomp (gs/_matrix *A, gsl_vector *tau)
This function factorizes the symmetric square matrix A into the symmetric tridiagonal decomposition QT'Q”. On
output the diagonal and subdiagonal part of the input matrix A contain the tridiagonal matrix 7. The remaining
lower triangular part of the input matrix contains the Householder vectors which, together with the Householder
coefficients tau, encode the orthogonal matrix @). This storage scheme is the same as used by LAPACK. The
upper triangular part of A is not referenced.

int gsl_linalg_symmtd_unpack(const gs/_matrix *A, const gsl_vector *tau, gsl_matrix *Q, gsl_vector *diag,
gsl_vector *subdiag)
This function unpacks the encoded symmetric tridiagonal decomposition (A, tau) obtained from
gsl_linalg_symmtd_decomp () into the orthogonal matrix Q, the vector of diagonal elements diag and the
vector of subdiagonal elements subdiag.
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int gsl_linalg_symmtd_unpack_T (const gs/_matrix *A, gsl_vector *diag, gsl_vector *subdiag)
This function unpacks the diagonal and subdiagonal of the encoded symmetric tridiagonal decomposition (4,
tau) obtained from gs1_linalg_symmtd_decomp () into the vectors diag and subdiag.

14.13 Tridiagonal Decomposition of Hermitian Matrices

A hermitian matrix A can be factorized by similarity transformations into the form,
A=UTU"

where U is a unitary matrix and 7" is a real symmetric tridiagonal matrix.

int gs1_linalg_hermtd_decomp (gsl_matrix_complex *A, gsl_vector_complex *tau)
This function factorizes the hermitian matrix A into the symmetric tridiagonal decomposition UTU” . On output
the real parts of the diagonal and subdiagonal part of the input matrix A contain the tridiagonal matrix 7". The
remaining lower triangular part of the input matrix contains the Householder vectors which, together with the
Householder coefficients tau, encode the unitary matrix U. This storage scheme is the same as used by LAPACK.
The upper triangular part of A and imaginary parts of the diagonal are not referenced.

int gsl_linalg_hermtd_unpack (const gsl_matrix_complex *A, const gsl_vector_complex *tau,
gsl_matrix_complex *U, gsl_vector *diag, gsl_vector *subdiag)
This function unpacks the encoded tridiagonal decomposition (A, tau) obtained from
gsl_linalg_hermtd_decomp() into the unitary matrix U, the real vector of diagonal elements diag
and the real vector of subdiagonal elements subdiag.

int gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex *A, gs/_vector *diag, gsl_vector *subdiag)
This function unpacks the diagonal and subdiagonal of the encoded tridiagonal decomposition (4, tau) obtained
from the gsl_linalg_hermtd_decomp () into the real vectors diag and subdiag.

14.14 Hessenberg Decomposition of Real Matrices

A general real matrix A can be decomposed by orthogonal similarity transformations into the form
A=UHU"

where U is orthogonal and H is an upper Hessenberg matrix, meaning that it has zeros below the first subdiagonal.
The Hessenberg reduction is the first step in the Schur decomposition for the nonsymmetric eigenvalue problem, but
has applications in other areas as well.

int gsl_linalg_hessenberg_decomp (gs/_matrix *A, gsl_vector *tau)
This function computes the Hessenberg decomposition of the matrix A by applying the similarity transformation
H = UTAU. On output, H is stored in the upper portion of A. The information required to construct the matrix
U is stored in the lower triangular portion of A. U is a product of N — 2 Householder matrices. The Householder
vectors are stored in the lower portion of A (below the subdiagonal) and the Householder coefficients are stored
in the vector tau. tau must be of length N.

int gsl_linalg_hessenberg_unpack(gsi_matrix *H, gsl_vector *tau, gsl_matrix *U)
This function constructs the orthogonal matrix U from the information stored in the Hessenberg matrix H along
with the vector tau. H and tau are outputs from gs1_Iinalg_hessenberg_decomp().

int gsl_linalg_hessenberg_unpack_accum(gs/_matrix *H, gsl_vector *tau, gsl_matrix *V)
This function is similar to gsI_Ilinalg_hessenberg_unpack (), except it accumulates the matrix U into V, so
that V' = VU. The matrix V must be initialized prior to calling this function. Setting V to the identity matrix
provides the same result as gsI_linalg_hessenberg_unpack(). If H is order N, then V must have N columns
but may have any number of rows.
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int gsl_linalg_hessenberg_set_zero(gs/_matrix *H)
This function sets the lower triangular portion of H, below the subdiagonal, to zero. It is useful for clearing out
the Householder vectors after calling gsI_linalg_hessenberg_decomp ().

14.15 Hessenberg-Triangular Decomposition of Real Matrices

A general real matrix pair (A, B) can be decomposed by orthogonal similarity transformations into the form

A=UHVT
B=URVT

where U and V" are orthogonal, H is an upper Hessenberg matrix, and R is upper triangular. The Hessenberg-Triangular
reduction is the first step in the generalized Schur decomposition for the generalized eigenvalue problem.

int gsl_linalg_hesstri_decomp (gs/_matrix *A, gsl_matrix *B, gsl_matrix *U, gsl_matrix *V, gsl_vector
*work)
This function computes the Hessenberg-Triangular decomposition of the matrix pair (A4, B). On output, H is
stored in A, and R is stored in B. If U and V are provided (they may be null), the similarity transformations are
stored in them. Additional workspace of length N is needed in work.

14.16 Bidiagonalization

A general matrix A can be factorized by similarity transformations into the form,
A=UBVT

where U and V' are orthogonal matrices and B is a N-by-N bidiagonal matrix with non-zero entries only on the
diagonal and superdiagonal. The size of Uis M-by-N and the size of Vis N-by-V.

int gsl_linalg_bidiag_decomp (gsi_matrix *A, gsl_vector *tau_U, gsl_vector *tau_V)
This function factorizes the M-by-N matrix A into bidiagonal form U BV T, The diagonal and superdiagonal of
the matrix B are stored in the diagonal and superdiagonal of A. The orthogonal matrices U and V are stored as
compressed Householder vectors in the remaining elements of A. The Householder coefficients are stored in the
vectors tau_U and tau_V. The length of tau_U must equal the number of elements in the diagonal of A and the
length of tau_V should be one element shorter.

int gsl_linalg_bidiag_unpack(const gsi_matrix *A, const gsl_vector *tau_U, gsl_matrix *U, const gsl_vector
*tau_V, gsl_matrix *V, gsl_vector *diag, gsl_vector *superdiag)
This function unpacks the bidiagonal decomposition of A produced by gsI_linalg_bidiag_decomp(), (4,
tau_U, tau_V) into the separate orthogonal matrices U, V and the diagonal vector diag and superdiagonal
superdiag. Note that U is stored as a compact M-by-N orthogonal matrix satisfying U7 U = I for efficiency.

int gsl_linalg_bidiag_unpack2 (gs/_matrix *A, gsl_vector *tau_U, gsl_vector *tau_V, gsl_matrix *V)
This function unpacks the bidiagonal decomposition of A produced by gsI_linalg_bidiag_decomp(), (4,
tau_U, tau_V) into the separate orthogonal matrices U, V and the diagonal vector diag and superdiagonal
superdiag. The matrix U is stored in-place in A.

int gsl_linalg_bidiag_unpack_B(const gsi_matrix *A, gsl_vector *diag, gsl_vector *superdiag)
This function unpacks the diagonal and superdiagonal of the bidiagonal decomposition of A from
gsl_linalg_bidiag_decomp (), into the diagonal vector diag and superdiagonal vector superdiag.
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14.17 Givens Rotations

A Givens rotation is a rotation in the plane acting on two elements of a given vector. It can be represented in matrix
form as

1 0 0 0
0O ... cos@ ... —sinf@ ... O
G(i,5,0) = | : : - : :
0O ... sinf ... cosf ... O
0 ... 0 0 R |

where the cos 6 and sin 6 appear at the intersection of the i-th and j-th rows and columns. When acting on a vector
x, G(i, j, 0)x performs a rotation of the (i, j) elements of . Givens rotations are typically used to introduce zeros in
vectors, such as during the QR decomposition of a matrix. In this case, it is typically desired to find c and s such that

(£ 2)6)-6)
with 7 = Va2 + b2.

void gsl_linalg_givens(const double a, const double b, double *c, double *s)
This function computes ¢ = cosf and s = sinf so that the Givens matrix G(6) acting on the vector (a,b)
produces (r,0), with r = va? + b2

void gsl_linalg_givens_gv(gs/_vector *v, const size_t i, const size_t j, const double c, const double s)
This function applies the Givens rotation defined by ¢ = cosf and s = sin 6§ to the i and j elements of v. On

output, (v(i), v(j)) = G(0)(v(i),v(5)).

14.18 Householder Transformations

A Householder transformation is a rank-1 modification of the identity matrix which can be used to zero out selected
elements of a vector. A Householder matrix H takes the form,

H=1-7v"

where v is a vector (called the Householder vector) and 7 = 2/(vTv). The functions described in this section use the
rank-1 structure of the Householder matrix to create and apply Householder transformations efficiently.

double gsl_linalg_householder_transform(gs/_vector *w)

gsl_complex gsl_linalg_complex_householder_transform(gsl_vector_complex *w)
This function prepares a Householder transformation H = I — 7vv” which can be used to zero all the elements
of the input vector w except the first. On output the Householder vector v is stored in w and the scalar 7 is
returned. The householder vector v is normalized so that v[0] = 1, however this 1 is not stored in the output
vector. Instead, w[0] is set to the first element of the transformed vector, so that if u = Hw, w[0] = u[0] on
output and the remainder of w is zero.

int gsl_linalg_householder_hm(double tau, const gsi_vector *v, gsl_matrix *A)
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int gsl_linalg_complex_householder_hm(gsl_complex tau, const gsl_vector_complex *v, gsl_matrix_complex
*A)
This function applies the Householder matrix I defined by the scalar tau and the vector v to the left-hand side
of the matrix A. On output the result H A is stored in A.

int gsl_linalg_householder_mh(double tau, const gsi_vector *v, gsl_matrix *A)

int gsl_linalg_complex_householder_mh(gsl_complex tau, const gsl_vector_complex *v, gsl_matrix_complex
*A)
This function applies the Householder matrix H defined by the scalar tau and the vector v to the right-hand side
of the matrix A. On output the result AH is stored in A.

int gsl_linalg_householder_hv(double tau, const gsi_vector *v, gsl_vector *w)

int gsl_linalg_complex_householder_hv(gsl_complex tau, const gsl_vector_complex *v, gsl_vector_complex
*w)
This function applies the Householder transformation H defined by the scalar tau and the vector v to the vector
w. On output the result Hw is stored in w.

14.19 Householder solver for linear systems

int gsl_linalg_HH_solve(gs/_matrix *A, const gsl_vector *b, gsl_vector *x)
This function solves the system Ax = b directly using Householder transformations. On output the solution is
stored in x and b is not modified. The matrix A is destroyed by the Householder transformations.

int gsl_linalg HH_svx(gs/_matrix *A, gsl_vector *x)
This function solves the system Ax = b in-place using Householder transformations. On input x should contain
the right-hand side b, which is replaced by the solution on output. The matrix A is destroyed by the Householder
transformations.

14.20 Tridiagonal Systems

The functions described in this section efficiently solve symmetric, non-symmetric and cyclic tridiagonal systems with
minimal storage. Note that the current implementations of these functions use a variant of Cholesky decomposition, so
the tridiagonal matrix must be positive definite. For non-positive definite matrices, the functions return the error code
GSL_ESING.

int gsl_linalg_solve_tridiag(const gs/_vector *diag, const gs/_vector *e, const gsl_vector *f, const gsl_vector
*b, gsl_vector *x)
This function solves the general N-by-N system Ax = b where A is tridiagonal (N > 2). The super-diagonal
and sub-diagonal vectors e and £ must be one element shorter than the diagonal vector diag. The form of A for
the 4-by-4 case is shown below,

d() €o 0 0
fo di e

A =
0 fi do e
0 0 fo ds

int gsl_linalg_solve_symm_tridiag(const gs/_vector *diag, const gsl_vector *e, const gsl_vector *b,
gsl_vector *x)
This function solves the general N-by-N system Az = b where A is symmetric tridiagonal (N > 2). The off-
diagonal vector e must be one element shorter than the diagonal vector diag. The form of A for the 4-by-4 case
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is shown below,

do €p 0 0
€0 dl €1 0
0 €1 dg €9
0 0 €9 d3

int gsl_linalg_solve_cyc_tridiag(const gs/_vector *diag, const gsl_vector *e, const gsl_vector *f, const
gsl_vector *b, gsl_vector *x)
This function solves the general N-by-N system Az = b where A is cyclic tridiagonal (N > 3). The cyclic
super-diagonal and sub-diagonal vectors e and £ must have the same number of elements as the diagonal vector
diag. The form of A for the 4-by-4 case is shown below,

do e 0 f3

fo di er O
A =

0 fi do e

e3 0 fa2 d3

int gsl_linalg_solve_symm_cyc_tridiag(const gs/_vector *diag, const gsl_vector *e, const gsl_vector *b,
gsl_vector *x)
This function solves the general N-by-N system Ax = b where A is symmetric cyclic tridiagonal (N > 3). The
cyclic off-diagonal vector e must have the same number of elements as the diagonal vector diag. The form of A
for the 4-by-4 case is shown below,

do €o 0 €3
€0 dl €1 0
0 €1 dg ()
€3 0 €9 d3

A:

14.21 Triangular Systems

int gsl_linalg_tri_invert (CBLAS_UPLO_t Uplo, CBLAS_DIAG_t Diag, gsl_matrix *T)

int gsl_linalg_complex_tri_invert (CBLAS_UPLO_t Uplo, CBLAS_DIAG_t Diag, gsl_matrix_complex *T)
These functions compute the in-place inverse of the triangular matrix T, stored in the lower triangle when Uplo =
CblasLower and upper triangle when Uplo = CblasUpper. The parameter Diag=CblasUnit, ChlasNonUnit
specifies whether the matrix is unit triangular.

int gs1_linalg_tri_LTL (gs/_matrix *L)

int gsl_linalg_complex_tri_LHL (gsl_matrix_complex *L)
These functions compute the product L™ L (or L L) in-place and stores it in the lower triangle of L on output.

int gsl_linalg_tri_UL(gsl_matrix *LU)

int gsl_linalg_complex_tri_UL (gsl_matrix_complex *LU)
These functions compute the product UL where U is upper triangular and L is unit lower triangular, stored
in LU, as computed by gsl_Ilinalg_LU_decomp() or gsl_linalg_complex_LU_decomp (). The product is
computed in-place using Level 3 BLAS.

int gsl_linalg_tri_rcond (CBLAS_UPLO_t Uplo, const gs/_matrix *A, double *rcond, gsi_vector *work)
This function estimates the 1-norm reciprocal condition number of the triangular matrix A, using the lower
triangle when Uplo is CblasLower and upper triangle when Uplo is CblasUpper. The reciprocal condition
number 1/ (||A[]; [|A7] |1) is stored in rcond on output. Additional workspace of size 3N is required in
work.
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14.22 Banded Systems

Band matrices are sparse matrices whose non-zero entries are confined to a diagonal band. From a storage point of
view, significant savings can be achieved by storing only the non-zero diagonals of a banded matrix. Algorithms such as
LU and Cholesky factorizations preserve the band structure of these matrices. Computationally, working with compact
banded matrices is preferable to working on the full dense matrix with many zero entries.

14.22.1 General Banded Format

An example of a general banded matrix is given below.

ap B om0 0 O
0y az B2 2 0 0
0 62 a3 fB3 73 0
0 0 93 ou Ba M
0 0 0 (54 (6751 ﬂ5
0 0 0 0 05 «g

A:

This matrix has a lower bandwidth of 1 and an upper bandwidth of 2. The lower bandwidth is the number of non-zero
subdiagonals, and the upper bandwidth is the number of non-zero superdiagonals. A (p, ¢) banded matrix has a lower
bandwidth p and upper bandwidth g. For example, diagonal matrices are (0, 0), tridiagonal matrices are (1, 1), and
upper triangular matrices are (0, N — 1) banded matrices.

The corresponding 6-by-4 packed banded matrix looks like

*  x  qp 01
x f1 s O
M P2 az I3
AB =
Yo B3 as Oy
V3 Ba as I
Y4 PBs as

*

where the superdiagonals are stored in columns, followed by the diagonal, followed by the subdiagonals. The entries
marked by * are not referenced by the banded routines. With this format, each row of AB corresponds to the non-zero
entries of the corresponding column of A. For an N-by-N matrix A, the dimension of AB will be N-by-(p + g + 1).

14.22.2 Symmetric Banded Format

Symmetric banded matrices allow for additional storage savings. As an example, consider the following 6 x 6 symmetric
banded matrix with lower bandwidth p = 2:

ap Biom 0 0 O

Bi a B2 v 0 O
A-|m B2 a3 B3 v3 O
0 v B3 ou Bs M

0 0 v B as Bs

0 0 0 m B as

The packed symmetric banded 6 x 3 matrix will look like:

ar Biom
ay B2 7

AB — | o3 B3 73
oy Pa 4
as  fBs

(675 * *
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The entries marked by * are not referenced by the symmetric banded routines. The relationship between the packed
format and original matrix is,

AB(i,j) = A(i,i+ j) = A(i + j,1)
fori=0,...,N—1,57=0,...,p. Conversely,

fort=0,...,N—1,7 =max(0,i — p), ...,

Warning: Note that this format is the transpose of the symmetric banded format used by LAPACK. In order to
develop efficient routines for symmetric banded matrices, it helps to have the nonzero elements in each column in
contiguous memory locations. Since C uses row-major order, GSL stores the columns in the rows of the packed
banded format, while LAPACK, written in Fortran, uses the transposed format.

14.22.3 Banded LU Decomposition

The routines in this section are designed to factor banded A -by-N matrices with an LU factorization, PA = LU. The
matrix A is banded of type (p, ¢), i.e. a lower bandwidth of p and an upper bandwidth of q. See LU Decomposition
for more information on the factorization. For banded (p, ¢) matrices, the U factor will have an upper bandwidth of
p + q, while the L factor will have a lower bandwidth of at most p. Therefore, additional storage is needed to store the
p additional bands of U.

As an example, consider the M = N = 7 matrix with lower bandwidth p = 3 and upper bandwidth ¢ = 2,

o 61 Y1 0 0 0 0

0 a B2 oy 0 0 O

€6 02 az B3 vy3 0 0
A=|¢G e 03 o4 By m O
0 G e 6 as Bs 7

0 0 (3 e O as B

O 0 0 C4 €5 56 (04

The corresponding N-by-2p + g + 1 packed banded matrix looks like

* k (5] 61 €1 Cl
B1 az d2 € (o
M B2 a3 63 €3 (3
Y2 B3 oy 04 €4 (4
73 Ba a5 05 €5 x
- — — m B5 ag d * *

Y5 Be ar ok x %
—— N—— ———

Entries marked with — are used to store the &dditional ¢ diagonals of the?U factor. Entries marked with % are not
referenced by the banded routines.

EE G

* X ¥ ¥

AB =

* X X X *x

int gs1_linalg_LU_band_decomp (const size_t M, const size_t 1b, const size_t ub, gs/_matrix *AB, gsl_vector_uint
*piv)
This function computes the LU factorization of the banded matrix AB which is stored in packed band format (see
above) and has dimension N-by-2p 4 g 4+ 1. The number of rows M of the original matrix is provided in M. The
lower bandwidth p is provided in 1b and the upper bandwidth q is provided in ub. The vector piv has length
min(M, N) and stores the pivot indices on output (for 0 < ¢ < min(M, N), row i of the matrix was interchanged
with row piv[i]). On output, AB contains both the L and U factors in packed format.
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int gsl_linalg_LU_band_solve(const size_t Ib, const size_t ub, const gs/_matrix *LUB, const gsl_vector_uint
*piv, const gsl_vector *b, gsl_vector ¥x)
This function solves the square system Ax = b using the banded LU factorization (LUB, piv) computed by
gsl_linalg_LU_band_decomp (). The lower and upper bandwidths are provided in 1b and ub respectively.
The right hand side vector is provided in b. The solution vector is stored in x on output.

int gsl_linalg_LU_band_svx(const size_t b, const size_t ub, const gs/_matrix *LUB, const gsl_vector_uint *piv,
gsl_vector *x)
This function solves the square system Ax = b in-place, using the banded LU factorization (LUB, piv) computed
by gsl_linalg_LU_band_decomp (). The lower and upper bandwidths are provided in 1b and ub respectively.
On input, the right hand side vector b is provided in x, which is replaced by the solution vector = on output.

int gsl_linalg_LU_band_unpack(const size_t M, const size_t Ib, const size_t ub, const gs/_matrix *LUB, const
gsl_vector_uint *piv, gsl_matrix *L, gsl_matrix *U)
This function unpacks the banded LU factorization (LUB, piv) previously computed by
gsl_linalg_LU_band_decomp() into the matrices L and U. The matrix U has dimension min(M, N)-
by-N and stores the upper triangular factor on output. The matrix L has dimension M -by-min(M, N') and stores
the matrix P” L on output.

14.22.4 Banded Cholesky Decomposition

The routines in this section are designed to factor and solve N-by-N linear systems of the form Az = b where A
is a banded, symmetric, and positive definite matrix with lower bandwidth p. See Cholesky Decomposition for more
information on the factorization. The lower triangular factor of the Cholesky decomposition preserves the same banded
structure as the matrix A, enabling an efficient algorithm which overwrites the original matrix with the L factor.

int gsl_linalg_cholesky_band_decomp (gs/_matrix *A)
This function factorizes the symmetric, positive-definite square matrix A into the Cholesky decomposition A =
LLT. The input matrix A is given in symmetric banded format, and has dimensions N-by-(p + 1), where p
is the lower bandwidth of the matrix. On output, the entries of A are replaced by the entries of the matrix L
in the same format. In addition, the lower right element of A is used to store the matrix 1-norm, used later by
gsl_linalg_cholesky_band_rcond() to calculate the reciprocal condition number.

If the matrix is not positive-definite then the decomposition will fail, returning the error code GSL_EDOM. When
testing whether a matrix is positive-definite, disable the error handler first to avoid triggering an error.

int gsl_linalg_cholesky_band_solve(const gs/_matrix *LLT, const gsl_vector *b, gsl_vector *x)

int gsl_linalg_cholesky_band_solvem(const gs/_matrix *LLT, const gsl_matrix *B, gsl_matrix *X)
This function solves the symmetric banded system Ax = b (or AX = B) using the Cholesky
decomposition of A held in the matrix LLT which must have been previously computed by
gsl_linalg_cholesky_band_decomp().

int gsl_linalg_cholesky_band_svx(const gsi_matrix *LLT, gsl_vector *x)

int gsl_linalg_cholesky_band_svxm(const gs/_matrix *LLT, gsl_matrix *X)
This function solves the symmetric banded system Ax = b (or AX = B) in-place using the
Cholesky decomposition of A held in the matrix LLT which must have been previously computed by
gsl_linalg_cholesky_band_decomp (). Oninput x (or X) should contain the right-hand side b (or B), which
is replaced by the solution on output.

int gsl_linalg_cholesky_band_invert (const gs/_martrix *LLT, gsl_matrix * Ainv)
This function computes the inverse of a symmetric banded matrix from its Cholesky decomposition LLT, which
must have been previously computed by gsI_linalg_cholesky_band_decomp(). On output, the inverse is
stored in Ainv, using both the lower and upper portions.
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int gsl_linalg_cholesky_band_unpack(const gs/_matrix *LLT, gsl_matrix *L)
This function unpacks the lower triangular Cholesky factor from LLT and stores it in the lower triangular portion
of the N-by-N matrix L. The upper triangular portion of L is not referenced.

int gsl_linalg_cholesky_band_scale(const gsi_matrix *A, gsl_vector *S)
This function calculates a diagonal scaling transformation of the symmetric, positive definite banded matrix 4,
such that S'AS has a condition number within a factor of IV of the matrix of smallest possible condition number
over all possible diagonal scalings. On output, S contains the scale factors, given by S; = 1/1/A;;. For any
A;; <0, the corresponding scale factor S; is set to 1.

int gsl_linalg_cholesky_band_scale_apply(gs/_matrix *A, const gsl_vector *S)
This function applies the scaling transformation S to the banded symmetric positive definite matrix A. On output,
A is replaced by SAS.

int gsl_linalg_cholesky_band_rcond(const gs/_matrix *LLT, double *rcond, gsl_vector *work)
This function estimates the reciprocal condition number (using the 1-norm) of the symmetric banded positive
definite matrix A, using its Cholesky decomposition provided in LLT. The reciprocal condition number estimate,
defined as 1/(||A]|1 - ||[A~Y||1), is stored in rcond. Additional workspace of size 31V is required in work.

14.22.5 Banded LDLT Decomposition

The routines in this section are designed to factor and solve V-by-V linear systems of the form Ax = b where A is a
banded, symmetric, and non-singular matrix with lower bandwidth p. See LDLT Decomposition for more information
on the factorization. The lower triangular factor of the LD L”" decomposition preserves the same banded structure as
the matrix A, enabling an efficient algorithm which overwrites the original matrix with the L and D factors.

int gsl_linalg_ldlt_band_decomp (gs/_matrix *A)
This function factorizes the symmetric, non-singular square matrix A into the decomposition A = LDLT. The
input matrix A is given in symmetric banded format, and has dimensions N-by-(p + 1), where p is the lower
bandwidth of the matrix. On output, the entries of A are replaced by the entries of the matrices D and L in the
same format.

If the matrix is singular then the decomposition will fail, returning the error code GSL_EDON.

int gsl_linalg_ldlt_band_solve(const gsi_matrix *LDLT, const gsl_vector *b, gsl_vector *x)
This function solves the symmetric banded system Ax = b using the LDL” decomposition of A held in the
matrix LDLT which must have been previously computed by gs1_Iinalg_ldIlt_band_decomp().

int gsl_linalg_ldlt_band_svx(const gs/_matrix *LDLT, gsl_vector *x)
This function solves the symmetric banded system Az = b in-place using the LDL” decomposition of A held
in the matrix LDLT which must have been previously computed by gsI_Ilinalg_Idlt_band_decomp(). On
input x should contain the right-hand side b, which is replaced by the solution on output.

int gsl_linalg_1dlt_band_unpack(const gs/_matrix *LDLT, gsl_matrix *L, gsl_vector *D)
This function unpacks the unit lower triangular factor L from LDLT and stores it in the lower triangular portion
of the N-by-N matrix L. The upper triangular portion of L is not referenced. The diagonal matrix D is stored in
the vector D.

int gsl_linalg_ldlt_band_rcond(const gsi_matrix *LDLT, double *rcond, gsi_vector *work)
This function estimates the reciprocal condition number (using the 1-norm) of the symmetric banded nonsingular
matrix A, using its LD L"” decomposition provided in LDLT. The reciprocal condition number estimate, defined
as 1/(||A]|1 - |[|A7Y]|1), is stored in rcond. Additional workspace of size 3N is required in work.
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14.23 Balancing

The process of balancing a matrix applies similarity transformations to make the rows and columns have comparable
norms. This is useful, for example, to reduce roundoff errors in the solution of eigenvalue problems. Balancing a matrix
A consists of replacing A with a similar matrix

A'=D71AD

where D is a diagonal matrix whose entries are powers of the floating point radix.

int gsl_linalg_balance_matrix(gs/_matrix *A, gsl_vector *D)
This function replaces the matrix A with its balanced counterpart and stores the diagonal elements of the similarity
transformation into the vector D.

14.24 Examples

The following program solves the linear system Az = b. The system to be solved is,

0.18 0.60 0.57 0.96 T 1.0
0.41 0.24 0.99 0.58 1| 120
0.14 0.30 0.97 0.66 z2 | 3.0
0.51 0.13 0.19 0.85 T3 4.0

and the solution is found using LU decomposition of the matrix A.

#include <stdio.h>
#include <gsl/gsl_linalg.h>

int

main (void)

{

double a_datal[] { 0.18, 0.60, 0.57, 0.96,
0.41, 0.24, 0.99, 0.58,
0.14, 0.30, 0.97, 0.66,
.51, 0.13, 0.19, 0.85 };

double b_data[] {1.0, 2.0, 3.0, 4.0 };

gsl_matrix_view m
= gsl_matrix_view_array (a_data, 4, 4);

gsl_vector_view b
= gsl_vector_view_array (b_data, 4);

gsl_vector *x = gsl_vector_alloc (4);
int s;
gsl_permutation * p = gsl_permutation_alloc (4);

gsl_linalg_LU_decomp (&m.matrix, p, &s);

(continues on next page)
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(continued from previous page)

gsl_linalg LU_solve (&m.matrix, p, &b.vector, x);

printf ("x = \n");
gsl_vector_fprintf (stdout, x, "%g");

gsl_permutation_free (p);
gsl_vector_free (x);
return 0;

}

Here is the output from the program,

X =

-4.05205
-12.6056
1.66091
8.69377

This can be verified by multiplying the solution x by the original matrix A using GNU octave,

octave> A = [ 0.18, 0.60, 0.57, 0.96;
0.41, 0.24, 0.99, 0.58;
0.14, 0.30, 0.97, 0.66;
0.51, 0.13, 0.19, 0.85 1];

octave> x = [ -4.05205; -12.6056; 1.66091; 8.69377];

octave> A * x
ans =
1.0000
2.0000
3.0000
4.0000

This reproduces the original right-hand side vector, b, in accordance with the equation Ax = b.

14.25 References and Further Reading

Further information on the algorithms described in this section can be found in the following book,

* G. H. Golub, C. F. Van Loan, “Matrix Computations” (3rd Ed, 1996), Johns Hopkins University Press, ISBN
0-8018-5414-8.

The LAPACK library is described in the following manual,

* LAPACK Users’ Guide (Third Edition, 1999), Published by SIAM, ISBN 0-89871-447-8
The LAPACK source code can be found at http://www.netlib.org/lapack, along with an online copy of the users guide.
Further information on recursive Level 3 BLAS algorithms may be found in the following paper,

* E. Peise and P. Bientinesi, “Recursive algorithms for dense linear algebra: the ReLAPACK collection”, http:
/larxiv.org/abs/1602.06763, 2016.

The recursive Level 3 BLAS QR decomposition is described in the following paper,
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 E. Elmroth and F. G. Gustavson, 2000. Applying recursion to serial and parallel QR factorization leads to better
performance. IBM Journal of Research and Development, 44(4), pp.605-624.

The Modified Golub-Reinsch algorithm is described in the following paper,

¢ T.F. Chan, “An Improved Algorithm for Computing the Singular Value Decomposition”, ACM Transactions on
Mathematical Software, 8 (1982), pp 72-83.

The Jacobi algorithm for singular value decomposition is described in the following papers,

* J.C. Nash, “A one-sided transformation method for the singular value decomposition and algebraic eigenprob-
lem”, Computer Journal, Volume 18, Number 1 (1975), p 74-76

e J.C. Nash and S. Shlien “Simple algorithms for the partial singular value decomposition”, Computer Journal,
Volume 30 (1987), p 268-275.

* J. Demmel, K. Veselic, “Jacobi’s Method is more accurate than QR”, Lapack Working Note 15 (LAWN-15),
October 1989. Available from netlib, http://www.netlib.org/lapack/ in the 1awns or lawnspdf directories.

The algorithm for estimating a matrix condition number is described in the following paper,

e N.J. Higham, “FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to
condition estimation”, ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.

170 Chapter 14. Linear Algebra


http://www.netlib.org/lapack/

CHAPTER
FIFTEEN

EIGENSYSTEMS

This chapter describes functions for computing eigenvalues and eigenvectors of matrices. There are routines for
real symmetric, real nonsymmetric, complex hermitian, real generalized symmetric-definite, complex generalized
hermitian-definite, and real generalized nonsymmetric eigensystems. Eigenvalues can be computed with or without
eigenvectors. The hermitian and real symmetric matrix algorithms are symmetric bidiagonalization followed by QR
reduction. The nonsymmetric algorithm is the Francis QR double-shift. The generalized nonsymmetric algorithm is
the QZ method due to Moler and Stewart.

The functions described in this chapter are declared in the header file gs1_eigen.h.

15.1 Real Symmetric Matrices

For real symmetric matrices, the library uses the symmetric bidiagonalization and QR reduction method. This is
described in Golub & van Loan, section 8.3. The computed eigenvalues are accurate to an absolute accuracy of || A||2,
where ¢ is the machine precision.

type gsl_eigen_symm_workspace
This workspace contains internal parameters used for solving symmetric eigenvalue problems.

gsl_eigen_symm_workspace *gsl_eigen_symm_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues of n-by-n real symmetric matrices. The size of
the workspace is O(2n).

void gsl_eigen_symm_free (gsl_cigen_symm_workspace *w)
This function frees the memory associated with the workspace .

int gsl_eigen_symm(gs/_matrix *A, gsl_vector *eval, gsl_eigen_symm_workspace *w)
This function computes the eigenvalues of the real symmetric matrix A. Additional workspace of the appropriate
size must be provided in w. The diagonal and lower triangular part of A are destroyed during the computation, but
the strict upper triangular part is not referenced. The eigenvalues are stored in the vector eval and are unordered.

type gsl_eigen_symmv_workspace
This workspace contains internal parameters used for solving symmetric eigenvalue and eigenvector problems.

gsl_eigen_symmyv_workspace *gsl_eigen_symmv_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n real symmetric ma-
trices. The size of the workspace is O(4n).

void gsl_eigen_symmv_free(gs/_cigen_symmyv_workspace *w)
This function frees the memory associated with the workspace w.

int gsl_eigen_symmv (gs/_matrix *A, gsl_vector *eval, gsl_matrix *evec, gsl_eigen_symmv_workspace *w)
This function computes the eigenvalues and eigenvectors of the real symmetric matrix A. Additional workspace
of the appropriate size must be provided in w. The diagonal and lower triangular part of A are destroyed during
the computation, but the strict upper triangular part is not referenced. The eigenvalues are stored in the vector

171



GNU Scientific Library, Release 2.7

eval and are unordered. The corresponding eigenvectors are stored in the columns of the matrix evec. For
example, the eigenvector in the first column corresponds to the first eigenvalue. The eigenvectors are guaranteed
to be mutually orthogonal and normalised to unit magnitude.

15.2 Complex Hermitian Matrices

For hermitian matrices, the library uses the complex form of the symmetric bidiagonalization and QR reduction method.

type gsl_eigen_herm_workspace
This workspace contains internal parameters used for solving hermitian eigenvalue problems.

gsl_eigen_herm_workspace *gsl_eigen_herm_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues of n-by-n complex hermitian matrices. The size
of the workspace is O(3n).

void gsl_eigen_herm_f£free(gs/_cigen_herm_workspace *w)
This function frees the memory associated with the workspace .

int gsl_eigen_herm(gsl_matrix_complex *A, gsl_vector *eval, gsl_eigen_herm_workspace *w)
This function computes the eigenvalues of the complex hermitian matrix A. Additional workspace of the appropri-
ate size must be provided in w. The diagonal and lower triangular part of A are destroyed during the computation,
but the strict upper triangular part is not referenced. The imaginary parts of the diagonal are assumed to be zero
and are not referenced. The eigenvalues are stored in the vector eval and are unordered.

type gsl_eigen_hermv_workspace
This workspace contains internal parameters used for solving hermitian eigenvalue and eigenvector problems.

gsl_eigen_hermv_workspace *gsl_eigen_hermv_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n complex hermitian
matrices. The size of the workspace is O(5n).

void gsl_eigen_hermv_free(gs/_cigen_hermv_workspace *w)
This function frees the memory associated with the workspace w.

int gsl_eigen_hermv (gsl_matrix_complex *A, gsl_vector *eval, gsl_matrix_complex *evec,
gsl_eigen_hermv_workspace *w)

This function computes the eigenvalues and eigenvectors of the complex hermitian matrix A. Additional
workspace of the appropriate size must be provided in w. The diagonal and lower triangular part of A are de-
stroyed during the computation, but the strict upper triangular part is not referenced. The imaginary parts of the
diagonal are assumed to be zero and are not referenced. The eigenvalues are stored in the vector eval and are
unordered. The corresponding complex eigenvectors are stored in the columns of the matrix evec. For example,
the eigenvector in the first column corresponds to the first eigenvalue. The eigenvectors are guaranteed to be
mutually orthogonal and normalised to unit magnitude.

15.3 Real Nonsymmetric Matrices

The solution of the real nonsymmetric eigensystem problem for a matrix A involves computing the Schur decomposition
A=2zTZ"

where Z is an orthogonal matrix of Schur vectors and 7’, the Schur form, is quasi upper triangular with diagonal 1-
by-1 blocks which are real eigenvalues of A, and diagonal 2-by-2 blocks whose eigenvalues are complex conjugate
eigenvalues of A. The algorithm used is the double-shift Francis method.

type gsl_eigen_nonsymm_workspace
This workspace contains internal parameters used for solving nonsymmetric eigenvalue problems.
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gsl_eigen_nonsymm_workspace *gsl_eigen_nonsymm_alloc (const size_t n)
This function allocates a workspace for computing eigenvalues of n-by-n real nonsymmetric matrices. The size
of the workspace is O(2n).

void gsl_eigen_nonsymm_free (gsi_cigen_nonsymm_workspace *w)
This function frees the memory associated with the workspace .

void gsl_eigen_nonsymm_params (const int compute_t, const int balance, gsl_eigen_nonsymm_workspace *w)
This function sets some parameters which determine how the eigenvalue problem is solved in subsequent calls
to gsl_eigen_nonsymm().

If compute_t is set to 1, the full Schur form 7" will be computed by gs1_eigen_nonsymm(). If it is set to 0, T’
will not be computed (this is the default setting). Computing the full Schur form 7 requires approximately 1.5-2
times the number of flops.

If balance is set to 1, a balancing transformation is applied to the matrix prior to computing eigenvalues. This
transformation is designed to make the rows and columns of the matrix have comparable norms, and can result
in more accurate eigenvalues for matrices whose entries vary widely in magnitude. See Balancing for more
information. Note that the balancing transformation does not preserve the orthogonality of the Schur vectors, so
if you wish to compute the Schur vectors with gs1_eigen_nonsymm_Z() you will obtain the Schur vectors of
the balanced matrix instead of the original matrix. The relationship will be

T=QTD'ADQ

where Q is the matrix of Schur vectors for the balanced matrix, and D is the balancing transformation. Then
gsl_eigen_nonsymm_Z() will compute a matrix Z which satisfies

T=2z14Z

with Z = D(Q. Note that Z will not be orthogonal. For this reason, balancing is not performed by default.

int gsl_eigen_nonsymm(gs/_matrix *A, gsl_vector_complex *eval, gsi_eigen_nonsymm_workspace ¥*w)
This function computes the eigenvalues of the real nonsymmetric matrix A and stores them in the vector eval. If
T is desired, it is stored in the upper portion of A on output. Otherwise, on output, the diagonal of A will contain
the 1-by-1 real eigenvalues and 2-by-2 complex conjugate eigenvalue systems, and the rest of A is destroyed. In
rare cases, this function may fail to find all eigenvalues. If this happens, an error code is returned and the number
of converged eigenvalues is stored in w->n_evals. The converged eigenvalues are stored in the beginning of
eval.

int gsl_eigen_nonsymm_Z(gs/_matrix *A, gsl_vector_complex *eval, gsl_matrix *Z,
gsl_eigen_nonsymm_workspace *w)
This function is identical to gsl_eigen_nonsymm() except that it also computes the Schur vectors and stores
them into Z.

type gsl_eigen_nonsymmv_workspace
This workspace contains internal parameters used for solving nonsymmetric eigenvalue and eigenvector prob-
lems.

gsl_eigen_nonsymmv_workspace *gsl_eigen_nonsymmv_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n real nonsymmetric
matrices. The size of the workspace is O(5n).

void gsl_eigen_nonsymmv_free(gs/_cigen_nonsymmv_workspace *w)
This function frees the memory associated with the workspace w.

void gsl_eigen_nonsymmv_params (const int balance, gsl_eigen_nonsymm_workspace *w)
This function sets parameters which determine how the eigenvalue problem is solved in subsequent calls to
gsl_eigen_nonsymmv (). If balance is set to 1, a balancing transformation is applied to the matrix. See
gsl_eigen_nonsymm_params () for more information. Balancing is turned off by default since it does not
preserve the orthogonality of the Schur vectors.
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int gsl_eigen_nonsymmv (gs/_matrix *A, gsl_vector_complex *eval, gsl_matrix_complex *evec,
gsl_eigen_nonsymmv_workspace *w)

This function computes eigenvalues and right eigenvectors of the n-by-n real nonsymmetric matrix A. It first calls
gsl_eigen_nonsymm() to compute the eigenvalues, Schur form 7', and Schur vectors. Then it finds eigenvectors
of T" and backtransforms them using the Schur vectors. The Schur vectors are destroyed in the process, but can be
saved by using gs1_eigen_nonsymmv_Z (). The computed eigenvectors are normalized to have unit magnitude.
On output, the upper portion of A contains the Schur form 7'. If gsl_eigen_nonsymm() fails, no eigenvectors
are computed, and an error code is returned.

int gsl_eigen_nonsymmv_Z (gs/_matrix *A, gsl_vector_complex *eval, gsl_matrix_complex *evec, gsl_matrix *Z,
gsl_eigen_nonsymmv_workspace *w)
This function is identical to gs1_eigen_nonsymmv () except that it also saves the Schur vectors into Z.

15.4 Real Generalized Symmetric-Definite Eigensystems

The real generalized symmetric-definite eigenvalue problem is to find eigenvalues A and eigenvectors x such that
Ax = \Bx

where A and B are symmetric matrices, and B is positive-definite. This problem reduces to the standard symmetric
eigenvalue problem by applying the Cholesky decomposition to B:

Ax = ABx
Az =ALL"x
(LT'AL™T) LTz = AL

Therefore, the problem becomes Cy = Ay where C = L~'AL~T is symmetric, and y = LTz. The standard
symmetric eigensolver can be applied to the matrix C. The resulting eigenvectors are backtransformed to find the
vectors of the original problem. The eigenvalues and eigenvectors of the generalized symmetric-definite eigenproblem
are always real.

type gsl_eigen_gensymm_workspace
This workspace contains internal parameters used for solving generalized symmetric eigenvalue problems.

gsl_eigen_gensymm_workspace *gsl_eigen_gensymm_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues of n-by-n real generalized symmetric-definite
eigensystems. The size of the workspace is O(2n).

void gsl_eigen_gensymm_free (gs/_cigen_gensymm_workspace *w)
This function frees the memory associated with the workspace w.

int gsl_eigen_gensymm (gs/_matrix *A, gsl_matrix *B, gsl_vector *eval, gsl_eigen_gensymm_workspace *w)
This function computes the eigenvalues of the real generalized symmetric-definite matrix pair (A, B), and stores
them in eval, using the method outlined above. On output, B contains its Cholesky decomposition and 4 is
destroyed.

type gsl_eigen_gensymmv_workspace
This workspace contains internal parameters used for solving generalized symmetric eigenvalue and eigenvector
problems.

gsl_eigen_gensymmyv_workspace *gsl_eigen_gensymmv_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n real generalized
symmetric-definite eigensystems. The size of the workspace is O(4n).

void gsl_eigen_gensymmv_free (gs/_cigen_gensymmv_workspace *w)
This function frees the memory associated with the workspace .
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int gsl_eigen_gensymmv (gs/_matrix *A, gsl_matrix *B, gsl_vector *eval, gsl_matrix *evec,
gsl_eigen_gensymmv_workspace *w)
This function computes the eigenvalues and eigenvectors of the real generalized symmetric-definite matrix pair
(4, B), and stores them in eval and evec respectively. The computed eigenvectors are normalized to have unit
magnitude. On output, B contains its Cholesky decomposition and A is destroyed.

15.5 Complex Generalized Hermitian-Definite Eigensystems

The complex generalized hermitian-definite eigenvalue problem is to find eigenvalues A and eigenvectors x such that
Ax = ABzx

where A and B are hermitian matrices, and B is positive-definite. Similarly to the real case, this can be reduced to
Cy = \y where C = L~ AL~ is hermitian, and y = L 2. The standard hermitian eigensolver can be applied to the
matrix C'. The resulting eigenvectors are backtransformed to find the vectors of the original problem. The eigenvalues
of the generalized hermitian-definite eigenproblem are always real.

type gsl_eigen_genherm_workspace
This workspace contains internal parameters used for solving generalized hermitian eigenvalue problems.

gsl_eigen_genherm_workspace *gsl_eigen_genherm_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues of n-by-n complex generalized hermitian-definite
eigensystems. The size of the workspace is O(3n).

void gsl_eigen_genherm_free (gsi_cigen_genherm_workspace *w)
This function frees the memory associated with the workspace w.

int gsl_eigen_genherm(gsl_matrix_complex *A, gsl_matrix_complex *B, gs/_vector *eval,
gsl_eigen_genherm_workspace *w)
This function computes the eigenvalues of the complex generalized hermitian-definite matrix pair (4, B), and
stores them in eval, using the method outlined above. On output, B contains its Cholesky decomposition and A
is destroyed.

type gsl_eigen_genhermv_workspace
This workspace contains internal parameters used for solving generalized hermitian eigenvalue and eigenvector
problems.

gsl_eigen_genhermv_workspace *gsl_eigen_genhermv_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n complex generalized
hermitian-definite eigensystems. The size of the workspace is O(5n).

void gsl_eigen_genhermv_free (gs/_cigen_genhermv_workspace *w)
This function frees the memory associated with the workspace .

int gsl_eigen_genhermv (gsl_matrix_complex *A, gsl_matrix_complex *B, gs/_vector *eval, gsl_matrix_complex
*evec, gsl_eigen_genhermv_workspace *w)
This function computes the eigenvalues and eigenvectors of the complex generalized hermitian-definite matrix
pair (4, B), and stores them in eval and evec respectively. The computed eigenvectors are normalized to have
unit magnitude. On output, B contains its Cholesky decomposition and A is destroyed.
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15.6 Real Generalized Nonsymmetric Eigensystems

Given two square matrices (A, B), the generalized nonsymmetric eigenvalue problem is to find eigenvalues A and
eigenvectors x such that

Ax = ABx
We may also define the problem as finding eigenvalues p and eigenvectors y such that
pAy = By

Note that these two problems are equivalent (with A = 1/y) if neither A nor p is zero. If say, A is zero, then it is still
a well defined eigenproblem, but its alternate problem involving p is not. Therefore, to allow for zero (and infinite)
eigenvalues, the problem which is actually solved is

BAx = aBzx

The eigensolver routines below will return two values e and 3 and leave it to the user to perform the divisions A = «/
and u = /.

If the determinant of the matrix pencil A — AB is zero for all A, the problem is said to be singular; otherwise it is called
regular. Singularity normally leads to some o = 3 = 0 which means the eigenproblem is ill-conditioned and generally
does not have well defined eigenvalue solutions. The routines below are intended for regular matrix pencils and could
yield unpredictable results when applied to singular pencils.

The solution of the real generalized nonsymmetric eigensystem problem for a matrix pair (A, B) involves computing
the generalized Schur decomposition

A=QSzT
B=QTZ"

where () and Z are orthogonal matrices of left and right Schur vectors respectively, and (S, T") is the generalized Schur
form whose diagonal elements give the v and /3 values. The algorithm used is the QZ method due to Moler and Stewart
(see references).

type gsl_eigen_gen_workspace
This workspace contains internal parameters used for solving generalized eigenvalue problems.

gsl_eigen_gen_workspace *gsl_eigen_gen_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues of n-by-n real generalized nonsymmetric eigen-
systems. The size of the workspace is O(n).

void gsl_eigen_gen_free(gs/_cigen_gen_workspace *w)
This function frees the memory associated with the workspace .

void gsl_eigen_gen_params (const int compute_s, const int compute_t, const int balance,
gsl_eigen_gen_workspace ¥*w)
This function sets some parameters which determine how the eigenvalue problem is solved in subsequent calls
to gsl_eigen_gen().

If compute_s is set to 1, the full Schur form S will be computed by gsl_eigen_gen(). If it is set to 0, S
will not be computed (this is the default setting). S is a quasi upper triangular matrix with 1-by-1 and 2-by-2
blocks on its diagonal. 1-by-1 blocks correspond to real eigenvalues, and 2-by-2 blocks correspond to complex
eigenvalues.

If compute_t is set to 1, the full Schur form 7" will be computed by gsl_eigen_gen(). Ifitis set to 0, T will
not be computed (this is the default setting). 7" is an upper triangular matrix with non-negative elements on its
diagonal. Any 2-by-2 blocks in S will correspond to a 2-by-2 diagonal block in 7.

The balance parameter is currently ignored, since generalized balancing is not yet implemented.
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int gsl_eigen_gen(gs/_matrix *A, gsl_matrix *B, gsl_vector_complex *alpha, gsl_vector *beta,
gsl_eigen_gen_workspace *w)
This function computes the eigenvalues of the real generalized nonsymmetric matrix pair (A, B), and stores them
as pairs in (alpha, beta), where alpha is complex and beta is real. If 3; is non-zero, then A = «;/5; is an
eigenvalue. Likewise, if «v; is non-zero, then ;1 = 3;/«; is an eigenvalue of the alternate problem pAy = By.
The elements of beta are normalized to be non-negative.

If S is desired, it is stored in A on output. If 7" is desired, it is stored in B on output. The ordering of eigenvalues
in (alpha, beta) follows the ordering of the diagonal blocks in the Schur forms S and T'. In rare cases, this
function may fail to find all eigenvalues. If this occurs, an error code is returned.

int gsl_eigen_gen_QZ(gsl_matrix *A, gsl_matrix *B, gsl_vector_complex *alpha, gs/_vector *beta, gsl_matrix
*Q, gsl_matrix *Z, gsl_eigen_gen_workspace *w)
This function is identical to gs1_eigen_gen() except that it also computes the left and right Schur vectors and
stores them into Q and Z respectively.

type gsl_eigen_genv_workspace
This workspace contains internal parameters used for solving generalized eigenvalue and eigenvector problems.

gsl_eigen_genv_workspace *gsl_eigen_genv_alloc(const size_t n)
This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n real generalized non-
symmetric eigensystems. The size of the workspace is O(7n).

void gsl_eigen_genv_f£free (gsl_cigen_genv_workspace *w)
This function frees the memory associated with the workspace .

int gsl_eigen_genv (gs/_matrix *A, gsl_matrix *B, gsl_vector_complex *alpha, gsi_vector *beta,
gsl_matrix_complex *evec, gsl_eigen_genv_workspace ¥*w)

This function computes eigenvalues and right eigenvectors of the n-by-n real generalized nonsymmetric matrix
pair (A, B). The eigenvalues are stored in (alpha, beta) and the eigenvectors are stored in evec. It first calls
gsl_eigen_gen() to compute the eigenvalues, Schur forms, and Schur vectors. Then it finds eigenvectors
of the Schur forms and backtransforms them using the Schur vectors. The Schur vectors are destroyed in the
process, but can be saved by using gs1_eigen_genv_QZ(). The computed eigenvectors are normalized to have
unit magnitude. On output, (A, B) contains the generalized Schur form (S, T'). If gsI_eigen_gen() fails, no
eigenvectors are computed, and an error code is returned.

int gsl_eigen_genv_QZ(gs/_matrix *A, gsl_matrix *B, gsl_vector_complex *alpha, gs/_vector *beta,
gsl_matrix_complex *evec, gsl_matrix *Q, gsl_matrix *Z, gsl_eigen_genv_workspace
*w)
This function is identical to gs1_eigen_genv () except that it also computes the left and right Schur vectors
and stores them into Q and Z respectively.

15.7 Sorting Eigenvalues and Eigenvectors

int gsl_eigen_symmv_sort (gs/_vector *eval, gsl_matrix *evec, gsl_eigen_sort_t sort_type)
This function simultaneously sorts the eigenvalues stored in the vector eval and the corresponding real eigen-
vectors stored in the columns of the matrix evec into ascending or descending order according to the value of
the parameter sort_type,

type gsl_eigen_sort_t

GSL_EIGEN_SORT_VAL_ASC ascending order in numerical value
GSL_EIGEN_SORT_VAL_DESC | descending order in numerical value
GSL_EIGEN_SORT_ABS_ASC ascending order in magnitude
GSL_EIGEN_SORT_ABS_DESC | descending order in magnitude
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int gsl_eigen_hermv_sort(gs/_vector *eval, gsl_matrix_complex *evec, gsl_eigen_sort_t sort_type)
This function simultaneously sorts the eigenvalues stored in the vector eval and the corresponding complex
eigenvectors stored in the columns of the matrix evec into ascending or descending order according to the value
of the parameter sort_type as shown above.

int gsl_eigen_nonsymmv_sort (gsl_vector_complex *eval, gsl_matrix_complex *evec, gsl_eigen_sort_t
sort_type)
This function simultaneously sorts the eigenvalues stored in the vector eval and the corresponding com-
plex eigenvectors stored in the columns of the matrix evec into ascending or descending order accord-
ing to the value of the parameter sort_type as shown above. Only GSL_EIGEN_SORT_ABS_ASC and
GSL_EIGEN_SORT_ABS_DESC are supported due to the eigenvalues being complex.

int gsl_eigen_gensymmv_sort (gs/_vector *eval, gsl_matrix *evec, gsl_eigen_sort_t sort_type)
This function simultaneously sorts the eigenvalues stored in the vector eval and the corresponding real eigen-
vectors stored in the columns of the matrix evec into ascending or descending order according to the value of
the parameter sort_type as shown above.

int gsl_eigen_genhermv_sort (gsi/_vector *eval, gsl_matrix_complex *evec, gsl_eigen_sort_t sort_type)
This function simultaneously sorts the eigenvalues stored in the vector eval and the corresponding complex
eigenvectors stored in the columns of the matrix evec into ascending or descending order according to the value
of the parameter sort_type as shown above.

int gsl_eigen_genv_sort(gsl_vector_complex *alpha, gs/_vector *beta, gsl_matrix_complex *evec,
gsl_eigen_sort_t sort_type)
This function simultaneously sorts the eigenvalues stored in the vectors (alpha, beta) and the correspond-
ing complex eigenvectors stored in the columns of the matrix evec into ascending or descending order ac-
cording to the value of the parameter sort_type as shown above. Only GSL_EIGEN_SORT_ABS_ASC and
GSL_EIGEN_SORT_ABS_DESC are supported due to the eigenvalues being complex.

15.8 Examples

The following program computes the eigenvalues and eigenvectors of the 4-th order Hilbert matrix, H(i,j) = 1/(i +
Jj+1).

#include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>

int
main (void)
{
double dataf[] = { 1.0 , 1/2.0, 1/3.0, 1/4.0,
1/2.0, 1/3.0, 1/4.0, 1/5.0,
1/3.0, 1/4.0, 1/5.0, 1/6.0,
1/4.0, 1/5.0, 1/6.0, 1/7.0 };

gsl_matrix_view m
= gsl_matrix_view_array (data, 4, 4);

gsl_vector *eval = gsl_vector_alloc (4);
gsl_matrix *evec = gsl _matrix_alloc (4, 4);

gsl_eigen_symmv_workspace * w =
gsl_eigen_symmv_alloc (4);

(continues on next page)
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gsl_eigen_symmv (&m.matrix, eval, evec, w);
gsl_eigen_symmv_free (w);

gsl_eigen_symmv_sort (eval, evec,
GSL_EIGEN_SORT_ABS_ASQC);

{

int i;

for (i = 0; 1 < 4; i++)

{
double eval_i
= gsl_vector_get (eval, i);
gsl_vector_view evec_i
= gsl_matrix_column (evec, i);
printf ("eigenvalue = \n", eval_i);

printf ("eigenvector = \n");
gsl_vector_fprintf (stdout,
&evec_i.vector, "%g");

}

gsl_vector_free (eval);
gsl_matrix_free (evec);

return 0;

Here is the beginning of the output from the program:

$ ./a.out

eigenvalue = 9.67023e-05
eigenvector =

-0.0291933

0.328712

-0.791411

0.514553

This can be compared with the corresponding output from GNU octave:

octave> [v,d] = eigChilb(4));
octave> diag(d)
ans =

9.6702e-05
6.7383e-03
1.6914e-01
1.5002e+00

(continues on next page)
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octave> v
vV =

0.029193 0.179186 -0.582076 0.792608
-0.328712 -0.741918 0.370502  0.451923
0.791411 0.100228 0.509579  0.322416
-0.514553  0.638283 0.514048 0.252161

Note that the eigenvectors can differ by a change of sign, since the sign of an eigenvector is arbitrary.

The following program illustrates the use of the nonsymmetric eigensolver, by computing the eigenvalues and eigen-

vectors of the Vandermonde matrix V' (z; 1, j) = :c?_j withz = (—1,-2,3,4).

#include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>

int
main (void)

{
double data[] = { -1.0, 1.0, -

gsl_matrix_view m
= gsl_matrix_view_array (data, 4, 4);

gsl_vector_complex *eval = gsl_vector_complex_alloc (4);
gsl_matrix_complex *evec = gsl_matrix_complex_alloc (4, 4);

gsl_eigen_nonsymmv_workspace * w =
gsl_eigen_nonsymmv_alloc (4);

gsl_eigen_nonsymmv (&m.matrix, eval, evec, w);
gsl_eigen_nonsymmv_free (w);

gsl_eigen_nonsymmv_sort (eval, evec,
GSL_EIGEN_SORT_ABS_DESC) ;

{

int i, j;

for (i = 0; 1 < 4; i++)

{
gsl_complex eval_i
= gsl_vector_complex_get (eval, i);
gsl_vector_complex_view evec_i
= gsl_matrix_complex_column (evec, 1i);
printf ("eigenvalue = + %gi\n",

(continues on next page)
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GSL_REAL(eval_i), GSL_IMAG(eval_i));
printf ("eigenvector = \n");
for (j = 0; j < 4; ++3)
{
gsl_complex z =
gsl_vector_complex_get(&evec_i.vector, j);
printf(” + i\n", GSL_REAL(z), GSL_IMAG(Z));
}

3

gsl_vector_complex_free(eval);
gsl_matrix_complex_free(evec);

return 0;

Here is the beginning of the output from the program:

$ ./a.out

eigenvalue = -6.41391 + 0i
eigenvector =

-0.0998822 + 0i

-0.111251 + 01

0.292501 + 01

0.944505 + 01

eigenvalue = 5.54555 + 3.08545i
eigenvector =

-0.043487 + -0.0076308i
0.0642377 + -0.1421271
-0.515253 + 0.0405118i
-0.840592 + -0.001485651

This can be compared with the corresponding output from GNU octave:

octave> [v,d] = eig(vander([-1 -2 3 4]));
octave> diag(d)
ans =

-6.4139 + 0.0000i
5.5456 + 3.0854i
5.5456 - 3.0854i
2.3228 + 0.0000i

octave> v
vV =

Columns 1 through 3:

-0.09988 + 0.00000i -0.04350 - 0.00755i -0.04350 + 0.00755i
-0.11125 + 0.000001 0.06399 - 0.142241i 0.06399 + 0.142241

(continues on next page)
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0.29250 .00000i -0.51518 + 0.04142i -0.51518 - 0.04142i
0.94451 + 0.00000i -0.84059 + 0.00000i -0.84059 - 0.00000i

+
(=]

Column 4:

-0.14493 + 0.000001
0.35660 + 0.00000i
0.91937 + 0.00000i
0.08118 + 0.00000i

Note that the eigenvectors corresponding to the eigenvalue 5.54555 + 3.08545: differ by the multiplicative constant
0.9999984 + 0.0017674% which is an arbitrary phase factor of magnitude 1.

15.9 References and Further Reading

Further information on the algorithms described in this section can be found in the following book,

* G. H. Golub, C. F. Van Loan, “Matrix Computations” (3rd Ed, 1996), Johns Hopkins University Press, ISBN
0-8018-5414-8.

Further information on the generalized eigensystems QZ algorithm can be found in this paper,

* C. Moler, G. Stewart, “An Algorithm for Generalized Matrix Eigenvalue Problems”, SIAM J. Numer. Anal., Vol
10, No 2, 1973.

Eigensystem routines for very large matrices can be found in the Fortran library LAPACK. The LAPACK library is
described in,

* LAPACK Users’ Guide (Third Edition, 1999), Published by SIAM, ISBN 0-89871-447-8.

The LAPACK source code can be found at the website http://www.netlib.org/lapack along with an online copy of the
users guide.
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CHAPTER
SIXTEEN

FAST FOURIER TRANSFORMS (FFTS)

This chapter describes functions for performing Fast Fourier Transforms (FFTs). The library includes radix-2 routines
(for lengths which are a power of two) and mixed-radix routines (which work for any length). For efficiency there are
separate versions of the routines for real data and for complex data. The mixed-radix routines are a reimplementation of
the FFTPACK library of Paul Swarztrauber. Fortran code for FFTPACK is available on Netlib (FFTPACK also includes
some routines for sine and cosine transforms but these are currently not available in GSL). For details and derivations
of the underlying algorithms consult the document “GSL FFT Algorithms” (see References and Further Reading)

16.1 Mathematical Definitions

Fast Fourier Transforms are efficient algorithms for calculating the discrete Fourier transform (DFT),

n—1

z; = Z z exp(—2mijk/n)
k=0

The DFT usually arises as an approximation to the continuous Fourier transform when functions are sampled at discrete
intervals in space or time. The naive evaluation of the discrete Fourier transform is a matrix-vector multiplication W Z.
A general matrix-vector multiplication takes O(n?) operations for n data-points. Fast Fourier transform algorithms
use a divide-and-conquer strategy to factorize the matrix W into smaller sub-matrices, corresponding to the integer
factors of the length n. If n can be factorized into a product of integers f1 f2 ... f;, then the DFT can be computed in
O(nY_ fi) operations. For a radix-2 FFT this gives an operation count of O(n log, n).

All the FFT functions offer three types of transform: forwards, inverse and backwards, based on the same mathematical
definitions. The definition of the forward Fourier transform, x = FFT(z), is,

n—1

rj = Z z exp(—2mijk/n)
k=0

and the definition of the inverse Fourier transform, x = IFFT(z), is,

n—1

5= Z xp exp(2mijk/n).
k=0

The factor of 1/n makes this a true inverse. For example, a call to gs1_fft_complex_forward() followed by a call
to gsl_£fft_complex_inverse() should return the original data (within numerical errors).

In general there are two possible choices for the sign of the exponential in the transform/ inverse-transform pair. GSL
follows the same convention as FFTPACK, using a negative exponential for the forward transform. The advantage of
this convention is that the inverse transform recreates the original function with simple Fourier synthesis. Numerical
Recipes uses the opposite convention, a positive exponential in the forward transform.
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The backwards FFT is simply our terminology for an unscaled version of the inverse FFT,

n—1

z?ad“w‘"ds = Z xy exp(2mijk/n)
k=0

When the overall scale of the result is unimportant it is often convenient to use the backwards FFT instead of the inverse
to save unnecessary divisions.

16.2 Overview of complex data FFTs

The inputs and outputs for the complex FFT routines are packed arrays of floating point numbers. In a packed array
the real and imaginary parts of each complex number are placed in alternate neighboring elements. For example, the
following definition of a packed array of length 6:

double x[3*2];
gsl_complex_packed_array data = x;

can be used to hold an array of three complex numbers, z[3], in the following way:

data[0] = Re(z[0])
data[l] = Im(z[0])
data[2] = Re(z[1])
data[3] = Im(z[1])
data[4] = Re(z[2])
data[5] = Im(z[2])

The array indices for the data have the same ordering as those in the definition of the DFT—i.e. there are no index
transformations or permutations of the data.

A stride parameter allows the user to perform transforms on the elements z[stride*i] instead of z[i]. A stride
greater than 1 can be used to take an in-place FFT of the column of a matrix. A stride of 1 accesses the array without
any additional spacing between elements.

To perform an FFT on a vector argument, such as gsl_vector_complex * v, use the following definitions (or their
equivalents) when calling the functions described in this chapter:

gsl_complex_packed_array data = v->data;
size_t stride = v->stride;
size_t n = v->size;

For physical applications it is important to remember that the index appearing in the DFT does not correspond directly
to a physical frequency. If the time-step of the DFT is A then the frequency-domain includes both positive and negative
frequencies, ranging from —1/(2A) through 0 to +1/(2A). The positive frequencies are stored from the beginning of
the array up to the middle, and the negative frequencies are stored backwards from the end of the array.

Here is a table which shows the layout of the array data, and the correspondence between the time-domain data z, and
the frequency-domain data x:

index z x = FFT(2)
0 z(t = 0) x(f = 0)
1 z(t = 1) x(f = 1/(n Delta))

N
N
~
fn
1
N
(Y
>
~
H‘
Il

2/(n Delta))

(continues on next page)
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n/2 z(t = n/2) x(f = +1/(2 Delta),

-1/(2 Delta))
n3  z(t-n3  x(f- -3/ Delta))
n-2 z(t = n-2) x(f = -2/(n Delta))
n-1 z(t = n-1) x(f = -1/(n Delta))

When n is even the location n/2 contains the most positive and negative frequencies (+1/(2A), —1/(2A)) which are
equivalent. If n is odd then general structure of the table above still applies, but /2 does not appear.

16.3 Radix-2 FFT routines for complex data

The radix-2 algorithms described in this section are simple and compact, although not necessarily the most efficient.
They use the Cooley-Tukey algorithm to compute in-place complex FFTs for lengths which are a power of 2—no
additional storage is required. The corresponding self-sorting mixed-radix routines offer better performance at the
expense of requiring additional working space.

All the functions described in this section are declared in the header file gs1_fft_complex.h.

int gs1_£ft_complex_radix2_forward(gsl_complex_packed_array data, size_t stride, size_t n)

int gsl_£ft_complex_radix2_transform(gsl_complex_packed_array data, size_t stride, size_t n,
gsl_ftt_direction sign)

int gs1_£ft_complex_radix2_backward(gsl_complex_packed_array data, size_t stride, size_t n)

int gsl_£ft_complex_radix2_inverse(gsl_complex_packed_array data, size_t stride, size_t n)
These functions compute forward, backward and inverse FFTs of length n with stride stride, on the packed
complex array data using an in-place radix-2 decimation-in-time algorithm. The length of the transform n is
restricted to powers of two. For the transform version of the function the sign argument can be either forward
(—1) or backward (+1).

The functions return a value of GSL_SUCCESS if no errors were detected, or GSL_EDOW if the length of the data
n is not a power of two.

int gsl_£fft_complex_radix2_dif_forward(gsl_complex_packed_array data, size_t stride, size_t n)

int gs1_£fft_complex_radix2_dif_transform(gsl_complex_packed_array data, size_t stride, size_t n,
gsl_ftt_direction sign)

int gs1_fft_complex_radix2_dif_backward (gsl_complex_packed_array data, size_t stride, size_t n)
int gs1_f£ft_complex_radix2_dif_ inverse(gsl_complex_packed_array data, size_t stride, size_t n)

These are decimation-in-frequency versions of the radix-2 FFT functions.

Here is an example program which computes the FFT of a short pulse in a sample of length 128. To make the resulting
Fourier transform real the pulse is defined for equal positive and negative times (—10. .. 10), where the negative times
wrap around the end of the array.

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_errno.h>

(continues on next page)
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#include <gsl/gsl_fft_complex.h>

#define REAL(z,i) ((z)[2*(i)])
#define IMAG(z,i) ((z)[2*(i)+1])

int

main (void)

{
int i; double data[2%128];

for (i = 0; 1 < 128; i++)
{
REAL(data,i) = 0.0; IMAG(data,i) = 0.0;
}

REAL(data,0) = 1.0;

for (i = 1; 1 <= 10; i++)
{
REAL(data,i) = REAL(data,128-i) = 1.0;
}

for (i = 0; 1 < 128; i++)
{
printf (" \n", i,
REAL(data,i), IMAG(data,i));
1

printf ("\n\n");
gsl_£fft_complex_radix2_forward (data, 1, 128);

for (i = 0; 1 < 128; i++)

{
printf (" \n", i,
REAL(data,i)/sqrt(128),
IMAG(data,i)/sqrt(128));
3
return 0;

Note that we have assumed that the program is using the default error handler (which calls abort() for
any errors). If you are not using a safe error handler you would need to check the return status of
gsl_fft_complex_radix2_forward().

The transformed data is rescaled by 1/+/n so that it fits on the same plot as the input. Only the real part is shown, by
the choice of the input data the imaginary part is zero. Allowing for the wrap-around of negative times at ¢ = 128, and
working in units of k/n, the DFT approximates the continuum Fourier transform, giving a modulated sine function.

/*a p—2mika g sin(27ka)
7wk

—a

The output of the example program is plotted in Fig. 16.1.
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Fig. 16.1: A pulse and its discrete Fourier transform, output from the example program.
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16.4 Mixed-radix FFT routines for complex data

This section describes mixed-radix FFT algorithms for complex data. The mixed-radix functions work for FFTs of any
length. They are a reimplementation of Paul Swarztrauber’s Fortran FFTPACK library. The theory is explained in the
review article “Self-sorting Mixed-radix FFTs” by Clive Temperton. The routines here use the same indexing scheme
and basic algorithms as FFTPACK.

The mixed-radix algorithm is based on sub-transform modules—highly optimized small length FFTs which are com-
bined to create larger FFTs. There are efficient modules for factors of 2, 3, 4, 5, 6 and 7. The modules for the composite
factors of 4 and 6 are faster than combining the modules for 2 * 2 and 2 * 3.

For factors which are not implemented as modules there is a fall-back to a general length-n module which uses Single-
ton’s method for efficiently computing a DFT. This module is O(n?), and slower than a dedicated module would be but
works for any length n. Of course, lengths which use the general length-n module will still be factorized as much as
possible. For example, a length of 143 will be factorized into 11 * 13. Large prime factors are the worst case scenario,
e.g. as found in n = 2 % 3 * 99991, and should be avoided because their O(n?) scaling will dominate the run-time
(consult the document “GSL FFT Algorithms” included in the GSL distribution if you encounter this problem).

The mixed-radix initialization function gsl_fft_complex_wavetable_alloc() returns the list of factors chosen
by the library for a given length n. It can be used to check how well the length has been factorized, and estimate the
run-time. To a first approximation the run-time scales as n Y _ f;, where the f; are the factors of n. For programs under
user control you may wish to issue a warning that the transform will be slow when the length is poorly factorized. If
you frequently encounter data lengths which cannot be factorized using the existing small-prime modules consult “GSL
FFT Algorithms” for details on adding support for other factors.

All the functions described in this section are declared in the header file gs1_fft_complex.h.

gsl_fft_complex_wavetable *gsl_fft_complex_wavetable_alloc(size tn)

This function prepares a trigonometric lookup table for a complex FFT of length n. The function returns a pointer
to the newly allocated gs1_fft_complex_wavetable if no errors were detected, and a null pointer in the case
of error. The length n is factorized into a product of subtransforms, and the factors and their trigonometric
coeflicients are stored in the wavetable. The trigonometric coefficients are computed using direct calls to sin
and cos, for accuracy. Recursion relations could be used to compute the lookup table faster, but if an application
performs many FFTs of the same length then this computation is a one-off overhead which does not affect the
final throughput.

The wavetable structure can be used repeatedly for any transform of the same length. The table is not modified
by calls to any of the other FFT functions. The same wavetable can be used for both forward and backward (or
inverse) transforms of a given length.

void gsl_£fft_complex_wavetable_free(gs/_f/t_complex_wavetable *wavetable)
This function frees the memory associated with the wavetable wavetable. The wavetable can be freed if no
further FFTs of the same length will be needed.

These functions operate ona gs1_fft_complex_wavetable structure which contains internal parameters for the FFT.
It is not necessary to set any of the components directly but it can sometimes be useful to examine them. For example,
the chosen factorization of the FFT length is given and can be used to provide an estimate of the run-time or numerical
error. The wavetable structure is declared in the header file gs1_fft_complex.h.

type gsl_£ft_complex_wavetable
This is a structure that holds the factorization and trigonometric lookup tables for the mixed radix fft algorithm.
It has the following components:
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size_t n This is the number of complex data points

size_t nf This is the number of factors that the length n was decomposed into.

size_t factor[64] This is the array of factors. Only the first nf elements are used.

gsl_complex * trig This is a pointer to a preallocated trigonometric lookup table of n complex
elements.

gsl_complex * This is an array of pointers into trig, giving the twiddle factors for each

twiddle[64] pass.

type gsl_£ft_complex_workspace
The mixed radix algorithms require additional working space to hold the intermediate steps of the transform.

gsl_fft_complex_workspace *gsl_££ft_complex_workspace_alloc(size_t n)
This function allocates a workspace for a complex transform of length n.

void gsl_£fft_complex_workspace_free(gsl_fft_complex_workspace *workspace)
This function frees the memory associated with the workspace workspace. The workspace can be freed if no
further FFTs of the same length will be needed.

The following functions compute the transform,

int gs1_£ft_complex_forward(gsl_complex_packed_array data, size_t stride, size_t n, const

gsl_fft_complex_wavetable *wavetable, gsl_[ft_complex_workspace *work)

int gs1_£ft_complex_transform(gsl_complex_packed_array data, size_t stride, size_t n, const

gsl_fft_complex_wavetable *wavetable, gsl_fft_complex_workspace *work,
gsl_fft_direction sign)

int gs1_£fft_complex_backward(gsl_complex_packed_array data, size_t stride, size_t n, const

gsl_fft_complex_wavetable *wavetable, gsl_fft_complex_workspace *work)

int gsl_fft_complex_inverse(gsl_complex_packed_array data, size_t stride, size_t n, const

gsl_fft_complex_wavetable *wavetable, gsl_fft_complex_workspace *work)

These functions compute forward, backward and inverse FFTs of length n with stride stride, on the packed com-
plex array data, using a mixed radix decimation-in-frequency algorithm. There is no restriction on the length
n. Efficient modules are provided for subtransforms of length 2, 3, 4, 5, 6 and 7. Any remaining factors are
computed with a slow, O(n?), general-n module. The caller must supply a wavetable containing the trigono-
metric lookup tables and a workspace work. For the transform version of the function the sign argument can
be either forward (—1) or backward (+1).

The functions return a value of 0 if no errors were detected. The following gs1_errno conditions are defined
for these functions:

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

GSL_EINVAL | The length of the data n and the length used to compute the given wavetable do not match.

Here is an example program which computes the FFT of a short pulse in a sample of length 630 (=2 %33 %5 % 7)
using the mixed-radix algorithm.

#include
#include
#include
#include

<stdio.h>

<math.h>
<gsl/gsl_errno.h>
<gsl/gsl_fft_complex.h>

(continues on next page)
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#define REAL(z,i) ((z)[2%(i)])
#define IMAG(z,1i) ((z)[2*(i)+1])

int
main (void)
{

int i;

const int n = 630;
double data[2*n];

gsl_fft_complex_wavetable * wavetable;
gsl_fft_complex_workspace * workspace;

for (4 = 0; 1 < n; i++)
{
REAL (data,i)
IMAG(data,i)
}

.0
.0;

0
0

data[0] = 1.0;

for (i = 1; 1 <= 10; i++)

{
REAL(data,i) = REAL(data,n-i) = 1.0;
}
for (4 = 0; 1 < n; i++)
{
printf ("%d: \n", i, REAL(data,i),
IMAG(data,i));
}

printf ("\n");

wavetable gsl_fft_complex_wavetable_alloc (n);
workspace = gsl_fft_complex_workspace_alloc (n);

for (i = 0; 1 < (int) wavetable->nf; i++)
{
printf ("# factor : %zu\n", i,
wavetable->factor[i]);

}

gsl_fft_complex_forward (data, 1, n,
wavetable, workspace);

for (4 = 0; 1 < n; i++)
{
printf ("%d: \n", i, REAL(data,i),
IMAG(data,i));
}

gsl_£fft_complex_wavetable_free (wavetable);

(continues on next page)
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gsl_fft_complex_workspace_free (workspace);
return 0;

}

Note that we have assumed that the program is using the default gs1 error handler (which calls abort () for any errors).
If you are not using a safe error handler you would need to check the return status of all the gs1 routines.

16.5 Overview of real data FFTs

The functions for real data are similar to those for complex data. However, there is an important difference between
forward and inverse transforms. The Fourier transform of a real sequence is not real. It is a complex sequence with a
special symmetry:

*
Rk = Zp—k

A sequence with this symmetry is called conjugate-complex or half-complex. This different structure requires different
storage layouts for the forward transform (from real to half-complex) and inverse transform (from half-complex back
to real). As a consequence the routines are divided into two sets: functions in gsl_fft_real which operate on real
sequences and functions in gs1_fft_halfcomplex which operate on half-complex sequences.

Functions in gs1_£fft_real compute the frequency coefficients of a real sequence. The half-complex coefficients ¢
of a real sequence x are given by Fourier analysis,

n—1

ck = Z xj exp(—2mijk/n)
j=0

Functions in gs1_fft_halfcomplex compute inverse or backwards transforms. They reconstruct real sequences by
Fourier synthesis from their half-complex frequency coefficients, c,

n—1

1
zj =~ kZ_OCk exp(2mijk/n)

The symmetry of the half-complex sequence implies that only half of the complex numbers in the output need to be
stored. The remaining half can be reconstructed using the half-complex symmetry condition. This works for all lengths,
even and odd—when the length is even the middle value where &k = n/2 is also real. Thus only n real numbers are
required to store the half-complex sequence, and the transform of a real sequence can be stored in the same size array
as the original data.

The precise storage arrangements depend on the algorithm, and are different for radix-2 and mixed-radix routines. The
radix-2 function operates in-place, which constrains the locations where each element can be stored. The restriction
forces real and imaginary parts to be stored far apart. The mixed-radix algorithm does not have this restriction, and it
stores the real and imaginary parts of a given term in neighboring locations (which is desirable for better locality of
memory accesses).
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16.6 Radix-2 FFT routines for real data

This section describes radix-2 FFT algorithms for real data. They use the Cooley-Tukey algorithm to compute in-place
FFTs for lengths which are a power of 2.

The radix-2 FFT functions for real data are declared in the header files gs1_fft_real.h

int gsl_£ft_real_radix2_transform(double data[], size_t stride, size_t n)
This function computes an in-place radix-2 FFT of length n and stride stride on the real array data. The
output is a half-complex sequence, which is stored in-place. The arrangement of the half-complex terms uses
the following scheme: for k < n/2 the real part of the k-th term is stored in location k, and the corresponding
imaginary part is stored in location n — k. Terms with k > n/2 can be reconstructed using the symmetry
2 = 2 _,. The terms for k = 0 and k = n/2 are both purely real, and count as a special case. Their real parts
are stored in locations 0 and n/2 respectively, while their imaginary parts which are zero are not stored.

The following table shows the correspondence between the output data and the equivalent results obtained by
considering the input data as a complex sequence with zero imaginary part (assuming stride = 1}):

complex[0] .real = data[0]
complex[0].imag = 0
complex[1].real = data[1]
complex[1].imag = data[n-1]
complex[k].real = datalk]
complex[k].imag = data[n-k]
complex[n/2].real = data[n/2]
complex[n/2].imag = 0
complex[k'].real = datalk] k' =n -k
complex[k'].imag = -data[n-k]
complex[n-1].real = data[1]
complex[n-1].imag = -data[n-1]

Note that the output data can be converted into the full complex sequence using the function
gsl_fft_halfcomplex_radix2_unpack() described below.

The radix-2 FFT functions for halfcomplex data are declared in the header file gs1_£ft_halfcomplex.h.

int gsl_£ft_halfcomplex_radix2_inverse(double data[], size_t stride, size_t n)

int gsl_£ft_halfcomplex_radix2_backward(double data[], size_t stride, size_t n)
These functions compute the inverse or backwards in-place radix-2 FFT of length n and stride stride on the
half-complex sequence data stored according the output scheme used by gs1_£fft_real_radix2(). The result
is a real array stored in natural order.

int gsl_fft_halfcomplex_radix2_unpack(const double halfcomplex_coefficient[], gsl_complex_packed_array
complex_coeflicient, size_t stride, size_t n)
This function converts halfcomplex_coefficient, an array of half-complex coefficients as returned by
gsl_fft_real_radix2_transform(), into an ordinary complex array, complex_coefficient. It fills in
the complex array using the symmetry z;, = z,,_, to reconstruct the redundant elements. The algorithm for the
conversion is:

complex_coefficient[0].real = halfcomplex_coefficient[0];
complex_coefficient[0].imag 0.0;

(continues on next page)
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for (A = 1; 1 <n - 1i; i++)
{
double hc_real = halfcomplex_coefficient[i*stride];
double hc_imag = halfcomplex_coefficient[(n-i)*stride];
complex_coefficient[i*stride].real = hc_real;
complex_coefficient[i*stride].imag = hc_imag;
complex_coefficient[(n - i)*stride].real = hc_real;
complex_coefficient[(n - i)*stride].imag = -hc_imag;
}
if (4 ==n - i)
{
complex_coefficient[i*stride].real = halfcomplex_coefficient[(n - 1)*stride];
complex_coefficient[i*stride].imag = 0.0;
}

16.7 Mixed-radix FFT routines for real data

This section describes mixed-radix FFT algorithms for real data. The mixed-radix functions work for FFTs of any
length. They are a reimplementation of the real-FFT routines in the Fortran FFTPACK library by Paul Swarztrauber.
The theory behind the algorithm is explained in the article “Fast Mixed-Radix Real Fourier Transforms” by Clive
Temperton. The routines here use the same indexing scheme and basic algorithms as FFTPACK.

The functions use the FFTPACK storage convention for half-complex sequences. In this convention the half-complex
transform of a real sequence is stored with frequencies in increasing order, starting at zero, with the real and imaginary
parts of each frequency in neighboring locations. When a value is known to be real the imaginary part is not stored.
The imaginary part of the zero-frequency component is never stored. It is known to be zero (since the zero frequency
component is simply the sum of the input data (all real)). For a sequence of even length the imaginary part of the
frequency n/2 is not stored either, since the symmetry z, = z;_, implies that this is purely real too.

The storage scheme is best shown by some examples. The table below shows the output for an odd-length sequence,
n = 5. The two columns give the correspondence between the 5 values in the half-complex sequence returned by
gsl_fft_real_transform(), halfcomplex[] and the values complex[] that would be returned if the same real
input sequence were passed to gsl_fft_complex_backward() as a complex sequence (with imaginary parts set to
0):

complex[0].real = halfcomplex[0]
complex[0].imag = O

complex[1].real = halfcomplex[1]
complex[1].imag = halfcomplex[2]
complex[2].real = halfcomplex[3]
complex[2].imag = halfcomplex[4]
complex[3].real = halfcomplex[3]
complex[3].imag = -halfcomplex[4]
complex[4].real = halfcomplex[1]
complex[4].imag = -halfcomplex[2]

The upper elements of the complex array, complex[3] and complex[4] are filled in using the symmetry condition.
The imaginary part of the zero-frequency term complex[0] .imag is known to be zero by the symmetry.

The next table shows the output for an even-length sequence, n = 6. In the even case there are two values which are
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purely real:

complex[0].real = halfcomplex[0]
complex[0].imag = O

complex[1].real = halfcomplex[1]
complex[1].imag = halfcomplex[2]
complex[2].real = halfcomplex[3]
complex[2].imag = halfcomplex[4]
complex[3].real = halfcomplex[5]
complex[3].imag = O

complex[4].real = halfcomplex[3]
complex[4].imag = -halfcomplex[4]
complex[5].real = halfcomplex[1]
complex[5].imag = -halfcomplex[2]

The upper elements of the complex array, complex[4] and complex[5] are filled in using the symmetry condition.
Both complex[0].imag and complex[3].imag are known to be zero.

All these functions are declared in the header files gsl_fft_real.h and gsl_fft_halfcomplex.h.

type gsl_£fft_real_wavetable

type gsl_£ft_halfcomplex_wavetable
These data structures contain lookup tables for an FFT of a fixed size.

gsl_fft_real_wavetable *gsl_fft_real_wavetable_alloc(size_tn)

gsl_fft_halfcomplex_wavetable *gsl_££ft_halfcomplex_wavetable_alloc(size_t n)
These functions prepare trigonometric lookup tables for an FFT of size n real elements. The functions return a
pointer to the newly allocated struct if no errors were detected, and a null pointer in the case of error. The length
n is factorized into a product of subtransforms, and the factors and their trigonometric coefficients are stored
in the wavetable. The trigonometric coefficients are computed using direct calls to sin and cos, for accuracy.
Recursion relations could be used to compute the lookup table faster, but if an application performs many FFTs
of the same length then computing the wavetable is a one-off overhead which does not affect the final throughput.

The wavetable structure can be used repeatedly for any transform of the same length. The table is not modified
by calls to any of the other FFT functions. The appropriate type of wavetable must be used for forward real or
inverse half-complex transforms.

void gsl_£fft_real_wavetable_free(gs/ fft_real_wavetable *wavetable)

void gsl_£fft_halfcomplex_wavetable_free(gsl_ffi_halfcomplex_wavetable *wavetable)
These functions free the memory associated with the wavetable wavetable. The wavetable can be freed if no
further FFTs of the same length will be needed.

The mixed radix algorithms require additional working space to hold the intermediate steps of the transform,

type gsl_£ft_real_workspace
This workspace contains parameters needed to compute a real FFT.

gsl_fft_real_workspace *gsl_fft_real_workspace_alloc(size_t n)
This function allocates a workspace for a real transform of length n. The same workspace can be used for both
forward real and inverse halfcomplex transforms.

void gsl_fft_real_workspace_f£free(gs/_fjt_real_workspace *workspace)
This function frees the memory associated with the workspace workspace. The workspace can be freed if no
further FFTs of the same length will be needed.

The following functions compute the transforms of real and half-complex data,
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int gsl_£ft_real_transform(double data[], size_t stride, size_t n, const gs/_fft_real_wavetable *wavetable,
gsl_fft_real_workspace *work)

int gsl_£ft_halfcomplex_transform(double data[], size_t stride, size_t n, const gsl_[ft_halfcomplex_wavetable
*wavetable, gsl_fft_real_workspace *work)

These functions compute the FFT of data, a real or half-complex array of length n, using a mixed radix
decimation-in-frequency algorithm. For gsI_fft_real transform() data is an array of time-ordered real
data. For gs1_fft_halfcomplex_transform() data contains Fourier coefficients in the half-complex order-
ing described above. There is no restriction on the length n. Efficient modules are provided for subtransforms
of length 2, 3, 4 and 5. Any remaining factors are computed with a slow, O(n?), general-n module. The caller
must supply a wavetable containing trigonometric lookup tables and a workspace work.

int gsl_£fft_real_unpack(const double real_coefficient[], gsl_complex_packed_array complex_coefficient, size_t
stride, size_tn)
This function converts a single real array, real_coefficient into an equivalent complex array,
complex_coefficient, (with imaginary part set to zero), suitable for gsl_fft_complex routines. The al-
gorithm for the conversion is simply:

for (i = 0; i < n; i++)
{
complex_coefficient[i*stride].real = real_coefficient[i*stride];
complex_coefficient[i*stride].imag 0.0;

3

int gs1_£ft_halfcomplex_unpack (const double halfcomplex_coefficient[], gsl_complex_packed_array
complex_coeflicient, size_t stride, size_t n)
This function converts halfcomplex_coefficient, an array of half-complex coefficients as returned by
gsl_fft_real_transform(), into an ordinary complex array, complex_coefficient. It fills in the complex
array using the symmetry z, = z;_, to reconstruct the redundant elements. The algorithm for the conversion
is:

complex_coefficient[0].real
complex_coefficient[0].imag

halfcomplex_coefficient[0];
0.0;

for (i = 1; i <n - i; i++)
{

double hc_real = halfcomplex_coefficient[(2 * i - 1)*stride];
double hc_imag = halfcomplex_coefficient[(2 * i)*stride];
complex_coefficient[i*stride].real = hc_real;
complex_coefficient[i*stride].imag = hc_imag;
complex_coefficient[(n - i)*stride].real = hc_real;
complex_coefficient[(n - i)*stride].imag = -hc_imag;

}

if (i == n - 1)
{
complex_coefficient[i*stride].real halfcomplex_coefficient[(n - 1)*stride];
complex_coefficient[i*stride].imag = 0.0;

3

Here is an example program using gsl_fft_real_transform() and gsl_fft_halfcomplex_inverse(). It
generates a real signal in the shape of a square pulse. The pulse is Fourier transformed to frequency space,
and all but the lowest ten frequency components are removed from the array of Fourier coefficients returned by
gsl_fft_real transform().
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The remaining Fourier coefficients are transformed back to the time-domain, to give a filtered version of the square
pulse. Since Fourier coefficients are stored using the half-complex symmetry both positive and negative frequencies
are removed and the final filtered signal is also real.

#include <stdio.h>

#include <math.h>

#include <gsl/gsl_errno.h>

#include <gsl/gsl_fft_real.h>
#include <gsl/gsl_fft_halfcomplex.h>

int
main (void)

{

int i, n = 100;
double data[n];

gsl_fft_real_wavetable * real;
gsl_£fft_halfcomplex_wavetable * hc;

gsl_£fft_real_workspace * work;

for (4 = 0; 1 < n; i++)

{
data[i] = 0.0;
}
for A =n/3;1<2 *n/ 3; i++)
{
data[i] = 1.0;
}
for (4 = 0; 1 < n; i++)
{
printf ("%d: \n", i, data[i]);
}

printf ("\n");

work
real

gsl_fft_real_workspace_alloc (n);
gsl_fft_real_wavetable_alloc (n);

gsl_£fft_real_transform (data, 1, n,
real, work);

gsl_fft_real_wavetable_free (real);
for (i = 11; 1 < n; i++)
{
data[i] = O;
1

hc = gsl_fft_halfcomplex_wavetable_alloc (n);

gsl_fft_halfcomplex_inverse (data, 1, n,
hc, work);

(continues on next page)
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gsl_fft_halfcomplex_wavetable_free (hc);

for (4 = 0; 1 < n; i++)
{
printf ("%d: \n", i, data[i]);
}

gsl_fft_real_workspace_free (work);
return 0;

}

The program output is shown in Fig. 16.2.

1.2 I I I

0.8 =

0.2 -

072 | | | | | | | | |
0 10 20 30 40 50 60 70 80 S0 100

Fig. 16.2: Low-pass filtered version of a real pulse, output from the example program.
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16.8 References and Further Reading

A good starting point for learning more about the FFT is the following review article,

e P. Duhamel and M. Vetterli. Fast Fourier transforms: A tutorial review and a state of the art. Signal Processing,
19:259-299, 1990.

To find out about the algorithms used in the GSL routines you may want to consult the document “GSL FFT Algorithms”
(it is included in GSL, as doc/fftalgorithms. tex). This has general information on FFTs and explicit derivations
of the implementation for each routine. There are also references to the relevant literature. For convenience some of
the more important references are reproduced below.

There are several introductory books on the FFT with example programs, such as “The Fast Fourier Transform” by
Brigham and “DFT/FFT and Convolution Algorithms” by Burrus and Parks,

e E. Oran Brigham. “The Fast Fourier Transform”. Prentice Hall, 1974.
e C. S. Burrus and T. W. Parks. “DFT/FFT and Convolution Algorithms”, Wiley, 1984.

Both these introductory books cover the radix-2 FFT in some detail. The mixed-radix algorithm at the heart of the
FFTPACK routines is reviewed in Clive Temperton’s paper,

e Clive Temperton, Self-sorting mixed-radix fast Fourier transforms, Journal of Computational Physics,
52(1):1-23, 1983.

The derivation of FFTs for real-valued data is explained in the following two articles,

* Henrik V. Sorenson, Douglas L. Jones, Michael T. Heideman, and C. Sidney Burrus. Real-valued fast Fourier
transform algorithms. “IEEE Transactions on Acoustics, Speech, and Signal Processing”, ASSP-35(6):849-863,
1987.

* Clive Temperton. Fast mixed-radix real Fourier transforms. “Journal of Computational Physics”, 52:340-350,
1983.

In 1979 the IEEE published a compendium of carefully-reviewed Fortran FFT programs in “Programs for Digital Signal
Processing”. It is a useful reference for implementations of many different FFT algorithms,

* Digital Signal Processing Committee and IEEE Acoustics, Speech, and Signal Processing Committee, editors.
Programs for Digital Signal Processing. IEEE Press, 1979.

For large-scale FFT work we recommend the use of the dedicated FFTW library by Frigo and Johnson. The FFTW
library is self-optimizing—it automatically tunes itself for each hardware platform in order to achieve maximum per-
formance. It is available under the GNU GPL.

* FFTW Website, http://www.fftw.org/
The source code for FFTPACK is available from http://www.netlib.org/fftpack/
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CHAPTER
SEVENTEEN

NUMERICAL INTEGRATION

This chapter describes routines for performing numerical integration (quadrature) of a function in one dimension. There
are routines for adaptive and non-adaptive integration of general functions, with specialised routines for specific cases.
These include integration over infinite and semi-infinite ranges, singular integrals, including logarithmic singularities,
computation of Cauchy principal values and oscillatory integrals. The library reimplements the algorithms used in
QUADPACK, a numerical integration package written by Piessens, de Doncker-Kapenga, Ueberhuber and Kahaner.
Fortran code for QUADPACK is available on Netlib. Also included are non-adaptive, fixed-order Gauss-Legendre
integration routines with high precision coefficients, as well as fixed-order quadrature rules for a variety of weighting
functions from IQPACK.

The functions described in this chapter are declared in the header file gsl_integration.h.

17.1 Introduction

Each algorithm computes an approximation to a definite integral of the form,

j /abf(a:)w(x)dx

where w(x) is a weight function (for general integrands w(z) = 1). The user provides absolute and relative error
bounds (epsabs, epsrel) which specify the following accuracy requirement,

|[RESULT — I| < max (epsabs, epsrel|I|)

where RESU LT is the numerical approximation obtained by the algorithm. The algorithms attempt to estimate the
absolute error ABSERR = |RESULT — 1| in such a way that the following inequality holds,

|[RESULT — I| < ABSERR < max (epsabs, epsrel|I|)
In short, the routines return the first approximation which has an absolute error smaller than epsabs or a relative error

smaller than epsrel.

Note that this is an either-or constraint, not simultaneous. To compute to a specified absolute error, set epsrel to zero.
To compute to a specified relative error, set epsabs to zero. The routines will fail to converge if the error bounds are
too stringent, but always return the best approximation obtained up to that stage.

The algorithms in QUADPACK use a naming convention based on the following letters:

Q - quadrature routine

N - non-adaptive integrator
A - adaptive integrator

(continues on next page)

199




GNU Scientific Library, Release 2.7

(continued from previous page)

G - general integrand (user-defined)
weight function with integrand

=
|

- singularities can be more readily integrated
- points of special difficulty can be supplied
- infinite range of integration

oscillatory weight function, cos or sin

- Fourier integral

- Cauchy principal value

N T O HYW!
I

The algorithms are built on pairs of quadrature rules, a higher order rule and a lower order rule. The higher order rule
is used to compute the best approximation to an integral over a small range. The difference between the results of the
higher order rule and the lower order rule gives an estimate of the error in the approximation.

17.1.1 Integrands without weight functions

The algorithms for general functions (without a weight function) are based on Gauss-Kronrod rules.

A Gauss-Kronrod rule begins with a classical Gaussian quadrature rule of order m. This is extended with additional
points between each of the abscissae to give a higher order Kronrod rule of order 2m + 1. The Kronrod rule is efficient
because it reuses existing function evaluations from the Gaussian rule.

The higher order Kronrod rule is used as the best approximation to the integral, and the difference between the two
rules is used as an estimate of the error in the approximation.

17.1.2 Integrands with weight functions

For integrands with weight functions the algorithms use Clenshaw-Curtis quadrature rules.

A Clenshaw-Curtis rule begins with an n-th order Chebyshev polynomial approximation to the integrand. This poly-
nomial can be integrated exactly to give an approximation to the integral of the original function. The Chebyshev
expansion can be extended to higher orders to improve the approximation and provide an estimate of the error.

17.1.3 Integrands with singular weight functions

The presence of singularities (or other behavior) in the integrand can cause slow convergence in the Chebyshev ap-
proximation. The modified Clenshaw-Curtis rules used in QUADPACK separate out several common weight functions
which cause slow convergence.

These weight functions are integrated analytically against the Chebyshev polynomials to precompute modified Cheby-
shev moments. Combining the moments with the Chebyshev approximation to the function gives the desired integral.
The use of analytic integration for the singular part of the function allows exact cancellations and substantially improves
the overall convergence behavior of the integration.
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17.2 QNG non-adaptive Gauss-Kronrod integration

The QNG algorithm is a non-adaptive procedure which uses fixed Gauss-Kronrod-Patterson abscissae to sample the
integrand at a maximum of 87 points. It is provided for fast integration of smooth functions.

int gsl_integration_gng(const gs/_function *f, double a, double b, double epsabs, double epsrel, double *result,
double *abserr, size_t *neval)

This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point integration rules in succession
until an estimate of the integral of f over (a, b) is achieved within the desired absolute and relative error limits,
epsabs and epsrel. The function returns the final approximation, result, an estimate of the absolute error,
abserr and the number of function evaluations used, neval. The Gauss-Kronrod rules are designed in such
a way that each rule uses all the results of its predecessors, in order to minimize the total number of function
evaluations.

17.3 QAG adaptive integration

The QAG algorithm is a simple adaptive integration procedure. The integration region is divided into subintervals, and
on each iteration the subinterval with the largest estimated error is bisected. This reduces the overall error rapidly, as
the subintervals become concentrated around local difficulties in the integrand. These subintervals are managed by the
following struct,

type gsl_integration_workspace
This workspace handles the memory for the subinterval ranges, results and error estimates.

gsl_integration_workspace *gsl_integration_workspace_alloc(size_t n)
This function allocates a workspace sufficient to hold n double precision intervals, their integration results and
error estimates. One workspace may be used multiple times as all necessary reinitialization is performed auto-
matically by the integration routines.

void gsl_integration_workspace_free(gs/_integration_workspace *w)
This function frees the memory associated with the workspace .

int gsl_integration_qag(const gs/_function *f, double a, double b, double epsabs, double epsrel, size_t limit, int
key, gsl_integration_workspace *workspace, double *result, double *abserr)
This function applies an integration rule adaptively until an estimate of the integral of f over (a,b) is achieved
within the desired absolute and relative error limits, epsabs and epsrel. The function returns the final approx-
imation, result, and an estimate of the absolute error, abserr. The integration rule is determined by the value
of key, which should be chosen from the following symbolic names,

Symbolic Name Key
GSL_INTEG_GAUSS15
GSL_INTEG_GAUSS21
GSL_INTEG_GAUSS31
GSL_INTEG_GAUSS41
GSL_INTEG_GAUSS51
GSL_INTEG_GAUSS61

QN N | W —

corresponding to the 15, 21, 31, 41, 51 and 61 point Gauss-Kronrod rules. The higher-order rules give better
accuracy for smooth functions, while lower-order rules save time when the function contains local difficulties,
such as discontinuities.

On each iteration the adaptive integration strategy bisects the interval with the largest error estimate. The subin-
tervals and their results are stored in the memory provided by workspace. The maximum number of subintervals
is given by 1imit, which may not exceed the allocated size of the workspace.
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17.4 QAGS adaptive integration with singularities

The presence of an integrable singularity in the integration region causes an adaptive routine to concentrate new subin-
tervals around the singularity. As the subintervals decrease in size the successive approximations to the integral con-
verge in a limiting fashion. This approach to the limit can be accelerated using an extrapolation procedure. The QAGS
algorithm combines adaptive bisection with the Wynn epsilon-algorithm to speed up the integration of many types of
integrable singularities.

int gsl_integration_qags(const gs/_function *f, double a, double b, double epsabs, double epsrel, size_t limit,

gsl_integration_workspace *workspace, double *result, double *abserr)

This function applies the Gauss-Kronrod 21-point integration rule adaptively until an estimate of the integral of
f over (a, b) is achieved within the desired absolute and relative error limits, epsabs and epsrel. The results
are extrapolated using the epsilon-algorithm, which accelerates the convergence of the integral in the presence of
discontinuities and integrable singularities. The function returns the final approximation from the extrapolation,
result, and an estimate of the absolute error, abserr. The subintervals and their results are stored in the
memory provided by workspace. The maximum number of subintervals is given by Iimit, which may not
exceed the allocated size of the workspace.

17.5 QAGP adaptive integration with known singular points

int gsl_integration_qagp (const gs/_function *f, double *pts, size_t npts, double epsabs, double epsrel, size_t

limit, gsl_integration_workspace *workspace, double *result, double *abserr)
This function applies the adaptive integration algorithm QAGS taking account of the user-supplied locations of
singular points. The array pts of length npts should contain the endpoints of the integration ranges defined
by the integration region and locations of the singularities. For example, to integrate over the region (a, b) with
break-points at x1, x2, r3 (Where a < x1 < x5 < x3 < b) the following pts array should be used:

pts[0]
pts[1]
pts[2]
pts[3]
pts[4]

1 1
w N =

1l
T X M X o

with npts = 5.

If you know the locations of the singular points in the integration region then this routine will be faster than
gsl_integration_qgags().

17.6 QAGI adaptive integration on infinite intervals

int gsl_integration_qagi (gs/_function *f, double epsabs, double epsrel, size_t limit, gsl_integration_workspace

*workspace, double *result, double *abserr)
This function computes the integral of the function £ over the infinite interval (—oo, 4+00). The integral is
mapped onto the semi-open interval (0, 1] using the transformation x = (1 — t) /¢,

+oo 1
| datta) = [ arra 00+ 5-0 - /).
—00 0

It is then integrated using the QAGS algorithm. The normal 21-point Gauss-Kronrod rule of QAGS is replaced
by a 15-point rule, because the transformation can generate an integrable singularity at the origin. In this case a
lower-order rule is more efficient.
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int gsl_integration_gagiu(gs/ function *f, double a, double epsabs, double epsrel, size_t limit,
gsl_integration_workspace *workspace, double *result, double *abserr)
This function computes the integral of the function f over the semi-infinite interval (a, +00). The integral is
mapped onto the semi-open interval (0, 1] using the transformation x = a + (1 — t)/t,

“+o0 1
/ dxf(x):/o dtf(a+ (1 —t)/t)/t?

and then integrated using the QAGS algorithm.

int gsl_integration_qagil (gsi_function *f, double b, double epsabs, double epsrel, size_t limit,
gsl_integration_workspace *workspace, double *result, double *abserr)
This function computes the integral of the function £ over the semi-infinite interval (—oo,b). The integral is
mapped onto the semi-open interval (0, 1] using the transformation z = b — (1 — t) /¢,

b 1
[ dzf(z) = / dEF(b— (1~ 1) /)12

and then integrated using the QAGS algorithm.

17.7 QAWC adaptive integration for Cauchy principal values

int gsl_integration_qawc(gs/_function *f, double a, double b, double ¢, double epsabs, double epsrel, size_t
limit, gsl_integration_workspace *workspace, double *result, double *abserr)
This function computes the Cauchy principal value of the integral of f over (a,b), with a singularity at c,

@ [ @) f@)
f—/adxm—lﬂ%/a Rl e

The adaptive bisection algorithm of QAG is used, with modifications to ensure that subdivisions do not occur at
the singular point x = ¢. When a subinterval contains the point = c or is close to it then a special 25-point
modified Clenshaw-Curtis rule is used to control the singularity. Further away from the singularity the algorithm
uses an ordinary 15-point Gauss-Kronrod integration rule.

17.8 QAWS adaptive integration for singular functions

The QAWS algorithm is designed for integrands with algebraic-logarithmic singularities at the end-points of an inte-
gration region. In order to work efficiently the algorithm requires a precomputed table of Chebyshev moments.

type gsl_integration_gaws_table
This structure contains precomputed quantities for the QAWS algorithm.

gsl_integration_qgaws_table *gsl_integration_gaws_table_alloc(double alpha, double beta, int mu, int nu)
This function allocates space for a gsI_integration_qaws_table struct describing a singular weight function
w(x) with the parameters («, 5, u, V),

w(z) = (z —a)*(b— z)? log" (z — a) log” (b — z)

where « > —1, 8 > —1,and p = 0,1, v = 0, 1. The weight function can take four different forms depending
on the values of © and v,

17.7. QAWC adaptive integration for Cauchy principal values 203



GNU Scientific Library, Release 2.7

Weight function w(z) (u,v)
(z —a)*(b—x)" (0,0)
(x —a)*(b—x)Plog (x — a) (1,0)
(x —a)*(b—x)%log (b — z) (0,1)
(x —a)*(b—x)Plog (z —a)log(b—x) | (1,1)

The singular points (a, b) do not have to be specified until the integral is computed, where they are the endpoints
of the integration range.

The function returns a pointer to the newly allocated table gsI_integration_gaws_table if no errors were
detected, and O in the case of error.

int gsl_integration_qaws_table_set (gsl_integration_qaws_table *t, double alpha, double beta, int mu, int nu)

This function modifies the parameters (v, 3, i, v) of an existing gs1_integration_qaws_table struct t.

void gsl_integration_qaws_table_£free(gsl_integration_qaws_table *t)

This function frees all the memory associated with the gsl_integration_gaws_table struct t.

int gsl_integration_qaws (gs/_function *f, const double a, const double b, gsl_integration_qgaws_table *t, const

double epsabs, const double epsrel, const size_t limit, gs/_integration_workspace
*workspace, double *result, double *abserr)
This function computes the integral of the function f(x) over the interval (a, b) with the singular weight function
(x —a)®(b — x)?log"(z — a)log” (b — z). The parameters of the weight function (c, 3, i1, v/) are taken from
the table t. The integral is,

b
I:/ daf(z)(z — a)*(b — z)? log"(z — a)log” (b — x).

The adaptive bisection algorithm of QAG is used. When a subinterval contains one of the endpoints then a
special 25-point modified Clenshaw-Curtis rule is used to control the singularities. For subintervals which do
not include the endpoints an ordinary 15-point Gauss-Kronrod integration rule is used.

17.9 QAWO adaptive integration for oscillatory functions

The QAWO algorithm is designed for integrands with an oscillatory factor, sin(wz) or cos(wz). In order to work
efficiently the algorithm requires a table of Chebyshev moments which must be pre-computed with calls to the functions
below.

gsl_integration_qawo_table *gsl_integration_qawo_table_alloc(double omega, double L, enum

gsl_integration_qawo_enum sine, size_t n)
This function allocates space for a gsl_integration_gawo_table struct and its associated workspace de-
scribing a sine or cosine weight function w(x) with the parameters (w, L),

w(z) = { sin (w) }

cos (wx)

The parameter L must be the length of the interval over which the function will be integrated L = b — a. The
choice of sine or cosine is made with the parameter sine which should be chosen from one of the two following
symbolic values:

GSL_INTEG_COSINE
GSL_INTEG_SINE

The gsl_integration_gawo_table is a table of the trigonometric coeflicients required in the integration pro-
cess. The parameter n determines the number of levels of coefficients that are computed. Each level corresponds
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to one bisection of the interval L, so that n levels are sufficient for subintervals down to the length L /2". The inte-
gration routine gs1_integration_gawo () returns the error GSL_ETABLE if the number of levels is insufficient
for the requested accuracy.

int gsl_integration_qgawo_table_set (gsl_integration_gawo_table *t, double omega, double L, enum
gsl_integration_qawo_enum sine)
This function changes the parameters omega, L and sine of the existing workspace t.

int gsl_integration_qgawo_table_set_length(gsl_integration_gawo_table *t, double L)
This function allows the length parameter L of the workspace t to be changed.

void gsl_integration_gawo_table_free(gsl_integration_qawo_table *t)
This function frees all the memory associated with the workspace t.

int gsl_integration_qawo (gs/_function *f, const double a, const double epsabs, const double epsrel, const size_t
limit, gsl_integration_workspace *workspace, gsl_integration_qawo_table *wf,
double *result, double *abserr)
This function uses an adaptive algorithm to compute the integral of f over (a, b) with the weight function sin(wzx)

or cos(wz) defined by the table wf,
j bd F(x) sin (wx)
S T\ cos (wa)

The results are extrapolated using the epsilon-algorithm to accelerate the convergence of the integral. The
function returns the final approximation from the extrapolation, result, and an estimate of the absolute error,
abserr. The subintervals and their results are stored in the memory provided by workspace. The maximum
number of subintervals is given by 1imit, which may not exceed the allocated size of the workspace.

Those subintervals with “large” widths d where dw > 4 are computed using a 25-point Clenshaw-Curtis in-
tegration rule, which handles the oscillatory behavior. Subintervals with a “small” widths where dw < 4 are
computed using a 15-point Gauss-Kronrod integration.

17.10 QAWF adaptive integration for Fourier integrals

int gsl_integration_qawf (gs/_function *f, const double a, const double epsabs, const size_t limit,
gsl_integration_workspace *workspace, gsl_integration_workspace
*cycle_workspace, gsl_integration_qawo_table *wf, double *result, double *abserr)
This function attempts to compute a Fourier integral of the function £ over the semi-infinite interval [a, +00)

+oo :
B sin (wz)
I= /a duf(z) { cos (wz) }
The parameter w and choice of sin or cos is taken from the table wf (the length L can take any value, since it is

overridden by this function to a value appropriate for the Fourier integration). The integral is computed using
the QAWO algorithm over each of the subintervals,

Cy =la,a+ (]
Cy =[a+c,a+ 2

Cr=la+ (k—1)c,a+ k(]

where ¢ = (2floor(|w|)+1)7/|w|. The width ¢ is chosen to cover an odd number of periods so that the contribu-
tions from the intervals alternate in sign and are monotonically decreasing when £ is positive and monotonically
decreasing. The sum of this sequence of contributions is accelerated using the epsilon-algorithm.
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This function works to an overall absolute tolerance of abserr. The following strategy is used: on each interval
C}, the algorithm tries to achieve the tolerance

TOL;, = uiabserr
where uj, = (1 — p)p*~! and p = 9/10. The sum of the geometric series of contributions from each interval
gives an overall tolerance of abserr.

If the integration of a subinterval leads to difficulties then the accuracy requirement for subsequent intervals is
relaxed,

TOLj = ug max (abserr, max (EY))
1<

where F, is the estimated error on the interval C}.

The subintervals and their results are stored in the memory provided by workspace. The maximum number of
subintervals is given by 1imit, which may not exceed the allocated size of the workspace. The integration over
each subinterval uses the memory provided by cycle_workspace as workspace for the QAWO algorithm.

17.11 CQUAD doubly-adaptive integration

CQUAD is a new doubly-adaptive general-purpose quadrature routine which can handle most types of singularities,
non-numerical function values such as Inf or NaN, as well as some divergent integrals. It generally requires more
function evaluations than the integration routines in QUADPACK, yet fails less often for difficult integrands.

The underlying algorithm uses a doubly-adaptive scheme in which Clenshaw-Curtis quadrature rules of increasing
degree are used to compute the integral in each interval. The Lo-norm of the difference between the underlying inter-
polatory polynomials of two successive rules is used as an error estimate. The interval is subdivided if the difference
between two successive rules is too large or a rule of maximum degree has been reached.

gsl_integration_cquad_workspace *gsl_integration_cquad_workspace_alloc(size_t n)
This function allocates a workspace sufficient to hold the data for n intervals. The number n is not the maximum
number of intervals that will be evaluated. If the workspace is full, intervals with smaller error estimates will be
discarded. A minimum of 3 intervals is required and for most functions, a workspace of size 100 is sufficient.

void gsl_integration_cquad_workspace_free(gsl_integration_cquad_workspace *w)
This function frees the memory associated with the workspace .

int gsl_integration_cquad(const gs/_function *f, double a, double b, double epsabs, double epsrel,
gsl_integration_cquad_workspace *workspace, double *result, double *abserr, size_t
*nevals)
This function computes the integral of f over (a, b) within the desired absolute and relative error limits, epsabs
and epsrel using the CQUAD algorithm. The function returns the final approximation, result, an estimate of
the absolute error, abserr, and the number of function evaluations required, nevals.

The CQUAD algorithm divides the integration region into subintervals, and in each iteration, the subinterval with
the largest estimated error is processed. The algorithm uses Clenshaw-Curtis quadrature rules of degree 4, 8, 16
and 32 over 5, 9, 17 and 33 nodes respectively. Each interval is initialized with the lowest-degree rule. When
an interval is processed, the next-higher degree rule is evaluated and an error estimate is computed based on the
Ls-norm of the difference between the underlying interpolating polynomials of both rules. If the highest-degree
rule has already been used, or the interpolatory polynomials differ significantly, the interval is bisected.

The subintervals and their results are stored in the memory provided by workspace. If the error estimate or the
number of function evaluations is not needed, the pointers abserr and nevals can be set to NULL.
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17.12 Romberg integration

The Romberg integration method estimates the definite integral

b
I= / f(z)dx

by applying Richardson extrapolation on the trapezoidal rule, using equally spaced points with spacing
hy = (b—a)27F

for k = 1,...,n. For each k, Richardson extrapolation is used k£ — 1 times on previous approximations to improve the
order of accuracy as much as possible. Romberg integration typically works well (and converges quickly) for smooth
integrands with no singularities in the interval or at the end points.

gsl_integration_romberg_workspace *gsl_integration_romberg_alloc(const size_t n)
This function allocates a workspace for Romberg integration, specifying a maximum of n iterations, or divisions
of the interval. Since the number of divisions is 2 4 1, n can be kept relatively small (i.e. 10 or 20). It is capped
at a maximum value of 30 to prevent overflow. The size of the workspace is O(2n).

void gsl_integration_romberg_f£free (gsl_integration_romberg_workspace *w)
This function frees the memory associated with the workspace w.

int gsl_integration_romberg(const gs/_function *f, const double a, const double b, const double epsabs, const
double epsrel, double *result, size_t *neval, gsl_integration_romberg_workspace
*W)
This function integrates f(x), specified by £, from a to b, storing the answer in result. At each step in the
iteration, convergence is tested by checking:

[T, — Ix—1| < max (epsabs, epsrel x |I;|)

where I}, is the current approximation and I _; is the approximation of the previous iteration. If the method does
not converge within the previously specified n iterations, the function stores the best current estimate in result
and returns GSL_EMAXITER. If the method converges, the function returns GSL_SUCCESS. The total number of
function evaluations is returned in neval.

17.13 Gauss-Legendre integration

The fixed-order Gauss-Legendre integration routines are provided for fast integration of smooth functions with known
polynomial order. The n-point Gauss-Legendre rule is exact for polynomials of order 2n — 1 or less. For example,
these rules are useful when integrating basis functions to form mass matrices for the Galerkin method. Unlike other
numerical integration routines within the library, these routines do not accept absolute or relative error bounds.

gsl_integration_glfixed_table *gsl_integration_glfixed_table_alloc(size_t n)
This function determines the Gauss-Legendre abscissae and weights necessary for an n-point fixed order inte-
gration scheme. If possible, high precision precomputed coefficients are used. If precomputed weights are not
available, lower precision coefficients are computed on the fly.

double gsl_integration_glfixed(const gs/_function *f, double a, double b, const gsl_integration_glfixed_table
*t)
This function applies the Gauss-Legendre integration rule contained in table t and returns the result.

int gsl_integration_glfixed_point(double a, double b, size_t i, double *xi, double *wi, const
gsl_integration_glfixed_table *t)
For i in [0,...,n — 1], this function obtains the i-th Gauss-Legendre point xi and weight wi on the interval [a,
b]. The points and weights are ordered by increasing point value. A function f may be integrated on [a, b] by
summing wi * f(x4) over 1.
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void gsl_integration_glfixed_table_free(gsl_integration_glfixed_table *t)

This function frees the memory associated with the table t.

17.14 Fixed point quadratures

The routines in this section approximate an integral by the sum

/ " (o) f () = wa

()

where f(z) is the function to be integrated and w(z) is a weighting function. The n weights w; and nodes z; are
carefully chosen so that the result is exact when f(x) is a polynomial of degree 2n — 1 or less. Once the user chooses
the order n and weighting function w(x), the weights w; and nodes z; can be precomputed and used to efficiently

evaluate integrals for any number of functions f(z).

This method works best when f(x) is well approximated by a polynomial on the interval (a, b), and so is not suitable
for functions with singularities. Since the user specifies ahead of time how many quadrature nodes will be used,
these routines do not accept absolute or relative error bounds. The table below lists the weighting functions currently

supported.
Name Interval Weighting function w(z) | Constraints
Legendre (a,b) 1 b>a
Chebyshev Type 1 | (a,b) 1/\/(b—2z)(z —a) b>a
Gegenbauer (a,b) ((b—z)(x—a))® a>-1,b>a
Jacobi (a,b) (b—2)%(x —a)? a,f>-1,b>a
Laguerre (a,0) (x—a)*exp(—b(x —a)) | a>-1,b>0
Hermite (—00,00) | | —al]®exp (=b(x —a)?) | a>—-1,b>0
Exponential (a,b) |z — (a+b)/2[* a>-1,b>a
Rational (a,00) (x —a)*(x +b)? a>—-l,a+p+2n<0,a+b>0
Chebyshev Type 2 | (a,b) V(b —2)(x —a) b>a

The fixed point quadrature routines use the following workspace to store the nodes and weights, as well as additional

variables for intermediate calculations:

type gsl_integration_fixed_workspace

This workspace is used for fixed point quadrature rules and looks like this:

typedef struct

const gsl_integration_fixed_type * type;
} gsl_integration_fixed_workspace;

{
size_t n; /% number of nodes/weights */
double *weights; /* quadrature weights */
double *x; /% quadrature nodes */
double *diag; /* diagonal of Jacobi matrix */

double *subdiag; /* subdiagonal of Jacobi matrix */

gsl_integration_fixed_workspace *gsl_integration_fixed_alloc(const gs/_integration_fixed_type *T, const

size_t n, const double a, const double b, const
double alpha, const double beta)

This function allocates a workspace for computing integrals with interpolating quadratures using n quadrature
nodes. The parameters a, b, alpha, and beta specify the integration interval and/or weighting function for the
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various quadrature types. See the table above for constraints on these parameters. The size of the workspace is
O(4n).

type gsl_integration_fixed_type
The type of quadrature used is specified by T which can be set to the following choices:

gsl_integration_fixed_type *gsl_integration_fixed_legendre
This specifies Legendre quadrature integration. The parameters alpha and beta are ignored for this
type.

gsl_integration_fixed_type *gsl_integration_fixed_chebyshev
This specifies Chebyshev type 1 quadrature integration. The parameters alpha and beta are ignored
for this type.

gsl_integration_fixed_type *gsl_integration_fixed_gegenbauer
This specifies Gegenbauer quadrature integration. The parameter beta is ignored for this type.

gsl_integration_fixed_type *gsl_integration_fixed_jacobi
This specifies Jacobi quadrature integration.

gsl_integration_fixed_type *gsl_integration_fixed_laguerre
This specifies Laguerre quadrature integration. The parameter beta is ignored for this type.

gsl_integration_fixed_type *gsl_integration_fixed_hermite
This specifies Hermite quadrature integration. The parameter beta is ignored for this type.

gsl_integration_fixed_type *gsl_integration_fixed_exponential
This specifies exponential quadrature integration. The parameter beta is ignored for this type.

gsl_integration_fixed_type *gsl_integration_fixed_rational
This specifies rational quadrature integration.

gsl_integration_fixed_type *gsl_integration_fixed_chebyshev2
This specifies Chebyshev type 2 quadrature integration. The parameters alpha and beta are ignored
for this type.

void gsl_integration_fixed_free(gs/_integration_fixed_workspace *w)
This function frees the memory assocated with the workspace w

size_t gsl_integration_fixed_n(const gs/_integration_fixed_workspace *w)
This function returns the number of quadrature nodes and weights.

double *gsl_integration_fixed_nodes(const gs/_integration_fixed_workspace *w)
This function returns a pointer to an array of size n containing the quadrature nodes z;.

double *gsl_integration_fixed_weights(const gsi_integration_fixed_workspace *w)
This function returns a pointer to an array of size n containing the quadrature weights w;.

int gsl_integration_fixed (const gs/_function *func, double *result, const gsl_integration_fixed_workspace *w)
This function integrates the function f(x) provided in func using previously computed fixed quadrature rules.
The integral is approximated as

Zwif(fi)

where w; are the quadrature weights and z; are the quadrature nodes computed previously by
gsl_integration_fixed_alloc(). The sum is stored in result on output.
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17.15 Error codes

In addition to the standard error codes for invalid arguments the functions can return the following values,

GSL_EMAXITER| the maximum number of subdivisions was exceeded.

GSL_EROUND cannot reach tolerance because of roundoff error, or roundoff error was detected in the extrapola-

tion table.

GSL_ESING a non-integrable singularity or other bad integrand behavior was found in the integration interval.

GSL_EDIVERGE| the integral is divergent, or too slowly convergent to be integrated numerically.

GSL_EDOM error in the values of the input arguments

17.16 Examples

1

7.16.1 Adaptive integration example

The integrator QAGS will handle a large class of definite integrals. For example, consider the following integral, which
has an algebraic-logarithmic singularity at the origin,

1
/ 2712 log(z)dx = —4
0

The program below computes this integral to a relative accuracy bound of le-7.

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_integration.h>

double f (double x, void * params) {

}

double alpha = *(double *) params;
double f = log(alpha*x) / sqrt(x);
return f;

int
main (void)

{

gsl_integration_workspace * w
= gsl_integration_workspace_alloc (1000);

double result, error;
double expected = -4.0;
double alpha = 1.0;

gsl_function F;
F.function = &f;
F.params = &alpha;

gsl_integration_qgags (&F, 0, 1, 0, le-7, 1000,
w, &result, &error);

printf ("result = \n", result);

(continues on next page)
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printf ("exact result = \n", expected);
printf ("estimated error = \n'", error);
printf ("actual error = \n", result - expected);

printf ("intervals %zu\n", w->size);
gsl_integration_workspace_free (w);

return 0;

The results below show that the desired accuracy is achieved after 8 subdivisions.

result -4.000000000000085265
exact result -4.000000000000000000
estimated error = 0.000000000000135447
actual error -0.000000000000085265
intervals =8

In fact, the extrapolation procedure used by QAGS produces an accuracy of almost twice as many digits. The error
estimate returned by the extrapolation procedure is larger than the actual error, giving a margin of safety of one order
of magnitude.

17.16.2 Fixed-point quadrature example

In this example, we use a fixed-point quadrature rule to integrate the integral

/oo e (@™ + 1) dr = { VAT ("57), meven

o VT, m odd

for integer m. Consulting our fable of fixed point quadratures, we see that this integral can be evaluated with a Hermite
quadrature rule, setting « = 0,a = 0,b = 1. Since we are integrating a polynomial of degree m, we need to choose
the number of nodes n > (m + 1)/2 to achieve the best results.

First we will try integrating for m = 10, n = 5, which does not satisfy our criteria above:

$ ./integration2 10 5

The output is,

m =10
intervals =5
result = 47.468529694563351029
exact result = 54.,115231635459025483
actual error = -6.646701940895674454

So, we find a large error. Now we try integrating for m = 10, n = 6 which does satisfy the criteria above:

$ ./integration2 10 6

The output is,

m 10
intervals =6

(continues on next page)
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result
exact result

54.115231635459096537
54.115231635459025483

actual error = 0.000000000000071054

The program is given below.

#include <stdio.h>

#include <math.h>

#include <gsl/gsl_integration.h>
#include <gsl/gsl_sf_gamma.h>

double

f(double x, void * params)

{
int m = *(int *) params;
double f = gsl_pow_int(x, m) + 1.0;
return f;

}

int

main (int argc, char *argv[])

{

gsl_integration_fixed_workspace * w;

const gsl_integration_fixed_type * T = gsl_integration_fixed_hermite;
int m = 10;

int n = 6;

double expected, result;

gsl_function F;

if (argc > 1)
m = atoiCargv[1]);

if (argc > 2)
n = atoi(argv([2]);

w = gsl_integration_fixed_alloc(T, n, 0.0, 1.0, 0.0, 0.0);

F.function = &f;
F.params = &m;

gsl_integration_fixed(&F, &result, w);
if m% 2 == 0)

expected = M_SQRTPI + gsl_sf_gamma(0®.5*(1.0 + m));
else

expected = M_SQRTPI;

\n", m);

printf ("m
printf ("intervals %zu\n'", gsl_integration_fixed_n(w));
printf ("result \n", result);

printf ("exact result = \n", expected);

printf ("actual error \n", result - expected);

(continues on next page)
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gsl_integration_fixed_free (w);

return 0;

}

17.17 References and Further Reading

The following book is the definitive reference for QUADPACK, and was written by the original authors. It provides de-
scriptions of the algorithms, program listings, test programs and examples. It also includes useful advice on numerical
integration and many references to the numerical integration literature used in developing QUADPACK.

* R. Piessens, E. de Doncker-Kapenga, C.W. Ueberhuber, D.K. Kahaner. QUADPACK A subroutine package for
automatic integration Springer Verlag, 1983.

The CQUAD integration algorithm is described in the following paper:

* P. Gonnet, “Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants”, ACM Transactions
on Mathematical Software, Volume 37 (2010), Issue 3, Article 26.

The fixed-point quadrature routines are based on IQPACK, described in the following papers:

* S. Elhay, J. Kautsky, Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of Interpolatory Quadra-
ture, ACM Transactions on Mathematical Software, Volume 13, Number 4, December 1987, pages 399-415.

« J. Kautsky, S. Elhay, Calculation of the Weights of Interpolatory Quadratures, Numerische Mathematik, Volume
40, Number 3, October 1982, pages 407-422.
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CHAPTER
EIGHTEEN

RANDOM NUMBER GENERATION

The library provides a large collection of random number generators which can be accessed through a uniform interface.
Environment variables allow you to select different generators and seeds at runtime, so that you can easily switch
between generators without needing to recompile your program. Each instance of a generator keeps track of its own
state, allowing the generators to be used in multi-threaded programs. Additional functions are available for transforming
uniform random numbers into samples from continuous or discrete probability distributions such as the Gaussian, log-
normal or Poisson distributions.

These functions are declared in the header file gsl_rng.h.

18.1 General comments on random numbers

In 1988, Park and Miller wrote a paper entitled “Random number generators: good ones are hard to find.” [Commun.:
ACM, 31, 1192-1201]. Fortunately, some excellent random number generators are available, though poor ones are
still in common use. You may be happy with the system-supplied random number generator on your computer, but
you should be aware that as computers get faster, requirements on random number generators increase. Nowadays, a
simulation that calls a random number generator millions of times can often finish before you can make it down the
hall to the coffee machine and back.

A very nice review of random number generators was written by Pierre L’Ecuyer, as Chapter 4 of the book: Handbook
on Simulation, Jerry Banks, ed. (Wiley, 1997). The chapter is available in postscript from L’Ecuyer’s ftp site (see
references). Knuth’s volume on Seminumerical Algorithms (originally published in 1968) devotes 170 pages to random
number generators, and has recently been updated in its 3rd edition (1997). It is brilliant, a classic. If you don’t own it,
you should stop reading right now, run to the nearest bookstore, and buy it.

A good random number generator will satisfy both theoretical and statistical properties. Theoretical properties are
often hard to obtain (they require real math!), but one prefers a random number generator with a long period, low serial
correlation, and a tendency not to “fall mainly on the planes.” Statistical tests are performed with numerical simulations.
Generally, a random number generator is used to estimate some quantity for which the theory of probability provides
an exact answer. Comparison to this exact answer provides a measure of “randomness”.

18.2 The Random Number Generator Interface

It is important to remember that a random number generator is not a “real” function like sine or cosine. Unlike real
functions, successive calls to a random number generator yield different return values. Of course that is just what you
want for a random number generator, but to achieve this effect, the generator must keep track of some kind of “state”
variable. Sometimes this state is just an integer (sometimes just the value of the previously generated random number),
but often it is more complicated than that and may involve a whole array of numbers, possibly with some indices thrown
in. To use the random number generators, you do not need to know the details of what comprises the state, and besides
that varies from algorithm to algorithm.
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type gsl_rng_type

type gsl_rng
The random number generator library uses two special structs, gs1_rng_type which holds static information
about each type of generator and gsl_rng which describes an instance of a generator created from a given
gsl_rng_type.

The functions described in this section are declared in the header file gsl_rng.h.

18.3 Random number generator initialization

gsl_rng *gsl_rng_alloc(const gsi_rng_type *T)
This function returns a pointer to a newly-created instance of a random number generator of type T. For example,
the following code creates an instance of the Tausworthe generator:

gsl_rng * r = gsl_rng_alloc (gsl_rng_taus);

If there is insufficient memory to create the generator then the function returns a null pointer and the error handler
is invoked with an error code of GSL_ENOMEHN.

The generator is automatically initialized with the default seed, gs1_rng_default_seed. This is zero by default
but can be changed either directly or by using the environment variable GSL_RNG_SEED.

The details of the available generator types are described later in this chapter.

void gsl_rng_set (const gs/_rng *r, unsigned long int s)
This function initializes (or “seeds”) the random number generator. If the generator is seeded with the same
value of s on two different runs, the same stream of random numbers will be generated by successive calls to the
routines below. If different values of s > 1 are supplied, then the generated streams of random numbers should
be completely different. If the seed s is zero then the standard seed from the original implementation is used
instead. For example, the original Fortran source code for the ranlux generator used a seed of 314159265, and
so choosing s equal to zero reproduces this when using gs1_rng_ranlux.

When using multiple seeds with the same generator, choose seed values greater than zero to avoid collisions with
the default setting.

Note that the most generators only accept 32-bit seeds, with higher values being reduced modulo 232. For gen-
erators with smaller ranges the maximum seed value will typically be lower.

void gsl_rng_£free(gsl_rng *r)
This function frees all the memory associated with the generator r-.

18.4 Sampling from a random number generator

The following functions return uniformly distributed random numbers, either as integers or double precision floating
point numbers. Inline versions of these functions are used when HAVE_INLINE is defined. To obtain non-uniform
distributions, see Random Number Distributions.

unsigned long int gsl_rng_get (const gs/_rng *r)
This function returns a random integer from the generator r. The minimum and maximum values depend on the
algorithm used, but all integers in the range [min, max] are equally likely. The values of min and max can be
determined using the auxiliary functions gsI_rng_max() and gsI_rng_min().

double gsl_rng_uniform(const gs/_rng *r)
This function returns a double precision floating point number uniformly distributed in the range [0,1). The
range includes 0.0 but excludes 1.0. The value is typically obtained by dividing the result of gsl_rng_get (r)
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by gsl_rng_max(r) + 1.0 indouble precision. Some generators compute this ratio internally so that they can
provide floating point numbers with more than 32 bits of randomness (the maximum number of bits that can be
portably represented in a single unsigned long int).

double gsl_rng_uniform_pos(const gsl_rng *r)
This function returns a positive double precision floating point number uniformly distributed in the range
(0,1), excluding both 0.0 and 1.0. The number is obtained by sampling the generator with the algorithm of
gsl_rng_uniform() until a non-zero value is obtained. You can use this function if you need to avoid a singu-
larity at 0.0.

unsigned long int gs1_rng_uniform_int (const gs/_rng *r, unsigned long int n)
This function returns a random integer from O to n — 1 inclusive by scaling down and/or discarding samples from
the generator r. All integers in the range [0, n — 1] are produced with equal probability. For generators with a
non-zero minimum value an offset is applied so that zero is returned with the correct probability.

Note that this function is designed for sampling from ranges smaller than the range of the underlying generator.
The parameter n must be less than or equal to the range of the generator r. If n is larger than the range of the
generator then the function calls the error handler with an error code of GSL_EINVAL and returns zero.

In particular, this function is not intended for generating the full range of unsigned integer values [0,23? — 1].
Instead choose a generator with the maximal integer range and zero minimum value, such as gsI_rng_ranlxdl,
gsl_rng_mt19937 or gsl_rng_taus, and sample it directly using gsI_rng_get (). The range of each gener-
ator can be found using the auxiliary functions described in the next section.

18.5 Auxiliary random number generator functions

The following functions provide information about an existing generator. You should use them in preference to hard-
coding the generator parameters into your own code.

const char *gsl_rng_name (const gs/_rng *r)
This function returns a pointer to the name of the generator. For example:

] ]

printf ("r is a

generator\n", gsl_rng_name (r));

would print something like:

r is a 'taus' generator

unsigned long int gsl_rng_max(const gs/_rng *r)
This function returns the largest value that gs1_rng_get () can return.

unsigned long int gsl_rng_min(const gs/_rng *r)
This function returns the smallest value that gs1_rng_get () can return. Usually this value is zero. There are
some generators with algorithms that cannot return zero, and for these generators the minimum value is 1.

void *gsl_rng_state(const gs/_rng *r)

size_t gsl_rng_size(const gsi_rng *r)
These functions return a pointer to the state of generator r and its size. You can use this information to access
the state directly. For example, the following code will write the state of a generator to a stream:

void * state = gsl_rng_state (r);
size_t n = gsl_rng_size (r);
fwrite (state, n, 1, stream);
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const gsl_rng_type **gsl_rng_types_setup (void)
This function returns a pointer to an array of all the available generator types, terminated by a null pointer. The
function should be called once at the start of the program, if needed. The following code fragment shows how
to iterate over the array of generator types to print the names of the available algorithms:

const gsl_rng_type **t, **t0;
t® = gsl_rng_types_setup Q;
printf ("Available generators:\n'");
for (t = t0; *t != 0; t++)

{

printf ("%s\n", (*t)->name);
}

18.6 Random number environment variables

The library allows you to choose a default generator and seed from the environment variables GSL_RNG_TYPE and
GSL_RNG_SEED and the function gsl_rng_env_setup (). This makes it easy try out different generators and seeds
without having to recompile your program.

GSL_RNG_TYPE
This environment variable specifies the default random number generator. It should be the name of a generator,
such as taus or mt19937.

GSL_RNG_SEED
This environment variable specifies the default seed for the random number generator

gsl_rng_type *gsl_rng_default
This global library variable specifies the default random number generator, and can be initialized from
GSL_RNG_TYPE using gsl_rng_env_setup(). It is defined as follows:

extern const gsl_rng_type *gsl_rng_default

unsigned long int gs1_rng_default_seed
This global library variable specifies the seed for the default random number generator, and can be initialized
from GSL_RNG_SEED using gsl_rng_env_setup(). Itis set to zero by default and is defined as follows:

extern unsigned long int gsl_rng_default_seed

const gsl_rng_type *gsl_rng_env_setup (void)
This function reads the environment variables GSL_RNG_TYPE and GSL_RNG_SEED and uses their values to set
the corresponding library variables gsI_rng_default and gsl_rng_default_seed.

The value of GSL_RNG_SEED is converted to an unsigned long int using the C library function strtoul ().

If you don’t specify a generator for GSL_RNG_TYPE then gsl_rng_mt19937 is used as the default. The initial
value of gsl_rng_default_seed is zero.

Here is a short program which shows how to create a global generator using the environment variables GSL_RNG_TYPE
and GSL_RNG_SEED,

#include <stdio.h>
#include <gsl/gsl_rng.h>

(continues on next page)
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gsl_rng * r; /* global generator */

int

main (void)

{
const gsl_rng_type * T;

gsl_rng_env_setup();

T
r

gsl_rng_default;
gsl_rng_alloc (T);

printf ("generator type: \n", gsl_rng_name (r));
printf ("seed = \n", gsl_rng _default_seed);
printf ("first value = \n", gsl_rng_get (r));

gsl_rng_free (r);
return 0;

Running the program without any environment variables uses the initial defaults, an mt 19937 generator with a seed of
09

generator type: mtl19937
seed = 0
first value = 4293858116

By setting the two variables on the command line we can change the default generator and the seed:

$ GSL_RNG_TYPE="taus" GSL_RNG_SEED=123 ./a.out
GSL_RNG_TYPE=taus

GSL_RNG_SEED=123

generator type: taus

seed = 123

first value = 2720986350

18.7 Copying random number generator state

The above methods do not expose the random number state which changes from call to call. It is often useful to be able
to save and restore the state. To permit these practices, a few somewhat more advanced functions are supplied. These
include:

int gsl_rng_memcpy (gs/_rng *dest, const gsl_rng *src)
This function copies the random number generator src into the pre-existing generator dest, making dest into
an exact copy of src. The two generators must be of the same type.

gsl_rng *gsl_rng_clone(const gsi_rng *r)
This function returns a pointer to a newly created generator which is an exact copy of the generator r.
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18.8 Reading and writing random number generator state

The library provides functions for reading and writing the random number state to a file as binary data.

int gsl_rng_fwrite (FILE *stream, const gsi_rng *r)
This function writes the random number state of the random number generator r to the stream stream in binary
format. The return value is O for success and GSL_EFAILED if there was a problem writing to the file. Since the
data is written in the native binary format it may not be portable between different architectures.

int gsl_rng_fread (FILE *stream, gs/_rng *r)
This function reads the random number state into the random number generator r from the open stream stream in
binary format. The random number generator r must be preinitialized with the correct random number generator
type since type information is not saved. The return value is O for success and GSL_EFAILED if there was a
problem reading from the file. The data is assumed to have been written in the native binary format on the same
architecture.

18.9 Random number generator algorithms

The functions described above make no reference to the actual algorithm used. This is deliberate so that you can switch
algorithms without having to change any of your application source code. The library provides a large number of
generators of different types, including simulation quality generators, generators provided for compatibility with other
libraries and historical generators from the past.

The following generators are recommended for use in simulation. They have extremely long periods, low correlation
and pass most statistical tests. For the most reliable source of uncorrelated numbers, the second-generation RANLUX
generators have the strongest proof of randomness.

gsl_rng_type *gsl_rng_mt19937

The MT19937 generator of Makoto Matsumoto and Takuji Nishimura is a variant of the twisted generalized
feedback shift-register algorithm, and is known as the “Mersenne Twister” generator. It has a Mersenne prime
period of 219937 — 1 (about 10°°%Y) and is equi-distributed in 623 dimensions. It has passed the DIEHARD
statistical tests. It uses 624 words of state per generator and is comparable in speed to the other generators. The
original generator used a default seed of 4357 and choosing s equal to zero in gsI_rng_set () reproduces this.
Later versions switched to 5489 as the default seed, you can choose this explicitly via gsl_rng_set () instead
if you require it.

For more information see,

* Makoto Matsumoto and Takuji Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uni-
form pseudorandom number generator”. ACM Transactions on Modeling and Computer Simulation, Vol.:
8, No.: 1 (Jan. 1998), Pages 3-30

The generator gs1_rng_mt19937 uses the second revision of the seeding procedure published by the two authors
above in 2002. The original seeding procedures could cause spurious artifacts for some seed values. They are
still available through the alternative generators gsl_rng_mt19937_1999 and gsl_rng_mt19937_1998.

gsl_rng_type *gsl_rng_ranlxs®

gsl_rng_type *gsl_rng_ranlxsl

gsl_rng_type *gsl_rng_ranlxs2
The generator ranlxs@ is a second-generation version of the RANLUX algorithm of Luscher, which produces
“luxury random numbers”. This generator provides single precision output (24 bits) at three luxury levels
ranlxs@, ranlxsl and ranlxs2, in increasing order of strength. It uses double-precision floating point arith-
metic internally and can be significantly faster than the integer version of ranlux, particularly on 64-bit architec-
tures. The period of the generator is about 107, The algorithm has mathematically proven properties and can

220 Chapter 18. Random Number Generation



GNU Scientific Library, Release 2.7

provide truly decorrelated numbers at a known level of randomness. The higher luxury levels provide increased
decorrelation between samples as an additional safety margin.

Note that the range of allowed seeds for this generator is [0, 23" — 1]. Higher seed values are wrapped modulo
231,

gsl_rng_type *gsl_rng_ranlxdl

gsl_rng_type *gsl_rng_ranlxd2
These generators produce double precision output (48 bits) from the RANLXS generator. The library provides
two luxury levels ranlxd1 and ranlxd2, in increasing order of strength.

gsl_rng_type *gsl_rng_ranlux

gsl_rng_type *gsl_rng_ranlux389

The ranlux generator is an implementation of the original algorithm developed by Luscher. It uses a lagged-
fibonacci-with-skipping algorithm to produce “luxury random numbers”. It is a 24-bit generator, originally
designed for single-precision IEEE floating point numbers. This implementation is based on integer arithmetic,
while the second-generation versions RANLXS and RANLXD described above provide floating-point imple-
mentations which will be faster on many platforms. The period of the generator is about 10*7!. The algorithm
has mathematically proven properties and it can provide truly decorrelated numbers at a known level of ran-
domness. The default level of decorrelation recommended by Luscher is provided by gs1_rng_ranlux, while
gsl_rng_ranlux389 gives the highest level of randomness, with all 24 bits decorrelated. Both types of gener-
ator use 24 words of state per generator.

For more information see,

* M. Luscher, “A portable high-quality random number generator for lattice field theory calculations”, Com-
puter Physics Communications, 79 (1994) 100-110.

* F. James, “RANLUX: A Fortran implementation of the high-quality pseudo-random number generator of
Luscher”, Computer Physics Communications, 79 (1994) 111-114

gsl_rng_type *gsl_rng_cmrg
This is a combined multiple recursive generator by L’Ecuyer. Its sequence is,
2n = (T, — yn) mod my
where the two underlying generators x,, and y,, are,
Tp = (@1%p—1 + a2Zp_2 + aztp—3) mod my
Yn = (blyn—l + b2yn—2 + bgyn_g) mod mso

with coeflicients a; = 0, as = 63308, a3 = —183326, by = 86098, b, = 0, b3 = —539608, and moduli
my = 231 — 1 = 2147483647 and my = 2145483479.

The period of this generator is lcm(m3$ — 1, m3 — 1), which is approximately 28 (about 10%). It uses 6 words
of state per generator. For more information see,

e P. UEcuyer, “Combined Multiple Recursive Random Number Generators”, Operations Research, 44, 5
(1996), 816-822.

gsl_rng_type *gsl_rng_mrg
This is a fifth-order multiple recursive generator by L’Ecuyer, Blouin and Coutre. Its sequence is,

Zp = (@1Zp—1 + a5Tp—5) mod m

with a; = 107374182, as = a3z = a4 = 0, a5 = 104480 and m = 23 — 1.

The period of this generator is about 105, It uses 5 words of state per generator. More information can be found
in the following paper,
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* P. LU'Ecuyer, F. Blouin, and R. Coutre, “A search for good multiple recursive random number generators”,
ACM Transactions on Modeling and Computer Simulation 3, 87-98 (1993).

gsl_rng_type *gsl_rng_taus

gsl_rng_type *gsl_rng_taus2

This is a maximally equidistributed combined Tausworthe generator by L'Ecuyer. The sequence is,
Tn = (3, @ 5, D 57,)
where,
shi1 = (((5)&4294967294) < 12) @ (((s}, < 13) @ s,) > 19))
s2 01 = (((s2&4294967288) < 4) @ (((s2 < 2) @ s2) > 25))
so 11 = (((s2&4294967280) < 17) @ (((s2 < 3) ® s3) > 11))

computed modulo 232, In the formulas above & denotes exclusive-or. Note that the algorithm relies on the
properties of 32-bit unsigned integers and has been implemented using a bitmask of OxFFFFFFFF to make it
work on 64 bit machines.

The period of this generator is 2%% (about 102°). It uses 3 words of state per generator. For more information see,

e P. UEcuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computa-
tion, 65, 213 (1996), 203-213.

The generator gs1_rng_taus2 uses the same algorithm as gs1_rng_taus but with an improved seeding pro-
cedure described in the paper,

* P. UEcuyer, “Tables of Maximally Equidistributed Combined LFSR Generators”, Mathematics of Compu-
tation, 68, 225 (1999), 261-269

The generator gs1_rng_taus2 should now be used in preference to gsl_rng_taus.

gsl_rng_type *gsl_rng_gfsr4

The gfsr4 generator is like a lagged-fibonacci generator, and produces each number as an xor’d sum of four
previous values.

Tn =Tn-ADPTn-BDBTrn—c®rn->D

Ziff (ref below) notes that “it is now widely known” that two-tap registers (such as R250, which is described
below) have serious flaws, the most obvious one being the three-point correlation that comes from the definition
of the generator. Nice mathematical properties can be derived for GFSR’s, and numerics bears out the claim that
4-tap GFSR’s with appropriately chosen offsets are as random as can be measured, using the author’s test.

This implementation uses the values suggested the example on p392 of Ziff’s article: A = 471, B = 1586,
C = 6988, D = 9689.

If the offsets are appropriately chosen (such as the one ones in this implementation), then the sequence is said to
be maximal; that means that the period is 2° — 1, where D is the longest lag. (It is one less than 2” because it
is not permitted to have all zeros in the ra[] array.) For this implementation with D = 9689 that works out to
about 102917,

Note that the implementation of this generator using a 32-bit integer amounts to 32 parallel implementations
of one-bit generators. One consequence of this is that the period of this 32-bit generator is the same as for the
one-bit generator. Moreover, this independence means that all 32-bit patterns are equally likely, and in particular
that O is an allowed random value. (We are grateful to Heiko Bauke for clarifying for us these properties of GFSR
random number generators.)

For more information see,

* Robert M. Ziff, “Four-tap shift-register-sequence random-number generators”, Computers in Physics,
12(4), Jul/Aug 1998, pp 385-392.
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18.10 Unix random number generators

The standard Unix random number generators rand, random and rand48 are provided as part of GSL. Although
these generators are widely available individually often they aren’t all available on the same platform. This makes it
difficult to write portable code using them and so we have included the complete set of Unix generators in GSL for
convenience. Note that these generators don’t produce high-quality randomness and aren’t suitable for work requiring
accurate statistics. However, if you won’t be measuring statistical quantities and just want to introduce some variation
into your program then these generators are quite acceptable.

gsl_rng_type *gsl_rng_rand
This is the BSD rand generator. Its sequence is

Zni1 = (axy, +¢) mod m

with ¢ = 1103515245, ¢ = 12345 and m = 231. The seed specifies the initial value, 2. The period of this
generator is 23!, and it uses 1 word of storage per generator.

gsl_rng_type *gsl_rng_random_bsd

gsl_rng_type *gsl_rng_random_libc5

gsl_rng_type *gsl_rng_random_glibc2
These generators implement the random family of functions, a set of linear feedback shift register generators
originally used in BSD Unix. There are several versions of random in use today: the original BSD version (e.g.
on Sun0S4), a libcS version (found on older GNU/Linux systems) and a glibc2 version. Each version uses a
different seeding procedure, and thus produces different sequences.

The original BSD routines accepted a variable length buffer for the generator state, with longer buffers providing
higher-quality randomness. The random function implemented algorithms for buffer lengths of 8, 32, 64, 128
and 256 bytes, and the algorithm with the largest length that would fit into the user-supplied buffer was used. To
support these algorithms additional generators are available with the following names:

gsl_rng_random8_bsd
gsl_rng_random32_bsd
gsl_rng_random64_bsd
gsl_rng_randoml128_bsd
gsl_rng_random256_bsd

where the numeric suffix indicates the buffer length. The original BSD random function used a 128-byte default
buffer and so gs1_rng_random_bsd has been made equivalent to gs1_rng_random128_bsd. Corresponding
versions of the 1ibc5 and glibc2 generators are also available, with the names gsl_rng_random8_libc5,
gsl_rng_random8_glibc2, etc.

gsl_rng_type *gsl_rng_rand48
This is the Unix rand48 generator. Its sequence is

Zni1 = (axy, +¢) mod m

defined on 48-bit unsigned integers with a = 25214903917, ¢ = 11 and m = 2%, The seed specifies the upper 32
bits of the initial value, z1, with the lower 16 bits set to ®x330E. The function gsI_rng_get () returns the upper
32 bits from each term of the sequence. This does not have a direct parallel in the original rand48 functions,
but forcing the result to type long int reproduces the output of mrand48. The function gs1_rng_uniform()
uses the full 48 bits of internal state to return the double precision number x,,/m, which is equivalent to the
function drand48. Note that some versions of the GNU C Library contained a bug in mrand48 function which
caused it to produce different results (only the lower 16-bits of the return value were set).
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18.11 Other random number generators

The generators in this section are provided for compatibility with existing libraries. If you are converting an existing
program to use GSL then you can select these generators to check your new implementation against the original one,
using the same random number generator. After verifying that your new program reproduces the original results you
can then switch to a higher-quality generator.

Note that most of the generators in this section are based on single linear congruence relations, which are the least
sophisticated type of generator. In particular, linear congruences have poor properties when used with a non-prime
modulus, as several of these routines do (e.g. with a power of two modulus, 23! or 232). This leads to periodicity in the
least significant bits of each number, with only the higher bits having any randomness. Thus if you want to produce a
random bitstream it is best to avoid using the least significant bits.

gsl_rng_type *gsl_rng_ranf
This is the CRAY random number generator RANF. Its sequence is

ZTnt1 = (axy,) mod m

defined on 48-bit unsigned integers with a = 44485709377909 and m = 2*8. The seed specifies the lower 32
bits of the initial value, z;, with the lowest bit set to prevent the seed taking an even value. The upper 16 bits
of x; are set to 0. A consequence of this procedure is that the pairs of seeds 2 and 3, 4 and 5, etc.: produce the
same sequences.

The generator compatible with the CRAY MATHLIB routine RANF. It produces double precision floating point
numbers which should be identical to those from the original RANF.

There is a subtlety in the implementation of the seeding. The initial state is reversed through one step, by multiply-
ing by the modular inverse of @ mod m. This is done for compatibility with the original CRAY implementation.

Note that you can only seed the generator with integers up to 232, while the original CRAY implementation uses
non-portable wide integers which can cover all 28 states of the generator.

The function gsl_rng_get() returns the upper 32 bits from each term of the sequence. The function
gsl_rng_uniform() uses the full 48 bits to return the double precision number x,, /m.

The period of this generator is 2.

gsl_rng_type *gsl_rng_ranmar
This is the RANMAR lagged-fibonacci generator of Marsaglia, Zaman and Tsang. It is a 24-bit generator, orig-
inally designed for single-precision IEEE floating point numbers. It was included in the CERNLIB high-energy
physics library.

gsl_rng_type *gsl_rng_r250
This is the shift-register generator of Kirkpatrick and Stoll. The sequence is based on the recurrence

Tn = Tn—103 D Tn—250

where @ denotes exclusive-or, defined on 32-bit words. The period of this generator is about 22°° and it uses
250 words of state per generator.

For more information see,

* S. Kirkpatrick and E. Stoll, “A very fast shift-register sequence random number generator”’, Journal of
Computational Physics, 40, 517-526 (1981)

gsl_rng_type *gsl_rng_tt800
This is an earlier version of the twisted generalized feedback shift-register generator, and has been superseded
by the development of MT19937. However, it is still an acceptable generator in its own right. It has a period of
2800 and uses 33 words of storage per generator.

For more information see,
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* Makoto Matsumoto and Yoshiharu Kurita, “Twisted GFSR Generators II”’, ACM Transactions on Modelling
and Computer Simulation, Vol.: 4, No.: 3, 1994, pages 254-266.

gsl_rng_type *gsl_rng_vax
This is the VAX generator MTH$RANDOM. Its sequence is,
ZTpt+1 = (axy, +¢) mod m
with a = 69069, ¢ = 1 and m = 232, The seed specifies the initial value, z1. The period of this generator is 232
and it uses 1 word of storage per generator.
gsl_rng_type *gsl_rng_transputer
This is the random number generator from the INMOS Transputer Development system. Its sequence is,

ZTnt1 = (axy,) mod m

with a = 1664525 and m = 232, The seed specifies the initial value, ;.

gsl_rng_type *gsl_rng_randu
This is the IBM RANDU generator. Its sequence is

Znt1 = (axy,) mod m

with a = 65539 and m = 23!, The seed specifies the initial value, 1. The period of this generator was only
229 Tt has become a textbook example of a poor generator.

gsl_rng_type *gsl_rng_minstd
This is Park and Miller’s “minimal standard” MINSTD generator, a simple linear congruence which takes care
to avoid the major pitfalls of such algorithms. Its sequence is,

ZTnt1 = (axy,) mod m

with a = 16807 and m = 23! — 1 = 2147483647. The seed specifies the initial value, z;. The period of this
generator is about 23!,

This generator was used in the IMSL Library (subroutine RNUN) and in MATLAB (the RAND function) in the
past. It is also sometimes known by the acronym “GGL” (I'm not sure what that stands for).

For more information see,

¢ Park and Miller, “Random Number Generators: Good ones are hard to find”’, Communications of the ACM,
October 1988, Volume 31, No 10, pages 1192-1201.

gsl_rng_type *gsl_rng_uni

gsl_rng_type *gsl_rng_uni32
This is a reimplementation of the 16-bit SLATEC random number generator RUNIF. A generalization of the
generator to 32 bits is provided by gs1_rng_uni32. The original source code is available from NETLIB.

gsl_rng_type *gsl_rng_slatec
This is the SLATEC random number generator RAND. It is ancient. The original source code is available from
NETLIB.

gsl_rng_type *gsl_rng_zuf
This is the ZUFALL lagged Fibonacci series generator of Peterson. Its sequence is,

t = Un—273 + Un—s07
u, =t — floor(t)

The original source code is available from NETLIB. For more information see,
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* W. Petersen, “Lagged Fibonacci Random Number Generators for the NEC SX-3”, International Journal of
High Speed Computing (1994).

gsl_rng_type *gsl_rng_knuthran2
This is a second-order multiple recursive generator described by Knuth in Seminumerical Algorithms, 3rd Ed.,
page 108. Its sequence is,

Ty = (@1Zp—1 + a2Ty—2) mod m

with a; = 271828183, as = 314159269, and m = 23! — 1.

gsl_rng_type *gsl_rng_knuthran2002

gsl_rng_type *gsl_rng_knuthran
This is a second-order multiple recursive generator described by Knuth in Seminumerical Algorithms, 3rd Ed.,
Section 3.6. Knuth provides its C code. The updated routine gs1_rng_knuthran2002 is from the revised 9th
printing and corrects some weaknesses in the earlier version, which is implemented as gsI_rng_knuthran.

gsl_rng_type *gsl_rng_boroshl3

gsl_rng_type *gsl_rng_fishman18

gsl_rng_type *gsl_rng_£ishman20

gsl_rng_type *gsl_rng_lecuyer21l

gsl_rng_type *gsl_rng_watermanl4
These multiplicative generators are taken from Knuth’s Seminumerical Algorithms, 3rd Ed., pages 106-108.
Their sequence is,

Znt1 = (ax,) mod m

where the seed specifies the initial value, x1. The parameters a and m are as follows, Borosh-Niederreiter:
a = 1812433253, m = 232, Fishman18: a = 62089911, m = 23! — 1, Fishman20: a = 48271, m = 23! — 1,
L’ Ecuyer: a = 40692, m = 23! — 249, Waterman: a = 1566083941, m = 232,

gsl_rng_type *gsl_rng_£fishman2x
This is the L’Ecuyer—Fishman random number generator. It is taken from Knuth’s Seminumerical Algorithms,
3rd Ed., page 108. Its sequence is,

Znt+1 = (Tn —Yn) mod m

with m = 231 — 1. z,, and y,, are given by the fishman20 and lecuyer21 algorithms. The seed specifies the
initial value, x.

gsl_rng_type *gsl_rng_coveyou
This is the Coveyou random number generator. It is taken from Knuth’s Seminumerical Algorithms, 3rd Ed.,
Section 3.2.2. Its sequence is,

Znt1 = (@p(zn +1)) mod m

with m = 232, The seed specifies the initial value, ;.

18.12 Performance

The following table shows the relative performance of a selection the available random number generators. The fastest
simulation quality generators are taus, gfsr4 and mt19937. The generators which offer the best mathematically-
proven quality are those based on the RANLUX algorithm:
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1754 k ints/sec, 870 k doubles/sec, taus
1613 k ints/sec, 855 k doubles/sec, gfsr4
1370 k ints/sec, 769 k doubles/sec, mt19937
565 k ints/sec, 571 k doubles/sec, ranlxs®
400 k ints/sec, 405 k doubles/sec, ranlxsl
490 k ints/sec, 389 k doubles/sec, mrg

407 k ints/sec, 297 k doubles/sec, ranlux
243 k ints/sec, 254 k doubles/sec, ranlxdl
251 k ints/sec, 253 k doubles/sec, ranlxs2
238 k ints/sec, 215 k doubles/sec, cmrg
247 k ints/sec, 198 k doubles/sec, ranlux389
141 k ints/sec, 140 k doubles/sec, ranlxd2

18.13 Examples

The following program demonstrates the use of a random number generator to produce uniform random numbers in
the range [0.0, 1.0),

#include <stdio.h>
#include <gsl/gsl_rng.h>

int

main (void)

{
const gsl_rng_type * T;
gsl_rng * r;

int i, n = 10;

gsl_rng_env_setup();

T
r

gsl_rng_default;
gsl_rng_alloc (T);

for (4 = 0; 1 < n; i++)
{
double u = gsl_rng_uniform (r);
printf (" \n", w);
}

gsl_rng_free (r);

return 0;

}

Here is the output of the program,

0.99974
0.16291
0.28262
0.94720

(continues on next page)
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(continued from previous page)

.23166
.48497
.95748
.74431
.54004
.73995

[ I — I — I — I — ]

The numbers depend on the seed used by the generator. The default seed can be changed with the GSL_RNG_SEED
environment variable to produce a different stream of numbers. The generator itself can be changed using the environ-
ment variable GSL_RNG_TYPE. Here is the output of the program using a seed value of 123 and the multiple-recursive
generator mrg:

$ GSL_RNG_SEED=123 GSL_RNG_TYPE=mrg ./a.out

.33050
.86631
.32982
.67620
.53391
.06457
.16847
.70229
.04371
.86374

@D

18.14 References and Further Reading

The subject of random number generation and testing is reviewed extensively in Knuth’s Seminumerical Algorithms.

e Donald E. Knuth, The Art of Computer Programming: Seminumerical Algorithms (Vol 2, 3rd Ed, 1997),
Addison-Wesley, ISBN 0201896842.

Further information is available in the review paper written by Pierre L’Ecuyer,

e P. UEcuyer, “Random Number Generation”, Chapter 4 of the Handbook on Simulation, Jerry Banks Ed., Wiley,
1998, 93-137.

* http://www.iro.umontreal.ca/~lecuyer/papers.html in the file handsim.ps.

The source code for the DIEHARD random number generator tests is also available online,
* DIEHARD source code, G. Marsaglia, http://stat.fsu.edu/pub/diehard/

A comprehensive set of random number generator tests is available from NIST,

» NIST Special Publication 800-22, “A Statistical Test Suite for the Validation of Random Number Generators and
Pseudo Random Number Generators for Cryptographic Applications”.

* http://csrc.nist.gov/rng/
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CHAPTER
NINETEEN

QUASI-RANDOM SEQUENCES

This chapter describes functions for generating quasi-random sequences in arbitrary dimensions. A quasi-random
sequence progressively covers a d-dimensional space with a set of points that are uniformly distributed. Quasi-random
sequences are also known as low-discrepancy sequences. The quasi-random sequence generators use an interface that
is similar to the interface for random number generators, except that seeding is not required—each generator produces
a single sequence.

The functions described in this section are declared in the header file gsl_qrng.h.

19.1 Quasi-random number generator initialization

type gsl_grng
This is a workspace for computing quasi-random sequences.

gsl_qgrng *gsl_qrng_alloc(const gsi_grng_type *T, unsigned int d)
This function returns a pointer to a newly-created instance of a quasi-random sequence generator of type T and
dimension d. If there is insufficient memory to create the generator then the function returns a null pointer and
the error handler is invoked with an error code of GSL_ENOMEI.

void gsl_qrng_£free(gs/_grng *q)
This function frees all the memory associated with the generator g.

void gsl_qrng_init(gs/_grng *q)
This function reinitializes the generator g to its starting point. Note that quasi-random sequences do not use a
seed and always produce the same set of values.

19.2 Sampling from a quasi-random number generator

int gsl_grng_get (const gs/_grng *q, double x[])
This function stores the next point from the sequence generator g in the array x. The space available for x must
match the dimension of the generator. The point x will lie in the range 0 < x; < 1 for each z;. An inline version
of this function is used when HAVE_INLINE is defined.

231



GNU Scientific Library, Release 2.7

19.3 Auxiliary quasi-random number generator functions

const char *gs1l_qrng_name (const gs/_grng *q)
This function returns a pointer to the name of the generator.

size_t gsl_qrng_size(const gs/_grng *q)

void *gsl_qrng_state(const gsl_grng *q)
These functions return a pointer to the state of generator r and its size. You can use this information to access
the state directly. For example, the following code will write the state of a generator to a stream:

void * state = gsl_grng_state (q);
size_t n = gsl_grng_size (q);
fwrite (state, n, 1, stream);

19.4 Saving and restoring quasi-random number generator state

int gsl_grng_memcpy (gsl_grng *dest, const gsl_grng *src)
This function copies the quasi-random sequence generator src into the pre-existing generator dest, making
dest into an exact copy of src. The two generators must be of the same type.

gsl_qrng *gsl_qrng_clone(const gsl_grng *q)
This function returns a pointer to a newly created generator which is an exact copy of the generator g.

19.5 Quasi-random number generator algorithms

The following quasi-random sequence algorithms are available,

type gsl_grng_type

gsl_qrng_type *gsl_qrng_niederreiter_2
This generator uses the algorithm described in Bratley, Fox, Niederreiter, ACM Trans. Model. Comp. Sim.
2, 195 (1992). It is valid up to 12 dimensions.

gsl_grng_type *gsl_qrng_sobol
This generator uses the Sobol sequence described in Antonov, Saleev, USSR Comput. Maths. Math. Phys.
19, 252 (1980). It is valid up to 40 dimensions.

gsl_grng_type *gsl_qrng_halton

gsl_qrng_type *gsl_qrng_reversehalton
These generators use the Halton and reverse Halton sequences described in J.H. Halton, Numerische Math-
ematik, 2, 84-90 (1960) and B. Vandewoestyne and R. Cools Computational and Applied Mathematics,
189, 1&2, 341-361 (2006). They are valid up to 1229 dimensions.
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19.6 Examples

The following program prints the first 1024 points of the 2-dimensional Sobol sequence.

#include <stdio.h>
#include <gsl/gsl_qrng.h>

int
main (void)
{
int 1i;
gsl_qrng * q = gsl_qrng_alloc (gsl_grng_sobol, 2);

for (i = 0; 1 < 1024; i++)
{
double v[2];
gsl_grng_get (q, v);
printf (" \n", v[0], v[1D);
}

gsl_grng_free (q);
return 0;

}

Here is the output from the program:

§ ./a.out

0.50000 0.50000
0.75000 0.25000
0.25000 0.75000
0.37500 0.37500
0.87500 0.87500
0.62500 0.12500
0.12500 0.62500

It can be seen that successive points progressively fill-in the spaces between previous points.

Fig. 19.1 shows the distribution in the x-y plane of the first 1024 points from the Sobol sequence,

19.7 References

The implementations of the quasi-random sequence routines are based on the algorithms described in the following
paper,
e P. Bratley and B.L. Fox and H. Niederreiter, “Algorithm 738: Programs to Generate Niederreiter’'s Low-
discrepancy Sequences”’, ACM Transactions on Mathematical Software, Vol.: 20, No.: 4, December, 1994,
p.: 494-495.
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Fig. 19.1: Distribution of the first 1024 points from the quasi-random Sobol sequence
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CHAPTER
TWENTY

RANDOM NUMBER DISTRIBUTIONS

This chapter describes functions for generating random variates and computing their probability distributions. Samples
from the distributions described in this chapter can be obtained using any of the random number generators in the library
as an underlying source of randomness.

In the simplest cases a non-uniform distribution can be obtained analytically from the uniform distribution of a random
number generator by applying an appropriate transformation. This method uses one call to the random number gen-
erator. More complicated distributions are created by the acceptance-rejection method, which compares the desired
distribution against a distribution which is similar and known analytically. This usually requires several samples from
the generator.

The library also provides cumulative distribution functions and inverse cumulative distribution functions, sometimes
referred to as quantile functions. The cumulative distribution functions and their inverses are computed separately for
the upper and lower tails of the distribution, allowing full accuracy to be retained for small results.

The functions for random variates and probability density functions described in this section are declared in
gsl_randist.h. The corresponding cumulative distribution functions are declared in gs1_cdf.h.

Note that the discrete random variate functions always return a value of type unsigned int, and on most platforms
this has a maximum value of

232 1 ~4.29 x 10°
They should only be called with a safe range of parameters (where there is a negligible probability of a variate exceeding

this limit) to prevent incorrect results due to overflow.

20.1 Introduction

Continuous random number distributions are defined by a probability density function, p(z), such that the probability
of  occurring in the infinitesimal range x to  + dz is p(x)dz.

The cumulative distribution function for the lower tail P(z) is defined by the integral,
P(z) = / dx'p(z")

and gives the probability of a variate taking a value less than z.

The cumulative distribution function for the upper tail Q(x) is defined by the integral,

aw = [ datnta)

and gives the probability of a variate taking a value greater than x.
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The upper and lower cumulative distribution functions are related by P(z) + Q(z) = 1 and satisfy 0 < P(x) < 1,
0<Qz) <1

The inverse cumulative distributions, z = P~}(P) and z = Q~'(Q) give the values of x which correspond to a
specific value of P or Q. They can be used to find confidence limits from probability values.

For discrete distributions the probability of sampling the integer value & is given by p(k), where ), p(k) = 1. The
cumulative distribution for the lower tail P(k) of a discrete distribution is defined as,

P(k) =7 (i)
i<k
where the sum is over the allowed range of the distribution less than or equal to k.
The cumulative distribution for the upper tail of a discrete distribution (k) is defined as
Q(k) = pli)
i>k
giving the sum of probabilities for all values greater than k. These two definitions satisfy the identity P(k)+Q(k) = 1.
If the range of the distribution is 1 to n inclusive then P(n) = 1, Q(n) = 0 while P(1) = p(1), Q(1) =1 — p(1).
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20.2 The Gaussian Distribution

double gsl_ran_gaussian(const gs/_rng *r, double sigma)
This function returns a Gaussian random variate, with mean zero and standard deviation sigma. The probability
distribution for Gaussian random variates is,
1 exn(—z2 /202
xp(—x“/20%)dx
V2ro?

for  in the range —oo to +oo. Use the transformation z

p(z)dx

= [ + x on the numbers returned by
gsl_ran_gaussian() to obtain a Gaussian distribution with mean p. This function uses the Box-Muller algo-
rithm which requires two calls to the random number generator r.

double gsl_ran_gaussian_pdf (double x, double sigma)

This function computes the probability density p(x) at x for a Gaussian distribution with standard deviation
sigma, using the formula given above.

Gaussian Distribution
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double gsl_ran_gaussian_ziggurat (const gs/_rng *r, double sigma)

double gsl_ran_gaussian_ratio_method(const gs/_rng *r, double sigma)

This function computes a Gaussian random variate using the alternative Marsaglia-Tsang ziggurat and
Kinderman-Monahan-Leva ratio methods. The Ziggurat algorithm is the fastest available algorithm in most
cases.

double gsl_ran_ugaussian(const gs/_rng *r)

20.2. The Gaussian Distribution
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double gsl_ran_ugaussian_pdf (double x)

double gsl_ran_ugaussian_ratio_method(const gs/_rng *r)
These functions compute results for the unit Gaussian distribution. They are equivalent to the functions above
with a standard deviation of one, sigma = 1.

double gsl_cdf_gaussian_P(double x, double sigma)
double gsl_cdf_gaussian_Q(double x, double sigma)
double gsl_cdf_gaussian_Pinv(double P, double sigma)

double gsl_cdf_gaussian_Qinv(double Q, double sigma)
These functions compute the cumulative distribution functions P(z), Q(z) and their inverses for the Gaussian
distribution with standard deviation sigma.

double gsl_cdf_ugaussian_P (double x)
double gsl_cdf_ugaussian_Q(double x)
double gsl_cdf_ugaussian_Pinv(double P)

double gsl_cdf_ugaussian_Qinv(double Q)
These functions compute the cumulative distribution functions P(z), Q(z) and their inverses for the unit Gaus-
sian distribution.
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20.3 The Gaussian Tail Distribution

double gsl_ran_gaussian_tail (const gs/_rng *r, double a, double sigma)
This function provides random variates from the upper tail of a Gaussian distribution with standard deviation
sigma. The values returned are larger than the lower limit a, which must be positive. The method is based on
Marsaglia’s famous rectangle-wedge-tail algorithm (Ann. Math. Stat. 32, 894-899 (1961)), with this aspect
explained in Knuth, v2, 3rd ed, p139,586 (exercise 11).

The probability distribution for Gaussian tail random variates is,

p(x)dx = exp(—2?/20%)dx

1
N(a;0)V2r0?

for x > a where N (a; o) is the normalization constant,

1
N(a;o) = ierfc <

a
V2072 ) .
double gsl_ran_gaussian_tail_pdf (double x, double a, double sigma)

This function computes the probability density p(z) at x for a Gaussian tail distribution with standard deviation
sigma and lower limit a, using the formula given above.

Gaussian Taill Distribution
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double gsl_ran_ugaussian_tail (const gs/_rng *r, double a)

double gsl_ran_ugaussian_tail_pdf (double x, double a)
These functions compute results for the tail of a unit Gaussian distribution. They are equivalent to the functions
above with a standard deviation of one, sigma = 1.
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20.4 The Bivariate Gaussian Distribution

void gsl_ran_bivariate_gaussian(const gs/_rng *r, double sigma_x, double sigma_y, double rho, double *x,
double *y)
This function generates a pair of correlated Gaussian variates, with mean zero, correlation coefficient rho and
standard deviations sigma_x and sigma_y in the x and y directions. The probability distribution for bivariate
Gaussian random variates is,

(@202 +12/0% - 2pxy/<o—xoy>>> sy

1
x,y)drdy = ——F —exp | —
p(z,y)dzdy B p ( )

for x, y in the range —oo to +00. The correlation coefficient rho should lie between 1 and —1.

double gsl_ran_bivariate_gaussian_pdf (double x, double y, double sigma_x, double sigma_y, double rho)
This function computes the probability density p(z, y) at (x, y) for a bivariate Gaussian distribution with standard
deviations sigma_x, sigma_y and correlation coefficient rho, using the formula given above.

Bivariate Gaussian Distribution

2
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20.5 The Multivariate Gaussian Distribution

int gsl_ran_multivariate_gaussian(const gsi_rng *r, const gsi_vector *mu, const gsl_matrix *L, gsl_vector
*result)
This function generates a random vector satisfying the k-dimensional multivariate Gaussian distribution with
mean p and variance-covariance matrix >. On input, the k-vector p is given in mu, and the Cholesky factor of the
k-by-k matrix ¥ = LL” is given in the lower triangle of L, as output from gs1_linalg_cholesky_decomp().
The random vector is stored in result on output. The probability distribution for multivariate Gaussian random
variates is

1 _
p(x1,...,zp)dxy ... de) = —(z— )2 N (x —u)) dzy ... dxy

1
VR R (_2

int gsl_ran_multivariate_gaussian_pdf (const gsi_vector *x, const gsl_vector *mu, const gsl_matrix *L,
double *result, gsl_vector *work)

int gsl_ran_multivariate_gaussian_log_pdf (const gsi_vector *x, const gsl_vector *mu, const gsl_matrix *L,
double *result, gs/_vector *work)

These functions compute p(z) or log p(x) at the point x, using mean vector mu and variance-covariance matrix

specified by its Cholesky factor L using the formula above. Additional workspace of length k is required in work.

int gsl_ran_multivariate_gaussian_mean(const gs/_matrix *X, gsl_vector *mu_hat)
Given a set of n samples X; from a k-dimensional multivariate Gaussian distribution, this function computes
the maximum likelihood estimate of the mean of the distribution, given by

1
ﬂZEZXj

j=1

The samples X1, X5, ..., X,, are given in the n-by-k matrix X, and the maximum likelihood estimate of the
mean is stored in mu_hat on output.

int gsl_ran_multivariate_gaussian_vcov(const gs/_matrix *X, gsl_matrix *sigma_hat)
Given a set of n samples X; from a k-dimensional multivariate Gaussian distribution, this function computes
the maximum likelihood estimate of the variance-covariance matrix of the distribution, given by

PO . o7
X= EZ(XJ_M)(Xj_M)
j=1
The samples X1, Xo,..., X, are given in the n-by-k£ matrix X and the maximum likelihood estimate of the
variance-covariance matrix is stored in sigma_hat on output.
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20.6 The Exponential Distribution

double gsl_ran_exponential (const gs/_rng *r, double mu)
This function returns a random variate from the exponential distribution with mean mu. The distribution is,

p(x)dz = iexm—x/u)dx

for x > 0.

double gsl_ran_exponential_pdf (double x, double mu)

This function computes the probability density p(z) at x for an exponential distribution with mean mu, using the
formula given above.

Exponential Distribution

p(x)

double gsl_cdf_exponential_P (double x, double mu)
double gsl_cdf_exponential_Q(double x, double mu)
double gsl_cdf_exponential_Pinv(double P, double mu)

double gsl_cdf_exponential_Qinv(double Q, double mu)

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the exponential
distribution with mean mu.
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20.7 The Laplace Distribution

double gsl_ran_laplace(const gsi_rng *r, double a)
This function returns a random variate from the Laplace distribution with width a. The distribution is,

p()de = o exp(~|r/al)dr

for —oo < = < o0.

double gsl_ran_laplace_pdf (double x, double a)

This function computes the probability density p(x) at x for a Laplace distribution with width a, using the
formula given above.

Laplace Distribution (Two-sided Exponential)

p(x)

double gsl_cdf_laplace_P(double x, double a)
double gsl_cdf_laplace_Q(double x, double a)
double gsl_cdf_laplace_Pinv(double P, double a)

double gsl_cdf_laplace_Qinv(double Q, double a)

These functions compute the cumulative distribution functions P(z), Q(z) and their inverses for the Laplace
distribution with width a.
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20.8 The Exponential Power Distribution

double gsl_ran_exppow(const gs/_rng *r, double a, double b)
This function returns a random variate from the exponential power distribution with scale parameter a and ex-
ponent b. The distribution is,
(x)d 1 (~la/al’)d
r)axr = —————— - eXpl—|T/a X
P 2aT(1+1/b) P
for x > 0. For b = 1 this reduces to the Laplace distribution. For b = 2 it has the same form as a Gaussian
distribution, but with @ = /2.
double gsl_ran_exppow_pdf (double x, double a, double b)

This function computes the probability density p(x) at x for an exponential power distribution with scale param-
eter a and exponent b, using the formula given above.

Exponential Power Distribution
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double gsl_cdf_exppow_P (double x, double a, double b)

double gsl_cdf_exppow_Q(double x, double a, double b)

These functions compute the cumulative distribution functions P(z), Q(z) for the exponential power distribution
with parameters a and b.

20.8. The Exponential Power Distribution
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20.9 The Cauchy Distribution

double gsl_ran_cauchy (const gs/_rng *r, double a)

This function returns a random variate from the Cauchy distribution with scale parameter a. The probability
distribution for Cauchy random variates is,

1
dr = —————<d
PO = i 5 ar) ™
for z in the range —oo to +-00. The Cauchy distribution is also known as the Lorentz distribution.

double gsl_ran_cauchy_pdf (double x, double a)

This function computes the probability density p(x) at x for a Cauchy distribution with scale parameter a, using
the formula given above.

Cauchy Distribution

p()

double gsl_cdf_cauchy_P (double x, double a)
double gsl_cdf_cauchy_Q(double x, double a)
double gsl_cdf_cauchy_Pinv(double P, double a)

double gsl_cdf_cauchy_Qinv(double Q, double a)

These functions compute the cumulative distribution functions P(x), @Q(x) and their inverses for the Cauchy
distribution with scale parameter a.
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20.10 The Rayleigh Distribution

double gsl_ran_rayleigh(const gs/_rng *r, double sigma)

This function returns a random variate from the Rayleigh distribution with scale parameter sigma. The distri-
bution is,

p(x)dx = % exp(—x?/(20?))dx
1%
for z > 0.

double gsl_ran_rayleigh_pdf (double x, double sigma)

This function computes the probability density p(x) at x for a Rayleigh distribution with scale parameter sigma,
using the formula given above.

Rayleigh Distribution

p()

double gsl_cdf_rayleigh_P(double x, double sigma)
double gsl_cdf_rayleigh_Q(double x, double sigma)
double gsl_cdf_rayleigh Pinv(double P, double sigma)

double gsl_cdf_rayleigh_Qinv(double Q, double sigma)

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Rayleigh
distribution with scale parameter sigma.
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20.11 The Rayleigh Tail Distribution

double gsl_ran_rayleigh_tail (const gs/_rng *r, double a, double sigma)
This function returns a random variate from the tail of the Rayleigh distribution with scale parameter sigma and
a lower limit of a. The distribution is,
x
p(x)dr = o exp((a®

a® — %)/ (20%))dx
forx > a.

double gsl_ran_rayleigh_tail_pdf (double x, double a, double sigma)

This function computes the probability density p(x) at x for a Rayleigh tail distribution with scale parameter
sigma and lower limit a, using the formula given above.

Rayleigh Tail Distribution

a=1l,0=1 ——

p()

0.5 H

Chapter 20. Random Number Distributions



GNU Scientific Library, Release 2.7

20.12 The Landau Distribution

double gsl_ran_landau(const gsi/_rng *r)

This function returns a random variate from the Landau distribution. The probability distribution for Landau
random variates is defined analytically by the complex integral,

1 c+io0
p(r) = %/ ~ds exp(slog(s) + xs)

C—100

For numerical purposes it is more convenient to use the following equivalent form of the integral,

p(e) = (1/m) [

dt exp(—tlog(t) — xt) sin(nt).
0

double gsl_ran_landau_pdf (double x)

This function computes the probability density p(x) at x for the Landau distribution using an approximation to
the formula given above.

Landau Distribution
0.2

0.1

p()

20.12. The Landau Distribution
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20.13 The Levy alpha-Stable Distributions

double gsl_ran_levy(const gs/_rng *r, double c, double alpha)

This function returns a random variate from the Levy symmetric stable distribution with scale ¢ and exponent
alpha. The symmetric stable probability distribution is defined by a Fourier transform,

1 [t
p(z) = %/ dt exp(—itx — |ct]|®)

— 0

There is no explicit solution for the form of p(z) and the library does not define a corresponding pdf function.

For o« = 1 the distribution reduces to the Cauchy distribution. For o« = 2 it is a Gaussian distribution with
o= \/50. For o < 1 the tails of the distribution become extremely wide.

The algorithm only works for 0 < o < 2.

Levy Distribution

c=1, a=1.
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p(x)
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20.14 The Levy skew alpha-Stable Distribution

double gsl_ran_levy_skew(const gs/_rng *r, double ¢, double alpha, double beta)
This function returns a random variate from the Levy skew stable distribution with scale c, exponent alpha
and skewness parameter beta. The skewness parameter must lie in the range [—1,1]. The Levy skew stable
probability distribution is defined by a Fourier transform,

+oo
(@) 1/ dt exp(—itz — |ct*(1 — i sgn(t) tan(ra/2)))

:% .

When o = 1 the term tan(ma/2) is replaced by —(2/7) log |¢|. There is no explicit solution for the form of p(z)
and the library does not define a corresponding pdf function. For a = 2 the distribution reduces to a Gaussian
distribution with ¢ = v/2¢ and the skewness parameter has no effect. For @ < 1 the tails of the distribution
become extremely wide. The symmetric distribution corresponds to 5 = 0.

The algorithm only works for 0 < o < 2.

The Levy alpha-stable distributions have the property that if N alpha-stable variates are drawn from the distribution
p(c, a, B) then the sum Y = X 4+ Xy + - - - + Xy will also be distributed as an alpha-stable variate, p(N'/%c, o, B3).

Lewvy Skew Distribution
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20.15 The Gamma Distribution

double gsl_ran_gamma (const gs/_rng *r, double a, double b)
This function returns a random variate from the gamma distribution. The distribution function is,

p(z)dr = 2@ tem "/ dy

I(a)be
for x > 0.
The gamma distribution with an integer parameter a is known as the Erlang distribution.

The variates are computed using the Marsaglia-Tsang fast gamma method. This function for this method was
previously called gsl_ran_gamma_mt () and can still be accessed using this name.

double gsl_ran_gamma_knuth(const gs/_rng *r, double a, double b)
This function returns a gamma variate using the algorithms from Knuth (vol 2).

double gsl_ran_gamma_pdf£ (double x, double a, double b)

This function computes the probability density p(z) at x for a gamma distribution with parameters a and b, using
the formula given above.

Gamma Distribution

p()

double gsl_cdf_gamma_P (double x, double a, double b)
double gsl_cdf_gamma_Q(double x, double a, double b)

double gsl_cdf_gamma_Pinv(double P, double a, double b)
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double gsl_cdf_gamma_Qinv (double Q, double a, double b)
These functions compute the cumulative distribution functions P(z), Q(z) and their inverses for the gamma
distribution with parameters a and b.
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20.16 The Flat (Uniform) Distribution

double gsl_ran_flat(const gs/_rng *r, double a, double b)
This function returns a random variate from the flat (uniform) distribution from a to b. The distribution is,

1
p(z)dx = de

if a < x < b and 0 otherwise.

double gsl_ran_flat_pdf (double x, double a, double b)
This function computes the probability density p(x) at x for a uniform distribution from a to b, using the formula
given above.

Flat Distribution
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double gsl_cdf_flat_P(double x, double a, double b)
double gsl_cdf_flat_Q(double x, double a, double b)
double gsl_cdf_flat_Pinv(double P, double a, double b)

double gsl_cdf_flat_Qinv(double Q, double a, double b)
These functions compute the cumulative distribution functions P(z), Q(z) and their inverses for a uniform
distribution from a to b.
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20.17 The Lognormal Distribution

double gsl_ran_lognormal (const gs/_rng *r, double zeta, double sigma)
This function returns a random variate from the lognormal distribution. The distribution function is,

1
x)dr = ——— exp(—(In(z) — ¢)?/202)dx
p(z) orom p(—(In(z) — ¢)*/207)
for z > 0.
double gsl_ran_lognormal_pdf (double x, double zeta, double sigma)

This function computes the probability density p(x) at x for a lognormal distribution with parameters zeta and
sigma, using the formula given above.

Lognormal Distribution
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double gsl_cdf_lognormal_P(double x, double zeta, double sigma)
double gsl_cdf_lognormal_Q(double x, double zeta, double sigma)
double gsl_cdf_lognormal_Pinv(double P, double zeta, double sigma)

double gsl_cdf_lognormal_Qinv(double Q, double zeta, double sigma)

These functions compute the cumulative distribution functions P(x), Q)(x) and their inverses for the lognormal
distribution with parameters zeta and sigma.
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20.18 The Chi-squared Distribution

The chi-squared distribution arises in statistics. If Y; are n independent Gaussian random variates with unit variance
then the sum-of-squares,

X;=> V]

has a chi-squared distribution with n degrees of freedom.

double gsl_ran_chisq(const gs/_rng *r, double nu)

This function returns a random variate from the chi-squared distribution with nu degrees of freedom. The dis-
tribution function is,

1
o0 (1/2)

p(x)de = (2/2)"?7 exp(—x/2)dx

for x > 0.

double gsl_ran_chisq_pdf (double x, double nu)

This function computes the probability density p(z) at x for a chi-squared distribution with nu degrees of free-
dom, using the formula given above.

Chi-squared Distribution

p(x)

double gsl_cdf_chisqg_P(double x, double nu)

double gsl_cdf_chisq_Q(double x, double nu)
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double gsl_cdf_chisq_Pinv(double P, double nu)

double gsl_cdf_chisq_Qinv(double Q, double nu)
These functions compute the cumulative distribution functions P(x), Q(«) and their inverses for the chi-squared
distribution with nu degrees of freedom.

20.18. The Chi-squared Distribution 257



GNU Scientific Library, Release 2.7

20.19 The F-distribution

The F-distribution arises in statistics. If Y; and Y5 are chi-squared deviates with v4 and v, degrees of freedom then the
ratio,

(Y1/v1)

X = Wali)

has an F-distribution F'(z; v, v2).

double gsl_ran_fdist(const gsi_rng *r, double nul, double nu2)

This function returns a random variate from the F-distribution with degrees of freedom nul and nu2. The
distribution function is,

F((Vl + VQ)/Q) VU1/2 v2/2 vy /2—1

p(z)dx = T (va + ulx)_”l/Q_”Q/Q

T T /2T(n2)
for x > 0.

double gsl_ran_fdist_pdf (double x, double nul, double nu2)

This function computes the probability density p(z) at x for an F-distribution with nul and nu2 degrees of
freedom, using the formula given above.

F-Distribution

p(x)

double gsl_cdf_fdist_P(double x, double nul, double nu2)

double gsl_cdf_fdist_Q(double x, double nul, double nu2)
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double gsl_cdf_fdist_Pinv(double P, double nul, double nu2)

double gsl_cdf_fdist_Qinv(double Q, double nul, double nu2)
These functions compute the cumulative distribution functions P(z), Q(z) and their inverses for the F-
distribution with nul and nu2 degrees of freedom.
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20.20 The t-distribution

The t-distribution arises in statistics. If Y7 has a normal distribution and Y5 has a chi-squared distribution with v degrees
of freedom then the ratio,

Y1
Yalv

X =

has a t-distribution ¢(z; ) with v degrees of freedom.

double gsl_ran_tdist (const gsi_rng *r, double nu)
This function returns a random variate from the t-distribution. The distribution function is,
I'((v+1)/2) 2, N—
doe = ——>—=(1 (r+1)/24
(o) = — o e (L4 a2 ) z

for —oco < x < o00.

double gsl_ran_tdist_pdf (double x, double nu)

This function computes the probability density p(x) at x for a t-distribution with nu degrees of freedom, using
the formula given above.

Student's t distribution

p()

double gsl_cdf_tdist_P(double x, double nu)
double gsl_cdf_tdist_Q(double x, double nu)

double gsl_cdf_tdist_Pinv(double P, double nu)
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double gsl_cdf_tdist_Qinv(double Q, double nu)
These functions compute the cumulative distribution functions P(x), Q(z) and their inverses for the t-distribution
with nu degrees of freedom.
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20.21 The Beta Distribution

double gsl_ran_beta(const gs/_rng *r, double a, double b)
This function returns a random variate from the beta distribution. The distribution function is,

p(z)dx = 11(a7—~_b)ab“‘l_l(1 — )" e

for0 <z <1.

double gsl_ran_beta_pd£f (double x, double a, double b)
This function computes the probability density p(x) at x for a beta distribution with parameters a and b, using
the formula given above.

Beta Distribution
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double gsl_cdf_beta_P(double x, double a, double b)
double gsl_cdf_beta_Q(double x, double a, double b)
double gsl_cdf_beta_Pinv(double P, double a, double b)

double gsl_cdf_beta_Qinv(double Q, double a, double b)
These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the beta distri-
bution with parameters a and b.
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20.22 The Logistic Distribution

double gsl_ran_logistic(const gs/_rng *r, double a)
This function returns a random variate from the logistic distribution. The distribution function is,

dzr

Ve — exp(—x/a)
P = ST exp(—z/a)?

for —oo < & < 4o00.

double gsl_ran_logistic_pdf (double x, double a)

This function computes the probability density p(x) at x for a logistic distribution with scale parameter a, using
the formula given above.

Logistic Distribution

p(x)

double gsl_cdf_logistic_P(double x, double a)
double gsl_cdf_logistic_Q(double x, double a)
double gsl_cdf_logistic_Pinv(double P, double a)

double gsl_cdf_logistic_Qinv(double Q, double a)

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the logistic
distribution with scale parameter a.
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20.23 The Pareto Distribution

double gsl_ran_pareto(const gs/_rng *r, double a, double b)
This function returns a random variate from the Pareto distribution of order a. The distribution function is,

p(x)de = (a/b)/(x/b)** dx
for x > b.

double gsl_ran_pareto_pdf (double x, double a, double b)

This function computes the probability density p(z) at x for a Pareto distribution with exponent a and scale b,
using the formula given above.
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double gsl_cdf_pareto_P(double x, double a, double b)
double gsl_cdf_pareto_Q(double x, double a, double b)
double gsl_cdf_pareto_Pinv(double P, double a, double b)

double gsl_cdf_pareto_Qinv(double Q, double a, double b)

These functions compute the cumulative distribution functions P(z), Q(x) and their inverses for the Pareto
distribution with exponent a and scale b.
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20.24 Spherical Vector Distributions

The spherical distributions generate random vectors, located on a spherical surface. They can be used as random
directions, for example in the steps of a random walk.

void gsl_ran_dir_2d(const gs/_rng *r, double *x, double *y)

void gsl_ran_dir_2d_trig_method(const gs/_rng *r, double *x, double *y)
This function returns a random direction vector v = (x, y) in two dimensions. The vector is normalized such that
|v|?2 = 2% + y? = 1. The obvious way to do this is to take a uniform random number between 0 and 27 and let
x and y be the sine and cosine respectively. Two trig functions would have been expensive in the old days, but
with modern hardware implementations, this is sometimes the fastest way to go. This is the case for the Pentium
(but not the case for the Sun Sparcstation). One can avoid the trig evaluations by choosing x and y in the interior
of a unit circle (choose them at random from the interior of the enclosing square, and then reject those that are
outside the unit circle), and then dividing by y/x2 + y2. A much cleverer approach, attributed to von Neumann
(See Knuth, v2, 3rd ed, p140, exercise 23), requires neither trig nor a square root. In this approach, u and v are
chosen at random from the interior of a unit circle, and then x = (u? — v2)/(u? + v?) and y = 2uv/(u? + v?).

void gsl_ran_dir_3d(const gs/_rng *r, double *x, double *y, double *z)
This function returns a random direction vector v = (x, v, z) in three dimensions. The vector is normalized such
that |v]? = 2% + y? + 22 = 1. The method employed is due to Robert E. Knop (CACM 13, 326 (1970)), and
explained in Knuth, v2, 3rd ed, p136. It uses the surprising fact that the distribution projected along any axis is
actually uniform (this is only true for 3 dimensions).

void gsl_ran_dir_nd(const gsi_rng *r, size_t n, double *x)
This function returns a random direction vector v = (1, 3, . .., ) in n dimensions. The vector is normalized
such that [v|? = 22 + 23 + - -- + 22 = 1. The method uses the fact that a multivariate Gaussian distribution is
spherically symmetric. Each component is generated to have a Gaussian distribution, and then the components
are normalized. The method is described by Knuth, v2, 3rd ed, p135-136, and attributed to G. W. Brown, Modern
Mathematics for the Engineer (1956).

20.24. Spherical Vector Distributions 265



GNU Scientific Library, Release 2.7

20.25 The Weibull Distribution

double gsl_ran_weibull (const gs/_rng *r, double a, double b)
This function returns a random variate from the Weibull distribution. The distribution function is,

b
p(x)dx = bxbfl exp(—(z/a)®)dz
a
for x > 0.

double gsl_ran_weibull_pdf (double x, double a, double b)

This function computes the probability density p(x) at x for a Weibull distribution with scale a and exponent b,
using the formula given above.

Weibull Distribution
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p(x)

double gsl_cdf_weibull_P(double x, double a, double b)
double gsl_cdf_weibull_Q(double x, double a, double b)
double gsl_cdf_weibull_Pinv(double P, double a, double b)

double gsl_cdf_weibull_Qinv(double Q, double a, double b)

These functions compute the cumulative distribution functions P(x), Q(z) and their inverses for the Weibull
distribution with scale a and exponent b.
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20.26 The Type-1 Gumbel Distribution

double gsl_ran_gumbell (const gs/_rng *r, double a, double b)

This function returns a random variate from the Type-1 Gumbel distribution. The Type-1 Gumbel distribution
function is,

p(x)dx = abexp(—(bexp(—ax) + ax))dx

for —oo < z < o0.

double gsl_ran_gumbell_pdf (double x, double a, double b)
This function computes the probability density p(z) at x for a Type-1 Gumbel distribution with parameters a
and b, using the formula given above.
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double gsl_cdf_gumbell_P(double x, double a, double b)
double gsl_cdf_gumbell_Q(double x, double a, double b)
double gsl_cdf_gumbell_Pinv(double P, double a, double b)

double gsl_cdf_gumbell_Qinv(double Q, double a, double b)
These functions compute the cumulative distribution functions P(x), Q(z) and their inverses for the Type-1
Gumbel distribution with parameters a and b.
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20.27 The Type-2 Gumbel Distribution

double gsl_ran_gumbel2 (const gs/_rng *r, double a, double b)
This function returns a random variate from the Type-2 Gumbel distribution. The Type-2 Gumbel distribution
function is,

p(z)dx = abs™* ! exp(—bxr~*)dx

for 0 < z < o0.

double gsl_ran_gumbel2_pdf (double x, double a, double b)
This function computes the probability density p(z) at x for a Type-2 Gumbel distribution with parameters a
and b, using the formula given above.
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double gsl_cdf_gumbel2_P(double x, double a, double b)
double gsl_cdf_gumbel2_Q(double x, double a, double b)
double gsl_cdf_gumbel2_Pinv(double P, double a, double b)

double gsl_cdf_gumbel2_Qinv(double Q, double a, double b)
These functions compute the cumulative distribution functions P(x), Q(z) and their inverses for the Type-2
Gumbel distribution with parameters a and b.
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20.28 The Dirichlet Distribution

void gsl_ran_dirichlet(const gs/_rng *r, size_t K, const double alpha[], double theta[])
This function returns an array of K random variates from a Dirichlet distribution of order K-1. The distribution
function is

K K
1 _
p(0y1,...,0K)d0; - dix = le[le);“ PO =) 0:)db; - dbx

i=1

for §; > 0 and «; > 0. The delta function ensures that »  §; = 1. The normalization factor Z is

_ IS P(a)
L2 i)

The random variates are generated by sampling K values from gamma distributions with parameters a = «y,
b = 1, and renormalizing. See A.M. Law, W.D. Kelton, Simulation Modeling and Analysis (1991).

double gsl_ran_dirichlet_pdf (size_t K, const double alpha[], const double theta[])
This function computes the probability density p(61, ..., 0x) at theta[K] for a Dirichlet distribution with pa-
rameters alpha[K], using the formula given above.

double gsl_ran_dirichlet_lnpdf (size_t K, const double alpha[], const double theta[])
This function computes the logarithm of the probability density p(f1, ..., 0k) for a Dirichlet distribution with
parameters alpha[K].
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20.29 General Discrete Distributions

Given K discrete events with different probabilities P[k], produce a random value & consistent with its probability.

The obvious way to do this is to preprocess the probability list by generating a cumulative probability array with K + 1
elements:

Cl0] =0
Clk + 1] = C[k] + P[k]

Note that this construction produces C[K] = 1. Now choose a uniform deviate u between 0 and 1, and find the value
of k such that C[k] < u < C[k + 1]. Although this in principle requires of order log K steps per random number
generation, they are fast steps, and if you use something like |uK | as a starting point, you can often do pretty well.

But faster methods have been devised. Again, the idea is to preprocess the probability list, and save the result in some
form of lookup table; then the individual calls for a random discrete event can go rapidly. An approach invented by
G. Marsaglia (Generating discrete random variables in a computer, Comm ACM 6, 37-38 (1963)) is very clever, and
readers interested in examples of good algorithm design are directed to this short and well-written paper. Unfortunately,
for large K, Marsaglia’s lookup table can be quite large.

A much better approach is due to Alastair J. Walker (An efficient method for generating discrete random variables
with general distributions, ACM Trans on Mathematical Software 3, 253-256 (1977); see also Knuth, v2, 3rd ed,
p120-121,139). This requires two lookup tables, one floating point and one integer, but both only of size K. After
preprocessing, the random numbers are generated in O(1) time, even for large K. The preprocessing suggested by
Walker requires O (K ?) effort, but that is not actually necessary, and the implementation provided here only takes O (K)
effort. In general, more preprocessing leads to faster generation of the individual random numbers, but a diminishing
return is reached pretty early. Knuth points out that the optimal preprocessing is combinatorially difficult for large K.

This method can be used to speed up some of the discrete random number generators below, such as the binomial
distribution. To use it for something like the Poisson Distribution, a modification would have to be made, since it only
takes a finite set of &K outcomes.

type gsl_ran_discrete_t
This structure contains the lookup table for the discrete random number generator.

gsl_ran_discrete_t *gsl_ran_discrete_preproc(size_t K, const double *P)
This function returns a pointer to a structure that contains the lookup table for the discrete random number
generator. The array P contains the probabilities of the discrete events; these array elements must all be positive,
but they needn’t add up to one (so you can think of them more generally as “weights”)—the preprocessor will
normalize appropriately. This return value is used as an argument for the gs1_ran_discrete () function below.

size_t gsl_ran_discrete(const gs/_rng *r, const gsi_ran_discrete_t *g)
After the preprocessor, above, has been called, you use this function to get the discrete random numbers.

double gsl_ran_discrete_pdf (size_t k, const gs/_ran_discrete_t *g)
Returns the probability P[k] of observing the variable k. Since P[k] is not stored as part of the lookup table, it
must be recomputed; this computation takes O(K), so if K is large and you care about the original array P[k]
used to create the lookup table, then you should just keep this original array P[k] around.

void gsl_ran_discrete_free(gs/_ran_discrete_t *g)
De-allocates the lookup table pointed to by g.
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20.30 The Poisson Distribution

unsigned int gsl_ran_poisson(const gs/_rng *r, double mu)
This function returns a random integer from the Poisson distribution with mean mu. The probability distribution
for Poisson variates is,

k

p(k) = L exp(—p)
for k > 0.

double gsl_ran_poisson_pdf (unsigned int k, double mu)

This function computes the probability p(k) of obtaining k from a Poisson distribution with mean mu, using the
formula given above.

Poisson Distribution
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double gsl_cdf_poisson_P (unsigned int k, double mu)

double gsl_cdf_poisson_Q(unsigned int k, double mu)

These functions compute the cumulative distribution functions P(k), Q(k) for the Poisson distribution with
parameter mu.
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20.31 The Bernoulli Distribution

unsigned int gsl_ran_bernoulli (const gs/_rng *r, double p)

This function returns either O or 1, the result of a Bernoulli trial with probability p. The probability distribution
for a Bernoulli trial is,

double gsl_ran_bernoulli_pdf (unsigned int k, double p)

This function computes the probability p(k) of obtaining k from a Bernoulli distribution with probability pa-
rameter p, using the formula given above.

Bernoulli Trial
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20.32 The Binomial Distribution

unsigned int gsl_ran_binomial (const gs/_rng *r, double p, unsigned int n)

This function returns a random integer from the binomial distribution, the number of successes in n independent
trials with probability p. The probability distribution for binomial variates is,

n!
k) = k 1— n—~k
p(k) o= 0” (1-p)
for0 < k <n.
double gsl_ran_binomial_pdf (unsigned int k, double p, unsigned int n)

This function computes the probability p(k) of obtaining k from a binomial distribution with parameters p and
n, using the formula given above.

Binomial Distribution
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double gsl_cdf_binomial_P (unsigned int k, double p, unsigned int n)

double gsl_cdf_binomial_Q(unsigned int k, double p, unsigned int n)

These functions compute the cumulative distribution functions P(k), Q(k) for the binomial distribution with
parameters p and n.

20.32. The Binomial Distribution

273



GNU Scientific Library, Release 2.7

20.33 The Multinomial Distribution

void gsl_ran_multinomial (const gs/_rng *r, size_t K, unsigned int N, const double p[], unsigned int n[])
This function computes a random sample n from the multinomial distribution formed by N trials from an under-
lying distribution p [K]. The distribution function for n is,

N! . nx
. P P2 Py
nymng:---NK-:

P(n17n27"' 7nK) =
where (n1,ns,...,nk) are nonnegative integers with Zszl ng = N, and (p1,p2,-..,pK) is a probability
distribution with > p; = 1. If the array p[K] is not normalized then its entries will be treated as weights and
normalized appropriately. The arrays n and p must both be of length K.

Random variates are generated using the conditional binomial method (see C.S. Davis, The computer generation
of multinomial random variates, Comp. Stat. Data Anal. 16 (1993) 205-217 for details).

double gsl_ran_multinomial_pdf (size_t K, const double p[], const unsigned int n[])
This function computes the probability P(n1,ns,...,nk) of sampling n[K] from a multinomial distribution
with parameters p[K], using the formula given above.

double gsl_ran_multinomial_Inpdf(size_t K, const double p[], const unsigned int n[])
This function returns the logarithm of the probability for the multinomial distribution P(n1,ns,...,nk) with
parameters p [K].
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20.34 The Negative Binomial Distribution

unsigned int gsl_ran_negative_binomial (const gs/_rng *r, double p, double n)

This function returns a random integer from the negative binomial distribution, the number of failures occurring
before n successes in independent trials with probability p of success. The probability distribution for negative
binomial variates is,

D(n+k) &
k)= —————p"(1 —
p(k) T+ ()" (1-p)
Note that n is not required to be an integer.
double gsl_ran_negative_binomial_pdf (unsigned int k, double p, double n)

This function computes the probability p(k) of obtaining k from a negative binomial distribution with parameters
p and n, using the formula given above.

Megative Binomial Distribution
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double gsl_cdf_negative_binomial_P (unsigned int k, double p, double n)

double gsl_cdf_negative_binomial_Q(unsigned int k, double p, double n)

These functions compute the cumulative distribution functions P(k), Q (k) for the negative binomial distribution
with parameters p and n.
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20.35 The Pascal Distribution

unsigned int gsl_ran_pascal (const gs/_rng *r, double p, unsigned int n)

This function returns a random integer from the Pascal distribution. The Pascal distribution is simply a negative
binomial distribution with an integer value of n.

(k) = (n+k—1)!

= mpn(l - p)k

for k£ > 0.

double gsl_ran_pascal_pdf (unsigned int k, double p, unsigned int n)

This function computes the probability p(k) of obtaining k from a Pascal distribution with parameters p and n,
using the formula given above.

Pascal Distribution
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double gsl_cdf_pascal_P (unsigned int k, double p, unsigned int n)

double gs1_cdf_pascal_Q(unsigned int k, double p, unsigned int n)

These functions compute the cumulative distribution functions P(k), Q(k) for the Pascal distribution with pa-
rameters p and n.
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20.36 The Geometric Distribution

unsigned int gsl_ran_geometric(const gs/_rng *r, double p)
This function returns a random integer from the geometric distribution, the number of independent trials with
probability p until the first success. The probability distribution for geometric variates is,

p(k) = p(1 —p)*!
for k£ > 1. Note that the distribution begins with k = 1 with this definition. There is another convention in which

the exponent k£ — 1 is replaced by k.

double gsl_ran_geometric_pdf (unsigned int k, double p)

This function computes the probability p(k) of obtaining k from a geometric distribution with probability pa-
rameter p, using the formula given above.
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double gsl_cdf_geometric_P (unsigned int k, double p)

double gsl_cdf_geometric_Q(unsigned int k, double p)

These functions compute the cumulative distribution functions P(k), Q(k) for the geometric distribution with
parameter p.
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20.37 The Hypergeometric Distribution

unsigned int gsl_ran_hypergeometric(const gs/_rng *r, unsigned int nl, unsigned int n2, unsigned int t)
This function returns a random integer from the hypergeometric distribution. The probability distribution for
hypergeometric random variates is,

p(k) = C(n1,k)C(n2,t — k)/C(ny + na,t)

where C'(a,b) = a!/(b!(a — b)!) and t < ny + ng. The domain of k is max(0,t — ns), ..., min(¢, ny)

If a population contains n; elements of “type 1” and n, elements of “type 2" then the hypergeometric distribution
gives the probability of obtaining & elements of “type 1” in ¢ samples from the population without replacement.

double gsl_ran_hypergeometric_pdf (unsigned int k, unsigned int nl1, unsigned int n2, unsigned int t)

This function computes the probability p(k) of obtaining k from a hypergeometric distribution with parameters
nl, n2, t, using the formula given above.
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double gsl_cdf_hypergeometric_P (unsigned int k, unsigned int n1, unsigned int n2, unsigned int t)

double gsl_cdf_hypergeometric_Q(unsigned int k, unsigned int n1, unsigned int n2, unsigned int t)
These functions compute the cumulative distribution functions P(k), Q(k) for the hypergeometric distribution
with parameters nl, n2 and t.
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20.38 The Logarithmic Distribution

unsigned int gsl_ran_logarithmic(const gs/_rng *r, double p)

This function returns a random integer from the logarithmic distribution. The probability distribution for loga-

rithmic random variates is,
1 pk
kY= —— —
p(k) 1og<1—p)<k>

double gsl_ran_logarithmic_pdf (unsigned int k, double p)

This function computes the probability p(k) of obtaining k from a logarithmic distribution with probability
parameter p, using the formula given above.

for k > 1.
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20.39 The Wishart Distribution

int gsl_ran_wishart (const gs/_rng *r, const double n, const gs/_matrix *L, gsl_matrix *result, gsl_matrix *work)
This function computes a random symmetric p-by-p matrix from the Wishart distribution. The probability dis-
tribution for Wishart random variates is,

e A
27 [V|"? T, (2)

p(X)

Here, n > p — 1 is the number of degrees of freedom, V' is a symmetric positive definite p-by-p scale matrix,
whose Cholesky factor is specified by L, and work is p-by-p workspace. The p-by-p Wishart distributed matrix
X is stored in result on output.

int gsl_ran_wishart_pdf (const gs/_matrix *X, const gsl_matrix *L_X, const double n, const gsl/_matrix *L,
double *result, gsl_matrix *work)

int gsl_ran_wishart_log_pdf (const gsl_matrix *X, const gs/_matrix *L_X, const double n, const gs/_matrix *L,
double *result, gsl_matrix *work)
These functions compute p(X) or log p(X) for the p-by-p matrix X, whose Cholesky factor is specified in L_X.
The degrees of freedom is given by n, the Cholesky factor of the scale matrix V' is specified in L, and work is
p-by-p workspace. The probably density value is returned in result.
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20.40 Shuffling and Sampling

The following functions allow the shuffling and sampling of a set of objects. The algorithms rely on a random number
generator as a source of randomness and a poor quality generator can lead to correlations in the output. In particular
it is important to avoid generators with a short period. For more information see Knuth, v2, 3rd ed, Section 3.4.2,
“Random Sampling and Shuffling”.

void gsl_ran_shuffle(const gsi_rng *r, void *base, size_t n, size_t size)
This function randomly shuffles the order of n objects, each of size size, stored in the array base[0..n-1].
The output of the random number generator r is used to produce the permutation. The algorithm generates all
possible n! permutations with equal probability, assuming a perfect source of random numbers.

The following code shows how to shuffle the numbers from 0 to 51:

int a[52];

for (i = 0; 1 < 52; i++)
{
al[i] = i;

}

gsl_ran_shuffle (r, a, 52, sizeof (int));

int gsl_ran_choose(const gs/_rng *r, void *dest, size_t k, void *src, size_t n, size_t size)
This function fills the array dest[k] with k objects taken randomly from the n elements of the array src[@.
.n-1]. The objects are each of size size. The output of the random number generator r is used to make the
selection. The algorithm ensures all possible samples are equally likely, assuming a perfect source of randomness.

The objects are sampled without replacement, thus each object can only appear once in dest. It is required that
k be less than or equal to n. The objects in dest will be in the same relative order as those in src. You will
need to call gsl_ran_shuffle(r, dest, n, size) if you want to randomize the order.

The following code shows how to select a random sample of three unique numbers from the set 0 to 99:

double a[3], b[100];

for (i = 0; i < 100; i++)
{
b[i] = (double) 1i;
}

gsl_ran_choose (r, a, 3, b, 100, sizeof (double));

void gsl_ran_sample (const gsi_rng *r, void *dest, size_t k, void *src, size_t n, size_t size)
This function is like gsl_ran_choose() but samples k items from the original array of n items src with
replacement, so the same object can appear more than once in the output sequence dest. There is no requirement
that k be less than n in this case.
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20.41 Examples

The following program demonstrates the use of a random number generator to produce variates from a distribution. It
prints 10 samples from the Poisson distribution with a mean of 3.

#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

int

main (void)

{
const gsl_rng_type * T;
gsl_rng * r;

int i, n = 10;
double mu = 3.0;

/* create a generator chosen by the
environment variable GSL_RNG_TYPE */

gsl_rng_env_setup();

T
r

gsl_rng_default;
gsl_rng_alloc (T);

/* print n random variates chosen from
the poisson distribution with mean
parameter mu */

for (i = 0; i < n; i++)
{
unsigned int k = gsl_ran_poisson (r, mu);
printf (" %u", k);
}

printf ("\n");
gsl_rng_free (r);
return 0;

}

If the library and header files are installed under /usr/local (the default location) then the program can be compiled
with these options:

$ gcc -Wall demo.c -1gsl -lgslcblas -1m

Here is the output of the program,

2552103411

The variates depend on the seed used by the generator. The seed for the default generator type gsI_rng_default can
be changed with the GSL_RNG_SEED environment variable to produce a different stream of variates:
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$ GSL_RNG_SEED=123 ./a.out

giving output

4563314255

The following program generates a random walk in two dimensions.

#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

int
main (void)
{

int i;

double x = 0, y = 0, dx, dy;

const gsl_rng_type * T;
gsl_rng * r;

gsl_rng_env_setup();
T = gsl_rng_default;
r = gsl_rng_alloc (T);

printf (" \n", x, y);

for (i = 0; i < 10; i++)
{
gsl_ran_dir_2d (r, &dx, &dy);
X += dx; y += dy;
printf (" \n", x, y);
}

gsl_rng_free (r);
return 0;

}

Fig. 20.1 shows the output from the program.

The following program computes the upper and lower cumulative distribution functions for the standard normal distri-
bution at x = 2.

#include <stdio.h>
#include <gsl/gsl_cdf.h>

int

main (void)

{
double P, Q;
double x = 2.0;

P = gsl_cdf_ugaussian_P (x);
printf ("prob(x < ) = \n", x, P);

(continues on next page)
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Random walks

Fig. 20.1: Four 10-step random walks from the origin.

(continued from previous page)

}

Q = gsl_cdf_ugaussian_Q (x);
printf ("prob(x > %f) = %f\n", x, Q;

x = gsl_cdf_ugaussian_Pinv (P);
printf ("Pinv(%f) = %f\n", P, x);

x = gsl_cdf_ugaussian_Qinv (Q);
printf ("Qinv(%f) = %f\n", Q, X);

return 0;

Here is the output of the program,

prob(x < 2.000000) = 0.977250

prob(x > 2.000000)

0.022750

Pinv(0.977250) = 2.000000
Qinv(0.022750) = 2.000000

20.42 References and Further Reading

For an encyclopaedic coverage of the subject readers are advised to consult the book “Non-Uniform Random Variate
Generation” by Luc Devroye. It covers every imaginable distribution and provides hundreds of algorithms.

* Luc Devroye, “Non-Uniform Random Variate Generation”, Springer-Verlag, ISBN 0-387-96305-7. Available

online at http://cg.scs.carleton.ca/~luc/rnbookindex.html.

The subject of random variate generation is also reviewed by Knuth, who describes algorithms for all the major distri-
butions.
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e Donald E. Knuth, “The Art of Computer Programming: Seminumerical Algorithms” (Vol 2, 3rd Ed, 1997),
Addison-Wesley, ISBN 0201896842.

The Particle Data Group provides a short review of techniques for generating distributions of random numbers in the
“Monte Carlo” section of its Annual Review of Particle Physics.

» Review of Particle Properties, R.M. Barnett et al., Physical Review D54, 1 (1996) http://pdg.Ibl.gov/.
The Review of Particle Physics is available online in postscript and pdf format.

An overview of methods used to compute cumulative distribution functions can be found in Statistical Computing by
W.J. Kennedy and J.E. Gentle. Another general reference is Elements of Statistical Computing by R.A. Thisted.

» William E. Kennedy and James E. Gentle, Statistical Computing (1980), Marcel Dekker, ISBN 0-8247-6898-1.
* Ronald A. Thisted, Elements of Statistical Computing (1988), Chapman & Hall, ISBN 0-412-01371-1.
The cumulative distribution functions for the Gaussian distribution are based on the following papers,

» Rational Chebyshev Approximations Using Linear Equations, W.J. Cody, W. Fraser, J.F. Hart. Numerische
Mathematik 12, 242-251 (1968).

» Rational Chebyshev Approximations for the Error Function, W.J. Cody. Mathematics of Computation 23, n107,
631-637 (July 1969).
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CHAPTER
TWENTYONE

STATISTICS

This chapter describes the statistical functions in the library. The basic statistical functions include routines to compute
the mean, variance and standard deviation. More advanced functions allow you to calculate absolute deviations, skew-
ness, and kurtosis as well as the median and arbitrary percentiles. The algorithms use recurrence relations to compute
average quantities in a stable way, without large intermediate values that might overflow.

The functions are available in versions for datasets in the standard floating-point and integer types. The ver-
sions for double precision floating-point data have the prefix gsl_stats and are declared in the header file
gsl_statistics_double.h. The versions for integer data have the prefix gsl_stats_int and are declared in the
header file gsl_statistics_int.h. All the functions operate on C arrays with a stride parameter specifying the
spacing between elements.

21.1 Mean, Standard Deviation and Variance

double gsl_stats_mean(const double data[], size_t stride, size_t n)
This function returns the arithmetic mean of data, a dataset of length n with stride stride. The arithmetic
mean, or sample mean, is denoted by /i and defined as,

where x; are the elements of the dataset data. For samples drawn from a gaussian distribution the variance of
fis o2/N.
double gsl_stats_variance (const double data[], size_t stride, size_t n)

This function returns the estimated, or sample, variance of data, a dataset of length n with stride stride. The
estimated variance is denoted by 52 and is defined by,

~2 1 ~\2
o° = 7(N—1) Z(Ii—ﬂ)

where z; are the elements of the dataset data. Note that the normalization factor of 1/(N — 1) results from the
derivation of 62 as an unbiased estimator of the population variance o2. For samples drawn from a Gaussian
distribution the variance of 52 itself is 204 /IV.

This function computes the mean via a call to gs1_stats_mean(). If you have already computed the mean then
you can pass it directly to gsl_stats_variance_m().

double gsl_stats_variance_m(const double data[], size_t stride, size_t n, double mean)
This function returns the sample variance of data relative to the given value of mean. The function is computed
with fi replaced by the value of mean that you supply,

. 1
62 = ~-D Z(mi — mean)?
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double gsl_stats_sd(const double data[], size_t stride, size_t n)

double gsl_stats_sd_m(const double data[], size_t stride, size_t n, double mean)
The standard deviation is defined as the square root of the variance. These functions return the square root of the
corresponding variance functions above.

double gsl_stats_tss(const double data[], size_t stride, size_t n)

double gsl_stats_tss_m(const double data[], size_t stride, size_t n, double mean)
These functions return the total sum of squares (TSS) of data about the mean. For gs1_stats_tss_m() the
user-supplied value of mean is used, and for gs1_stats_tss() it is computed using gsI_stats_mean().

TSS = Z(xl — mean)?

double gsl_stats_variance_with_fixed_mean(const double data[], size_t stride, size_t n, double mean)
This function computes an unbiased estimate of the variance of data when the population mean mean of the
underlying distribution is known a priori. In this case the estimator for the variance uses the factor 1/N and the
sample mean /i is replaced by the known population mean g,

0 = 5 Yol )

double gsl_stats_sd_with_fixed_mean(const double data[], size_t stride, size_t n, double mean)
This function calculates the standard deviation of data for a fixed population mean mean. The result is the
square root of the corresponding variance function.

21.2 Absolute deviation

double gsl_stats_absdev(const double data[], size_t stride, size_t n)
This function computes the absolute deviation from the mean of data, a dataset of length n with stride stride.
The absolute deviation from the mean is defined as,

1 N
absdev = v Z |x; — [

where x; are the elements of the dataset data. The absolute deviation from the mean provides a more robust
measure of the width of a distribution than the variance. This function computes the mean of data via a call to
gsl_stats_mean().

double gsl_stats_absdev_m(const double data[], size_t stride, size_t n, double mean)
This function computes the absolute deviation of the dataset data relative to the given value of mean,

1
absdev = N Z |x; — mean)|

This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or
wish to calculate the absolute deviation relative to another value (such as zero, or the median).
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21.3 Higher moments (skewness and kurtosis)

double gsl_stats_skew(const double data[], size_t stride, size_t n)
This function computes the skewness of data, a dataset of length n with stride stride. The skewness is defined
as,

~\ 3
1 T —fi
skew = —
v (%5
where x; are the elements of the dataset data. The skewness measures the asymmetry of the tails of a distribution.

The function computes the mean and estimated standard deviation of data via calls to gs1_stats_mean() and
gsl_stats_sd().

double gsl_stats_skew_m_sd(const double data[], size_t stride, size_t n, double mean, double sd)
This function computes the skewness of the dataset data using the given values of the mean mean and standard
deviation sd,

3
1 T; — mean
skew = — _
v (=)
These functions are useful if you have already computed the mean and standard deviation of data and want to
avoid recomputing them.

double gsl_stats_kurtosis(const double data[], size_t stride, size_t n)
This function computes the kurtosis of data, a dataset of length n with stride stride. The kurtosis is defined

as,
1 T — b 4
kurtosis = —E ! -
urtosis (N ( P >> 3

The kurtosis measures how sharply peaked a distribution is, relative to its width. The kurtosis is normalized to
zero for a Gaussian distribution.

double gsl_stats_kurtosis_m_sd(const double data[], size_t stride, size_t n, double mean, double sd)
This function computes the kurtosis of the dataset data using the given values of the mean mean and standard

deviation sd,
1 T; — mean 4
kurtosis = — E e -3
urtosts N < ( p” ) )

This function is useful if you have already computed the mean and standard deviation of data and want to avoid
recomputing them.

21.4 Autocorrelation

double gsl_stats_lagl_autocorrelation(const double data[], const size_t stride, const size_t n)
This function computes the lag-1 autocorrelation of the dataset data.

Doig(@i — ) (wio1 — f1)
Sy (i — 1) (i — 1)

a; =

double gsl_stats_lagl_autocorrelation_m(const double data[], const size_t stride, const size_t n, const
double mean)
This function computes the lag-1 autocorrelation of the dataset data using the given value of the mean mean.
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21.5 Covariance

double gsl_stats_covariance (const double datal[], const size_t stridel, const double data2[], const size_t
stride2, const size_t n)
This function computes the covariance of the datasets datal and data2 which must both be of the same length
n.
1 n
covar = (=] Z(ml —Z)(yi — 9)

=1

double gsl_stats_covariance_m(const double datal[], const size_t stridel, const double data2[], const size_t
stride2, const size_t n, const double mean1, const double mean2)
This function computes the covariance of the datasets datal and dataZ2 using the given values of the means,
meanl and mean2. This is useful if you have already computed the means of datal and data2 and want to avoid
recomputing them.

21.6 Correlation

double gsl_stats_correlation(const double datal[], const size_t stridel, const double data2[], const size_t
stride2, const size_t n)
This function efficiently computes the Pearson correlation coeflicient between the datasets datal and data2
which must both be of the same length n.

_ cov(z,y) ﬁ Y@ —2)(yi —9)

OOy S - 22 S - 92

double gsl_stats_spearman(const double datal[], const size_t stridel, const double data2[], const size_t stride2,
const size_t n, double work[])
This function computes the Spearman rank correlation coefficient between the datasets datal and data2 which
must both be of the same length n. Additional workspace of size 2 * n is required in work. The Spearman rank
correlation between vectors x and y is equivalent to the Pearson correlation between the ranked vectors x p and
YR, where ranks are defined to be the average of the positions of an element in the ascending order of the values.

21.7 Weighted Samples

The functions described in this section allow the computation of statistics for weighted samples. The functions accept
an array of samples, xz;, with associated weights, w;. Each sample x; is considered as having been drawn from a
Gaussian distribution with variance 7. The sample weight w; is defined as the reciprocal of this variance, w; = 1/07.
Setting a weight to zero corresponds to removing a sample from a dataset.

double gsl_stats_wmean (const double w[], size_t wstride, const double data[], size_t stride, size_t n)
This function returns the weighted mean of the dataset data with stride stride and length n, using the set of
weights w with stride wstride and length n. The weighted mean is defined as,

~ E W;T;
0w =
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double gsl_stats_wvariance (const double w[], size_t wstride, const double data[], size_t stride, size_t n)
This function returns the estimated variance of the dataset data with stride stride and length n, using the set
of weights w with stride wstride and length n. The estimated variance of a weighted dataset is calculated as,

2 sz
7 (Z wz sz

Note that this expression reduces to an unweighted variance with the familiar 1/(N — 1) factor when there are
N equal non-zero weights.

double gsl_stats_wvariance_m(const double w[], size_t wstride, const double datal[], size_t stride, size_t n,
double wmean)
This function returns the estimated variance of the weighted dataset data using the given weighted mean wmean.

double gsl_stats_wsd(const double w[], size_t wstride, const double data[], size_t stride, size_t n)
The standard deviation is defined as the square root of the variance. This function returns the square root of the
corresponding variance function gsl_stats_wvariance () above.

double gsl_stats_wsd_m(const double w[], size_t wstride, const double data[], size_t stride, size_t n, double
wmean)
This function returns the square root of the corresponding variance function gsl_stats_wvariance_m()
above.

double gsl_stats_wvariance_with_fixed_mean(const double w[], size_t wstride, const double data[], size_t
stride, size_t n, const double mean)
This function computes an unbiased estimate of the variance of the weighted dataset data when the population
mean mean of the underlying distribution is known a priori. In this case the estimator for the variance replaces
the sample mean [ by the known population mean ,

52 = Zwi(xi - M)2
> w;

double gsl_stats_wsd_with_fixed_mean(const double w[], size_t wstride, const double data[], size_t stride,
size_t n, const double mean)
The standard deviation is defined as the square root of the variance. This function returns the square root of the
corresponding variance function above.

double gsl_stats_wtss(const double w[], const size_t wstride, const double data[], size_t stride, size_t n)

double gsl_stats_wtss_m(const double w[], const size_t wstride, const double data[], size_t stride, size_t n,
double wmean)
These functions return the weighted total sum of squares (TSS) of data about the weighted mean. For
gsl_stats_wtss_m() the user-supplied value of wmean is used, and for gsI_stats_wtss() it is computed
using gsl_stats_wmean().

TSS = Z w;(x; — wmean)?

double gsl_stats_wabsdev(const double w[], size_t wstride, const double data[], size_t stride, size_t n)
This function computes the weighted absolute deviation from the weighted mean of data. The absolute deviation
from the mean is defined as,

sz|xz il
sz

double gsl_stats_wabsdev_m(const double w[], size_t wstride, const double data[], size_t stride, size_t n, double
wmean)
This function computes the absolute deviation of the weighted dataset data about the given weighted mean
wmean.

absdev =
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double gsl_stats_wskew(const double w[], size_t wstride, const double data[], size_t stride, size_t n)
This function computes the weighted skewness of the dataset data.

Y wi((z —#)/5)°
Do wi

double gsl_stats_wskew_m_sd(const double w[], size_t wstride, const double data[], size_t stride, size_t n, double
wmean, double wsd)

This function computes the weighted skewness of the dataset data using the given values of the weighted mean
and weighted standard deviation, wmean and wsd.

skew =

double gsl_stats_wkurtosis(const double w[], size_t wstride, const double data[], size_t stride, size_t n)
This function computes the weighted kurtosis of the dataset data.

Ywi((z —a)/6)* 3
> w;

double gsl_stats_wkurtosis_m_sd(const double w[], size_t wstride, const double data[], size_t stride, size_t n,
double wmean, double wsd)
This function computes the weighted kurtosis of the dataset data using the given values of the weighted mean
and weighted standard deviation, wmean and wsd.

kurtosis =

21.8 Maximum and Minimum values

The following functions find the maximum and minimum values of a dataset (or their indices). If the data contains
NaN-s then a NaN will be returned, since the maximum or minimum value is undefined. For functions which return an
index, the location of the first NaN in the array is returned.

double gsl_stats_max(const double data[], size_t stride, size_t n)
This function returns the maximum value in data, a dataset of length n with stride stride. The maximum
value is defined as the value of the element x; which satisfies x; > x; for all j.

If you want instead to find the element with the largest absolute magnitude you will need to apply fabs() or
abs () to your data before calling this function.

double gsl_stats_min(const double data[], size_t stride, size_t n)
This function returns the minimum value in data, a dataset of length n with stride stride. The minimum value
is defined as the value of the element x; which satisfies z; < x; for all j.

If you want instead to find the element with the smallest absolute magnitude you will need to apply fabs() or
abs () to your data before calling this function.

void gsl_stats_minmax (double *min, double *max, const double data[], size_t stride, size_t n)
This function finds both the minimum and maximum values min, max in data in a single pass.

size_t gsl_stats_max_index(const double data[], size_t stride, size_t n)
This function returns the index of the maximum value in data, a dataset of length n with stride stride. The
maximum value is defined as the value of the element x; which satisfies z; > x; for all j. When there are several
equal maximum elements then the first one is chosen.

size_t gsl_stats_min_index(const double data[], size_t stride, size_t n)
This function returns the index of the minimum value in data, a dataset of length n with stride stride. The
minimum value is defined as the value of the element x; which satisfies z; > x; for all j. When there are several
equal minimum elements then the first one is chosen.

void gsl_stats_minmax_index(size_t *min_index, size_t *max_index, const double data[], size_t stride, size_t n)
This function returns the indexes min_index, max_index of the minimum and maximum values in data in a
single pass.
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21.9 Median and Percentiles

The median and percentile functions described in this section operate on sorted data in O(1) time. There is also a
routine for computing the median of an unsorted input array in average O(n) time using the quickselect algorithm. For
convenience we use guantiles, measured on a scale of 0 to 1, instead of percentiles (which use a scale of O to 100).

double gsl_stats_median_from_sorted_data(const double sorted_data[], const size_t stride, const size_t n)
This function returns the median value of sorted_data, a dataset of length n with stride stride. The elements
of the array must be in ascending numerical order. There are no checks to see whether the data are sorted, so the
function gs1_sort () should always be used first.

When the dataset has an odd number of elements the median is the value of element (n — 1) /2. When the dataset
has an even number of elements the median is the mean of the two nearest middle values, elements (n — 1)/2
and n/2. Since the algorithm for computing the median involves interpolation this function always returns a
floating-point number, even for integer data types.

double gsl_stats_median(double data[], const size_t stride, const size_t n)
This function returns the median value of data, a dataset of length n with stride stride. The median is found
using the quickselect algorithm. The input array does not need to be sorted, but note that the algorithm rearranges
the array and so the input is not preserved on output.

double gsl_stats_quantile_from_sorted_data(const double sorted_data[], size_t stride, size_t n, double f)
This function returns a quantile value of sorted_data, a double-precision array of length n with stride stride.
The elements of the array must be in ascending numerical order. The quantile is determined by the £, a fraction
between 0 and 1. For example, to compute the value of the 75th percentile £ should have the value 0.75.

There are no checks to see whether the data are sorted, so the function gs1_sort () should always be used first.

The quantile is found by interpolation, using the formula
quantile = (1 — §)z; + dxi41

where i is floor((n - 1)f) anddis (n —1)f —i.

Thus the minimum value of the array (data[0@*stride]) is given by f equal to zero, the maximum value
(data[(n-1)*stride]) is given by f equal to one and the median value is given by f equal to 0.5. Since the
algorithm for computing quantiles involves interpolation this function always returns a floating-point number,
even for integer data types.

21.10 Order Statistics

The k-th order statistic of a sample is equal to its k-th smallest value. The k-th order statistic of a set of n values
x = {x;},1 < i < nisdenoted T(k)- The median of the set x is equal to x(ﬂ) if n is odd, or the average of x(ﬂ)
2 2
and T(n41) if n is even. The k-th smallest element of a length n vector can be found in average O(n) time using the
2
quickselect algorithm.

double gsl_stats_select (double data[], const size_t stride, const size_t n, const size_t k)
This function finds the k-th smallest element of the input array data of length n and stride stride using the
quickselect method. The algorithm rearranges the elements of data and so the input array is not preserved on
output.
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21.11 Robust Location Estimates

A location estimate refers to a typical or central value which best describes a given dataset. The mean and median are
both examples of location estimators. However, the mean has a severe sensitivity to data outliers and can give erroneous
values when even a small number of outliers are present. The median on the other hand, has a strong insensitivity to
data outliers, but due to its non-smoothness it can behave unexpectedly in certain situations. GSL offers the following
alternative location estimators, which are robust to the presence of outliers.

21.11.1 Trimmed Mean

The trimmed mean, or truncated mean, discards a certain number of smallest and largest samples from the input vector
before computing the mean of the remaining samples. The amount of trimming is specified by a factor a € [0, 0.5].
Then the number of samples discarded from both ends of the input vector is |an |, where n is the length of the input.
So to discard 25% of the samples from each end, one would set o = 0.25.

double gsl_stats_trmean_from_sorted_data(const double alpha, const double sorted_data[], const size_t
stride, const size_t n)
This function returns the trimmed mean of sorted_data, a dataset of length n with stride stride. The elements
of the array must be in ascending numerical order. There are no checks to see whether the data are sorted, so the
function gsl_sort () should always be used first. The trimming factor « is given in alpha. If o > 0.5, then
the median of the input is returned.

21.11.2 Gastwirth Estimator

Gastwirth’s location estimator is a weighted sum of three order statistics,
gastwirth = 0.3 x Q% + 0.4 x Q% + 0.3 x Q%
where Q% is the one-third quantile, Q% is the one-half quantile (i.e. median), and Qg is the two-thirds quantile.

double gsl_stats_gastwirth_from_sorted_data(const double sorted_data[], const size_t stride, const size_t n)
This function returns the Gastwirth location estimator of sorted_data, a dataset of length n with stride stride.
The elements of the array must be in ascending numerical order. There are no checks to see whether the data are
sorted, so the function gsI_sort () should always be used first.

21.12 Robust Scale Estimates

A robust scale estimate, also known as a robust measure of scale, attempts to quantify the statistical dispersion (vari-
ability, scatter, spread) in a set of data which may contain outliers. In such datasets, the usual variance or standard
deviation scale estimate can be rendered useless by even a single outlier.

21.12.1 Median Absolute Deviation (MAD)

The median absolute deviation (MAD) is defined as
MAD = 1.4826 x median {|x; — median (x)|}

In words, first the median of all samples is computed. Then the median is subtracted from all samples in the input
to find the deviation of each sample from the median. The median of all absolute deviations is then the MAD. The
factor 1.4826 makes the MAD an unbiased estimator of the standard deviation for Gaussian data. The median absolute
deviation has an asymptotic efficiency of 37%.

294 Chapter 21. Statistics



GNU Scientific Library, Release 2.7

double gsl_stats_mad® (const double data[], const size_t stride, const size_t n, double work[])

double gsl_stats_mad(const double data[], const size_t stride, const size_t n, double work[])
These functions return the median absolute deviation of data, a dataset of length n and stride stride. The
mad® function calculates median {|z; — median ()|} (i.e. the M AD statistic without the bias correction scale
factor). These functions require additional workspace of size n provided in work.

21.12.2 S, Statistic

The S, statistic developed by Croux and Rousseeuw is defined as
Sy, = 1.1926 X ¢, x median; {median; (|z; — z;|)}

For each sample z;,1 < ¢ < n, the median of the values |z; — ;| is computed for all z;,1 < j < n. This yields
n values, whose median then gives the final S,,. The factor 1.1926 makes S,, an unbiased estimate of the standard
deviation for Gaussian data. The factor ¢, is a correction factor to correct bias in small sample sizes. S, has an
asymptotic efficiency of 58%.

double gsl_stats_Sn®_from_sorted_data(const double sorted_data[], const size_t stride, const size_t n, double
work[])

double gsl_stats_Sn_from_sorted_data(const double sorted_data[], const size_t stride, const size_t n, double
work([])
These functions return the S,, statistic of sorted_data, a dataset of length n with stride stride. The elements
of the array must be in ascending numerical order. There are no checks to see whether the data are sorted, so the
function gsI1_sort () should always be used first. The Sn® function calculates median; {median; (|z; — z;|)}
(i.e. the S, statistic without the bias correction scale factors). These functions require additional workspace of
size n provided in work.

21.12.3 (), Statistic

The @, statistic developed by Croux and Rousseeuw is defined as
Qn, =2.21914 x d,, x {|.Tz - $j| 1< ]}(k)

The factor 2.21914 makes (),, an unbiased estimate of the standard deviation for Gaussian data. The factor d,, is a
correction factor to correct bias in small sample sizes. The order statistic is

k( L;’JQH)

double gsl_stats_Qn®_from_sorted_data(const double sorted_data[], const size_t stride, const size_t n, double
work[], int work_int[])

@, has an asymptotic efficiency of 82%.

double gsl_stats_Qn_from_sorted_data(const double sorted_data[], const size_t stride, const size_t n, double
work[], int work_int[])
These functions return the @), statistic of sorted_data, a dataset of length n with stride stride. The elements
of the array must be in ascending numerical order. There are no checks to see whether the data are sorted, so the
function gsl_sort () should always be used first. The Qn® function calculates {|z; — ;|7 < j} ) (i.e. Qn
without the bias correction scale factors). These functions require additional workspace of size 3n provided in
work and integer workspace of size 5n provided in work_int.

21.12. Robust Scale Estimates 295



GNU Scientific Library, Release 2.7

21.13 Examples

Here is a basic example of how to use the statistical functions:

#include <stdio.h>
#include <gsl/gsl_statistics.h>

int

main(void)

{
double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6};
double mean, variance, largest, smallest;

mean gsl_stats_mean(data, 1, 5);
variance = gsl_stats_variance(data, 1, 5);
largest gsl_stats_max(data, 1, 5);
smallest = gsl_stats_min(data, 1, 5);

printf ("The dataset is , , , , \n",
data[0], data[l], data[2], data[3], data[4]);

printf ("The sample mean is \n'", mean);

printf ("The estimated variance is \n", variance);
printf ("The largest value is \n", largest);
printf ("The smallest value is \n", smallest);
return 0;

The program should produce the following output,

The dataset is 17.2, 18.1, 16.5, 18.3, 12.6
The sample mean is 16.54

The estimated variance is 5.373

The largest value is 18.3

The smallest value is 12.6

Here is an example using sorted data,

#include <stdio.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_statistics.h>

int

main(void)

{
double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6};
double median, upperq, lowerq;

printf ("Original dataset: , , , , \n",
data[0], data[l], data[2], data[3], data[4]);

gsl_sort (data, 1, 5);

(continues on next page)
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(continued from previous page)

printf ("Sorted dataset: , , , , \n",
data[0], data[l], data[2], data[3], data[4]);

median
= gsl_stats_median_from_sorted_data (data,
1, 5);
upperq
= gsl_stats_quantile_from_sorted_data (data,
1, 5,
0.75);
lowerq
= gsl_stats_quantile_from_sorted_data (data,
1, 5,
0.25);

printf ("The median is \n", median);

printf ("The upper quartile is %g\n", upperq);
printf ("The lower quartile is \n", lowerq);
return 0;

}

This program should produce the following output,

Original dataset: 17.2, 18.1, 16.5, 18.3, 12.6
Sorted dataset: 12.6, 16.5, 17.2, 18.1, 18.3
The median is 17.2

The upper quartile is 18.1

The lower quartile is 16.5

21.14 References and Further Reading

The standard reference for almost any topic in statistics is the multi-volume Advanced Theory of Statistics by Kendall
and Stuart.

* Maurice Kendall, Alan Stuart, and J. Keith Ord. The Advanced Theory of Statistics (multiple volumes) reprinted
as Kendall’s Advanced Theory of Statistics. Wiley, ISBN 047023380X.

Many statistical concepts can be more easily understood by a Bayesian approach. The following book by Gelman,
Carlin, Stern and Rubin gives a comprehensive coverage of the subject.

e Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin. Bayesian Data Analysis. Chapman & Hall,
ISBN 0412039915.

For physicists the Particle Data Group provides useful reviews of Probability and Statistics in the “Mathematical Tools”
section of its Annual Review of Particle Physics.

* Review of Particle Properties, R.M. Barnett et al., Physical Review D54, 1 (1996)
The Review of Particle Physics is available online at the website http://pdg.1bl.gov/.
The following papers describe robust scale estimation,

e C. Croux and P. J. Rousseeuw, Time-Efficient algorithms for two highly robust estimators of scale, Comp. Stat.,
Physica, Heidelberg, 1992.
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* P. J. Rousseeuw and C. Croux, Explicit scale estimators with high breakdown point, L1-Statistical Analysis and
Related Methods, pp. 77-92, 1992.
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CHAPTER
TWENTYTWO

RUNNING STATISTICS

This chapter describes routines for computing running statistics, also known as online statistics, of data. These routines
are suitable for handling large datasets for which it may be inconvenient or impractical to store in memory all at once.
The data can be processed in a single pass, one point at a time. Each time a data point is added to the accumulator,
internal parameters are updated in order to compute the current mean, variance, standard deviation, skewness, and
kurtosis. These statistics are exact, and are updated with numerically stable single-pass algorithms. The median and
arbitrary quantiles are also available, however these calculations use algorithms which provide approximations, and
grow more accurate as more data is added to the accumulator.

The functions described in this chapter are declared in the header file gsl_rstat.h.

22.1 Initializing the Accumulator

type gsl_rstat_workspace
This workspace contains parameters used to calculate various statistics and are updated after each data point is
added to the accumulator.

gsl_rstat_workspace *gsl_rstat_alloc(void)
This function allocates a workspace for computing running statistics. The size of the workspace is O(1).

void gsl_rstat_free(gsl_rstat_workspace *w)
This function frees the memory associated with the workspace .

int gsl_rstat_reset (gsl_rstat_workspace *w)
This function resets the workspace w to its initial state, so it can begin working on a new set of data.

22.2 Adding Data to the Accumulator

int gsl_rstat_add(const double x, gsl_rstar_workspace *w)
This function adds the data point x to the statistical accumulator, updating calculations of the mean, variance,
standard deviation, skewness, kurtosis, and median.

size_t gsl_rstat_n(const gsl_rstat_workspace *w)
This function returns the number of data so far added to the accumulator.
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22.3 Current Statistics

double gsl_rstat_min(const gsl_rstat_workspace *w)
This function returns the minimum value added to the accumulator.

double gsl_rstat_max(const gs/_rstat_workspace *w)
This function returns the maximum value added to the accumulator.

double gsl_rstat_mean(const gsl_rstat_workspace *w)
This function returns the mean of all data added to the accumulator, defined as

double gsl_rstat_variance(const gsl_rstat_workspace *w)
This function returns the variance of all data added to the accumulator, defined as

~92 1 ~\2
g :mZ(ﬂfi—M)

double gsl_rstat_sd(const gsl_rstat_workspace *w)
This function returns the standard deviation of all data added to the accumulator, defined as the square root of
the variance given above.

double gsl_rstat_sd_mean(const gs/_rstat_workspace *w)
This function returns the standard deviation of the mean, defined as

G

Uﬂ—ﬁ

double gsl_rstat_rms(const gsl_rstat_workspace *w)
This function returns the root mean square of all data added to the accumulator, defined as

double gsl_rstat_skew(const gsi_rstat_workspace *w)
This function returns the skewness of all data added to the accumulator, defined as

1 wi — i)’
skjew—NZ< 5 )

double gsl_rstat_kurtosis(const gsl_rstat_workspace *w)
This function returns the kurtosis of all data added to the accumulator, defined as

. 1 o — )’
kurt = —E -
urtosis <N ( p >> 3

double gsl_rstat_median(gs/_rstat_workspace *w)
This function returns an estimate of the median of the data added to the accumulator.
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22.4 Quantiles

The functions in this section estimate quantiles dynamically without storing the entire dataset, using the algorithm of
Jain and Chlamtec, 1985. Only five points (markers) are stored which represent the minimum and maximum of the
data, as well as current estimates of the p/2-, p-, and (1 + p)/2-quantiles. Each time a new data point is added, the
marker positions and heights are updated.

type gsl_rstat_quantile_workspace
This workspace contains parameters for estimating quantiles of the current dataset

gsl_rstat_quantile_workspace *gsl_rstat_quantile_alloc(const double p)
This function allocates a workspace for the dynamic estimation of p-quantiles, where p is between 0 and 1. The
median corresponds to p = 0.5. The size of the workspace is O(1).

void gsl_rstat_quantile_free(gs/ rstar_quantile_workspace *w)
This function frees the memory associated with the workspace .

int gsl_rstat_quantile_reset (gsl_rstat_quantile_workspace *w)
This function resets the workspace w to its initial state, so it can begin working on a new set of data.

int gsl_rstat_quantile_add(const double x, gsl_rstat_quantile_workspace *w)
This function updates the estimate of the p-quantile with the new data point x.

double gsl_rstat_quantile_get(gs/_rstat_quantile_workspace *w)
This function returns the current estimate of the p-quantile.

22.5 Examples

Here is a basic example of how to use the statistical functions:

#include <stdio.h>
#include <gsl/gsl_rstat.h>

int

main(void)

{
double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6};
double mean, variance, largest, smallest, sd,

rms, sd_mean, median, skew, kurtosis;

gsl_rstat_workspace *rstat_p = gsl _rstat_alloc();
size_t i, n;

/* add data to rstat accumulator */
for (4 = 0; 1 < 5; ++1)
gsl_rstat_add(datal[i], rstat_p);

mean = gsl_rstat_mean(rstat_p);
variance = gsl_rstat_variance(rstat_p);
largest = gsl_rstat_max(rstat_p);
smallest = gsl_rstat_min(rstat_p);

median = gsl_rstat_median(rstat_p);
sd = gsl_rstat_sd(rstat_p);
sd_mean = gsl_rstat_sd_mean(rstat_p);
skew = gsl_rstat_skew(rstat_p);

(continues on next page)
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(continued from previous page)

rms = gsl_rstat_rms(rstat_p);
kurtosis = gsl_rstat_kurtosis(rstat_p);
n = gsl_rstat_n(rstat_p);

printf ("The dataset is , , , , \n",
data[0], data[l], data[2], data[3], data[4]);

printf ("The sample mean is \n'", mean);

printf ("The estimated variance is \n", variance);
printf ("The largest value is \n", largest);

printf ("The smallest value is \n", smallest);
printf( "The median is \n", median);

printf( "The standard deviation is \n", sd);

printf( "The root mean square is \n'", rms);

printf( "The standard devation of the mean is \n", sd_mean);
printf( "The skew is \n", skew);

printf( "The kurtosis \n", kurtosis);

printf( "There are %zu items in the accumulator\n", n);

gsl_rstat_reset(rstat_p);
n = gsl_rstat_n(rstat_p);
printf( "There are %zu items in the accumulator\n", n);

gsl_rstat_free(rstat_p);

return 0;

}

The program should produce the following output,

The dataset is 17.2, 18.1, 16.5, 18.3, 12.6
The sample mean is 16.54

The estimated variance is 5.373

The largest value is 18.3

The smallest value is 12.6

The median is 17.2

The standard deviation is 2.31797

The root mean square is 16.6694

The standard devation of the mean is 1.03663
The skew is -0.829058

The kurtosis -1.2217

There are 5 items in the accumulator

There are 0 items in the accumulator

This next program estimates the lower quartile, median and upper quartile from 10,000 samples of a random Rayleigh
distribution, using the P? algorithm of Jain and Chlamtec. For comparison, the exact values are also computed from
the sorted dataset.

#include <stdio.h>

#include <stdlib.h>

#include <gsl/gsl_rstat.h>
#include <gsl/gsl_statistics.h>

(continues on next page)
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(continued from previous page)

#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sort.h>

int

main(void)

{

const size_t N = 10000;
double *data = malloc(N * sizeof(double));

gsl_rstat_quantile_workspace *work_25 = gsl_rstat_quantile_alloc(0.25);
gsl_rstat_quantile_workspace *work_50 = gsl_rstat_quantile_alloc(0.5);
gsl_rstat_quantile_workspace *work_75 = gsl_rstat_quantile_alloc(0.75);

gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
double exact_p25, exact_p50, exact_p75;
double val_p25, val_p50, val_p75;

size_t i;

/* add data to quantile accumulators; also store data for exact
* comparisons */
for (i = 0; i < N; ++1i)
{
data[i] = gsl_ran_rayleigh(r, 1.0);
gsl_rstat_quantile_add(data[i], work_25);
gsl_rstat_quantile_add(data[i], work_50);
gsl_rstat_quantile_add(data[i], work_75);

/* exact values */

gsl_sort(data, 1, N);

exact_p25 = gsl_stats_quantile_from_sorted_data(data, 1, N, 0
exact_p50 = gsl_stats_quantile_from_sorted_data(data, 1, N, 0.5);
exact_p75 = gsl_stats_quantile_from_sorted_data(data, 1, N, 0

/* estimated values */

val_p25 = gsl_rstat_quantile_get(work_25);
val_p50 = gsl_rstat_quantile_get(work_50);
val_p75 = gsl_rstat_quantile_get(work_75);

printf ("The dataset is , , , , , ...\n",
data[0], data[l], data[2], data[3], data[4]);

printf ("0.25 quartile: exact = , estimated = , error = \n",
exact_p25, val_p25, (val_p25 - exact_p25) / exact_p25);

printf ("0.50 quartile: exact = , estimated = , error = \n",
exact_p50, val_p50, (val_p50 - exact_p50) / exact_p50);

printf ("0.75 quartile: exact = , estimated = , error = \n",

exact_p75, val_p75, (val_p75 - exact_p75) / exact_p75);
gsl_rstat_quantile_free(work_25);
gsl_rstat_quantile_free(work_50);
gsl_rstat_quantile_free(work_75);

gsl_rng_free(r);

(continues on next page)
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free(data);

return 0;

}

The program should produce the following output,

The dataset is 0.00645272, 0.0074002, 0.0120706, 0.0207256, 0.0227282,

0.25 quartile: exact = 0.75766, estimated = 0.75580, error = -2.450209e-03
0.50 quartile: exact = 1.17508, estimated = 1.17438, error = -5.995912e-04
0.75 quartile: exact = 1.65347, estimated = 1.65696, error = 2.110571e-03

22.6 References and Further Reading

The algorithm used to dynamically estimate p-quantiles is described in the paper,

* R.Jain and I. Chlamtac. The P*2 algorithm for dynamic calculation of quantiles and histograms without storing
observations, Communications of the ACM, Volume 28 (October), Number 10, 1985, p. 1076-1085.
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CHAPTER
TWENTYTHREE

MOVING WINDOW STATISTICS

This chapter describes routines for computing moving window statistics (also called rolling statistics and running statis-
tics), using a window around a sample which is used to calculate various local statistical properties of an input data
stream. The window is then slid forward by one sample to process the next data point and so on.

The functions described in this chapter are declared in the header file gs1_movstat.h.

23.1 Introduction

This chapter is concerned with calculating various statistics from subsets of a given dataset. The main idea is to compute
statistics in the vicinity of a given data sample by defining a window which includes the sample itself as well as some
specified number of samples before and after the sample in question. For a sample x;, we define a window WiH’J as

W ={aig,. @ wig)

The parameters H and J are non-negative integers specifying the number of samples to include before and after the
sample x;. Statistics such as the mean and standard deviation of the window WiH J may be computed, and then the
window is shifted forward by one sample to focus on z;4 ;. The total number of samples in the window is K = H+J+1.
To define a symmetric window centered on z;, one would set H = J = | K/2].

23.2 Handling Endpoints

When processing samples near the ends of the input signal, there will not be enough samples to fill the window WiH’J
defined above. Therefore the user must specify how to construct the windows near the end points. This is done by
passing an input argument of type gsI_movstat_end_t:

type gsl_movstat_end_t
This data type specifies how to construct windows near end points and can be selected from the following choices:

GSL_MOVSTAT_END_PADZERO
With this option, a full window of length K will be constructed by inserting zeros into the window near
the signal end points. Effectively, the input signal is modified to
z=40,...,0,z1,29,...,Tp—1,2,,0,...,0}
—— ——

H zeros J zeros

to ensure a well-defined window for all x;.
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GSL_MOVSTAT_END_PADVALUE
With this option, a full window of length K will be constructed by padding the window with the first and
last sample in the input signal. Effectively, the input signal is modified to

x:{xlv"‘71'171'1;(523"'7xn71axn7xnv~”axn}
——— —_———

H J

GSL_MOVSTAT_END_TRUNCATE
With this option, no padding is performed, and the windows are simply truncated as the end points are
approached.

23.3 Allocation for Moving Window Statistics

type gsl_movstat_workspace
The moving window statistical routines use a common workspace.

gsl_movstat_workspace *gsl_movstat_alloc(const size_t K)
This function allocates a workspace for computing symmetric, centered moving statistics with a window length
of K samples. In this case, H = J = | K/2]. The size of the workspace is O(7K).

gsl_movstat_workspace *gs1l_movstat_alloc2 (const size_t H, const size_t J)
This function allocates a workspace for computing moving statistics using a window with H samples prior to the
current sample, and J samples after the current sample. The total window size is K = H + J + 1. The size of
the workspace is O(7K).

void *gsl_movstat_free (gsi_movstat_workspace *w)
This function frees the memory associated with w.

23.4 Moving Mean

The moving window mean calculates the mean of the values of each window WiH’J.

. 1
'ui:‘ H,J Z Tm

Wi wmewiH,J

Here, WLH ’J’ represents the number of elements in the window WiH"]. This will normally be K, unless the

GSL_MOVSTAT_END_TRUNCATE option is selected, in which case it could be less than K near the signal end points.

int gs1_movstat_mean(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *y,
gsl_movstat_workspace *w)
This function computes the moving window mean of the input vector x, storing the output in y. The parameter
endtype specifies how windows near the ends of the input should be handled. It is allowed to have x = y for an
in-place moving mean.
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23.5 Moving Variance and Standard Deviation

The moving window variance calculates the sample variance of the values of each window WiH’J, defined by

1
~2 j: A~ \2
(’”i ’J‘ 1) zmeW i’

where fi; is the mean of WiH’J defined above. The standard deviation &; is the square root of the variance.

int gsl_movstat_variance(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *y,
gsl_movstat_workspace *w)
This function computes the moving window variance of the input vector x, storing the output in y. The parameter
endtype specifies how windows near the ends of the input should be handled. It is allowed to have x = y for an
in-place moving variance.

int gsl_movstat_sd(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *y, gsl_movstat_workspace
*w)
This function computes the moving window standard deviation of the input vector x, storing the output in y. The
parameter endtype specifies how windows near the ends of the input should be handled. It is allowed to have x
= y for an in-place moving standard deviation.

23.6 Moving Minimum and Maximum

. . . - . . H,J
The moving minimum/maximum calculates the minimum and maximum values of each window W, ">~

2

y:m" = min (W-H’J)

y; %% = max (WiH’J)

int gs1_movstat_min(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *y, gsl_movstat_workspace
*w)
This function computes the moving minimum of the input vector x, storing the result in y. The parameter
endtype specifies how windows near the ends of the input should be handled. It is allowed to have x = y for an
in-place moving minimum.

int gs1_movstat_max(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *y, gsl_movstat_workspace
*w)
This function computes the moving maximum of the input vector x, storing the result in y. The parameter
endtype specifies how windows near the ends of the input should be handled. It is allowed to have x = y for an
in-place moving maximum.

int gs1_movstat_minmax(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *y_min, gsl_vector
*y_max, gs/_movstat_workspace *w)
This function computes the moving minimum and maximum of the input vector x, storing the window minimums
in y_min and the window maximums in y_max. The parameter endtype specifies how windows near the ends
of the input should be handled.
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23.7 Moving Sum

The moving window sum calculates the sum of the values of each window WiH"].

int gsl_movstat_sum(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *y,
gsl_movstat_workspace *w)
This function computes the moving window sum of the input vector x, storing the output in y. The parameter
endtype specifies how windows near the ends of the input should be handled. It is allowed to have x = y for an
in-place moving sum.

23.8 Moving Median

The moving median calculates the median of the window WiH’J for each sample z;:

1; = median (WlHJ)

int gsl_movstat_median(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *y,
gsl_movstat_workspace *w)
This function computes the moving median of the input vector x, storing the output in y. The parameter endtype
specifies how windows near the ends of the input should be handled. It is allowed for x = y for an in-place moving
window median.

23.9 Robust Scale Estimation

A common problem in statistics is to quantify the dispersion (also known as the variability, scatter, and spread) of a
set of data. Often this is done by calculating the variance or standard deviation. However these statistics are strongly
influenced by outliers, and can often provide erroneous results when even a small number of outliers are present.

Several useful statistics have emerged to provide robust estimates of scale which are not as susceptible to data outliers.
A few of these statistical scale estimators are described below.

23.9.1 Moving MAD

The median absolute deviation (MAD) for the window WiH’J is defined to be the median of the absolute deviations
from the window’s median:

MAD; = 1.4826 x median (‘WH 7 — median (W) D

The factor of 1.4826 makes the MAD an unbiased estimator of the standard deviation for Gaussian data. The MAD
has an efficiency of 37%. See here for more information.

int gs1_movstat_mad® (const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *xmedian, gsl_vector
*xmad, gsl_movstat_workspace *w)
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int gsl_movstat_mad(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *xmedian, gsl_vector
*xmad, gsl_movstat_workspace ¥*w)
These functions compute the moving MAD of the input vector x and store the result in xmad. The medians
of each window WiH’J are stored in xmedian on output. The inputs x, xmedian, and xmad must all be the
same length. The parameter endtype specifies how windows near the ends of the input should be handled. The
function mad® does not include the scale factor of 1.4826, while the function mad does include this factor.

23.9.2 Moving QQR
The g-quantile range (QQR) is the difference between the (1 — ¢) and ¢ quantiles of a set of data,

QR =Q1-¢g—Qq

The case ¢ = 0.25 corresponds to the well-known interquartile range (IQR), which is the difference between the 75th
and 25th percentiles of a set of data. The QQR is a trimmed estimator, the main idea being to discard the largest and
smallest values in a data window and compute a scale estimate from the remaining middle values. In the case of the
IQR, the largest and smallest 25% of the data are discarded and the scale is estimated from the remaining (middle)
50%.

int gsl_movstat_qqr (const gs/_movstat_end_t endtype, const gsl_vector *x, const double q, gs/_vector *xqqr,
gsl_movstat_workspace *w)
This function computes the moving QQR of the input vector x and stores the g-quantile ranges of each window
WiH’J in xqqr. The quantile parameter g must be between 0 and 0.5. The input ¢ = 0.25 corresponds to the
IQR. The inputs x and xqqr must be the same length. The parameter endtype specifies how windows near the

ends of the input should be handled.

23.9.3 Moving S,

The S, statistic proposed by Croux and Rousseeuw is based on pairwise differences between all samples in the window.
It has an efficiency of 58%, significantly higher than the MAD. See /ere for more information.

int gsl_movstat_Sn(const gs/_movstat_end_t endtype, const gsl_vector *x, gsl_vector *xscale,
gsl_movstat_workspace *w)
This function computes the moving S, of the input vector x and stores the output in xscale. The inputs x and
xscale must be the same length. The parameter endtype specifies how windows near the ends of the input
should be handled. It is allowed for x = xscale for an in-place moving window .S,,.

23.9.4 Moving @,

The @, statistic proposed by Croux and Rousseeuw is loosely based on the Hodges-Lehmann location estimator. It
has a relatively high efficiency of 82%. See here for more information.

int gs1_movstat_Qn(const gs/_movstat_end_t endtype, const gs/_vector *x, gsl_vector *xscale,
gsl_movstat_workspace *w)
This function computes the moving @,, of the input vector x and stores the output in xscale. The inputs x and
xscale must be the same length. The parameter endtype specifies how windows near the ends of the input
should be handled. It is allowed for x = xscale for an in-place moving window @,,.
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23.10 User-defined Moving Statistics

GSL offers an interface for users to define their own moving window statistics functions, without needing to implement
the edge-handling and accumulator machinery. This can be done by explicitly constructing the windows WiH’J for a
given input signal (gs1_movstat_£ill()), or by calculating a user-defined function for each window automatically.
In order to apply a user-defined function to each window, users must define a variable of type gs1_movstat_function
to pass into gs1_movstat_apply (). This structure is defined as follows.

type gsl_movstat_function
Structure specifying user-defined moving window statistical function:

typedef struct

{
double (* function) (const size_t n, double x[], void * params);
void * params;

} gsl_movstat_function;

This structure contains a pointer to the user-defined function as well as possible parameters to pass to the function.

double (*function)(const size_t n, double x[], void *params)
This function returns the user-defined statistic of the array x of length n. User-specified parameters are
passed in via params. It is allowed to modify the array x.

void *params
User-specified parameters to be passed into the function.

int gsl_movstat_apply(const gs/_movstat_end_t endtype, const gsl_movstat_function *F, const gsl_vector *x,
gsl_vector *y, gsl_movstat_workspace *w)
This function applies the user-defined moving window statistic specified in F to the input vector x, storing the
output in y. The parameter endtype specifies how windows near the ends of the input should be handled. It is
allowed for x = y for an in-place moving window calculation.

size_t gsl_movstat_£ill (const gs/_movstat_end_t endtype, const gsl_vector *x, const size_t idx, const size_t H,
const size_t J, double *window)
This function explicitly constructs the sliding window for the input vector x which is centered on the sample idx.
On output, the array window will contain Wigg’f. The number of samples to the left and right of the sample idx
are specified by H and J respectively. The parameter endtype specifies how windows near the ends of the input
should be handled. The function returns the size of the window.

23.11 Accumulators

Many of the algorithms of this chapter are based on an accumulator design, which process the input vector one sample at
a time, updating calculations of the desired statistic for the current window. Each accumulator is stored in the following
structure:

type gsl_movstat_accum
Structure specifying accumulator for moving window statistics:

typedef struct
{
size_t (* size) (const size_t n);
int (* init) (const size_t n, void * vstate);
int (* insert) (const double x, void * vstate);

(continues on next page)
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int (* delete) (void * vstate);
int (* get) (void * params, double * result, const void * vstate);
} gsl_movstat_accum;

The structure contains function pointers responsible for performing different tasks for the accumulator.

size_t (*size)(const size_t n)
This function returns the size of the workspace (in bytes) needed by the accumulator for a moving window
of length n.

int (*init)(const size_t n, void *vstate)
This function initializes the workspace vstate for a moving window of length n.

int (*insert)(const double x, void *vstate)
This function inserts a single sample x into the accumulator, updating internal calculations of the desired
statistic. If the accumulator is full (i.e. n samples have already been inserted), then the oldest sample is
deleted from the accumulator.

int (*delete)(void *vstate)
This function deletes the oldest sample from the accumulator, updating internal calculations of the desired
statistic.

int (*get)(void *params, double *result, const void *vstate)
This function stores the desired statistic for the current window in result. The input params specifies
optional parameters for calculating the statistic.

The following accumulators of type gsl_movstat_accum are defined by GSL to perform moving window statistics

calculations.

gsl_movstat_accum *gsl_movstat_accum_min

gsl_movstat_accum *gsl_movstat_accum_max

gsl_movstat_accum *gsl_movstat_accum_minmax
These accumulators calculate moving window minimum/maximums efficiently, using the algorithm of D.
Lemire.

gsl_movstat_accum *gsl_movstat_accum_mean

gsl_movstat_accum *gsl_movstat_accum_sd

gsl_movstat_accum *gsl_movstat_accum_variance
These accumulators calculate the moving window mean, standard deviation, and variance, using the algorithm
of B. P. Welford.

gsl_movstat_accum *gsl_movstat_accum_median

This accumulator calculates the moving window median using the min/max heap algorithm of Hérdle and Steiger.
gsl_movstat_accum *gsl_movstat_accum_Sn
gsl_movstat_accum *gsl_movstat_accum_Qn

These accumulators calculate the moving window S,, and @,, statistics developed by Croux and Rousseeuw.

gsl_movstat_accum *gsl_movstat_accum_sum
This accumulator calculates the moving window sum.

gsl_movstat_accum *gsl_movstat_accum_qqr
This accumulator calculates the moving window g-quantile range.
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23.12 Examples

23.12.1 Example 1

The following example program computes the moving mean, minimum and maximum of a noisy sinusoid signal of
length N = 500 with a symmetric moving window of size K = 11.

1.5 T

QCriginal signal
Moving mean
Maoving minimum
Moving Eﬂaximum

15 I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

time

Fig. 23.1: Original signal time series (gray) with moving mean (green), moving minimum (blue), and moving maximum
(orange).

The program is given below.

#include <stdio.h>
#include <stdlib.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_movstat.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>

int

main(void)

{
const size_t N = 500; /* length of time series */
const size_t K = 11; /% window size */

gsl_movstat_workspace * w = gsl_movstat_alloc(K);
gsl_vector *x = gsl_vector_alloc(N);

gsl_vector *“xmean = gsl_vector_alloc(N);
gsl_vector *xmin = gsl_vector_alloc(N);
gsl_vector *xmax = gsl_vector_alloc(N);

gsl_rng *r = gsl_rng_alloc(gsl_rng_default);

(continues on next page)
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size_t i;

A

for (i = 0; 1
{
double xi = cos(4.0 * M_PI * i / (double) N);
double ei = gsl_ran_gaussian(r, 0.1);

N; ++1)

gsl_vector_set(x, i, xi + ei);

/* compute moving statistics */
gsl_movstat_mean(GSL_MOVSTAT_END_PADVALUE, x, xmean, Ww);
gsl_movstat_minmax (GSL_MOVSTAT_END_PADVALUE, x, xmin, xmax, w);

/% print results */
for (i = 0; 1 < N; ++1)

{
printf("%zu \n",

i,
gsl_vector_get(x, i),
gsl_vector_get(xmean, i),
gsl_vector_get(xmin, i),
gsl_vector_get(xmax, i));

}

gsl_vector_free(x);
gsl_vector_free(xmean);
gsl_rng_free(r);
gsl_movstat_free(w);

return 0;

23.12.2 Example 2: Robust Scale

The following example program analyzes a time series of length N = 1000 composed of Gaussian random variates
with zero mean whose standard deviation changes in a piecewise constant fashion as shown in the table below.

Sample Range | o

1-200 1.0
201-450 5.0
451-600 1.0
601-850 3.0
851-1000 5.0

Additionally, about 1% of the samples are perturbed to represent outliers by adding 15 to the random Gaussian variate.
The program calculates the moving statistics MAD, IQR, S;,, ., and the standard deviation using a symmetric moving
window of length K = 41. The results are shown in Fig. 23.2.

The robust statistics follow the true standard deviation piecewise changes well, without being influenced by the outliers.
The moving standard deviation (gray curve) is heavily influenced by the presence of the outliers. The program is given
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Fig. 23.2: Top: time series of piecewise constant variance. Bottom: scale estimates using a moving window; the true
sigma value is in light blue, MAD in green, IQR in red, S,, in yellow, and @),, in dark blue. The moving standard

deviation is

shown in gray.

below.
#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_movstat.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>
int
main(void)
{
const size_t N = 1000; /* length of time series */
const double sigma[] = { 1.0, 5.0, 1.0, 3.0, 5.0 }; /* variances */
const size_t N_sigmal[] = { 200, 450, 600, 850, 1000 }; /* samples where variance.
—.changes */
const size_t K = 41; /* window size */
gsl_vector *x = gsl_vector_alloc(N);
gsl_vector *xmedian = gsl_vector_alloc(N);
gsl_vector *xmad = gsl_vector_alloc(N);
gsl_vector *xiqr = gsl_vector_alloc(N);
gsl_vector *xSn = gsl_vector_alloc(N);
gsl_vector *xQn = gsl_vector_alloc(N);
gsl_vector *xsd = gsl_vector_alloc(N);
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);

gsl_movstat_workspace *

w = gsl_movstat_alloc(XK);

(continues on next page)
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size_t idx = 0;
size_t i;

for (i = 0; i < N; ++i)
{
double gi = gsl_ran_gaussian(r, sigmal[idx]);
double u = gsl_rng_uniform(r);
double outlier = (u < 0.01) ? 15.0*GSL_SIGN(gi) : 0.0;
double xi = gi + outlier;

gsl_vector_set(x, i, xi);

if (i == N_sigma[idx] - 1)
++idx;

/* compute moving statistics */
gsl_movstat_mad(GSL_MOVSTAT_END_TRUNCATE, x, xmedian, xmad, w);
gsl_movstat_qqr (GSL_MOVSTAT_END_TRUNCATE, x, 0.25, xiqr, w);
gsl_movstat_Sn(GSL_MOVSTAT_END_TRUNCATE, x, xSn, w);
gsl_movstat_Qn(GSL_MOVSTAT_END_TRUNCATE, x, xQn, w);
gsl_movstat_sd(GSL_MOVSTAT_END_TRUNCATE, x, xsd, w);

/% scale IQR by factor to approximate standard deviation */
gsl_vector_scale(xiqr, 0.7413);

/* print results */

idx = 0;

for (i = 0; i < N; ++i)

{
printf("%zu %f %f %f %f %f %f %f\n",

1,
gsl_vector_get(x, i),
sigma[idx],
gsl_vector_get(xmad, i),
gsl_vector_get(xiqr, i),
gsl_vector_get(xSn, i),
gsl_vector_get(xQn, i),
gsl_vector_get(xsd, 1i));

if (i == N_sigma[idx] - 1)
++idx;

}

gsl_vector_free(x);
gsl_vector_free(xmedian);
gsl_vector_free(xmad) ;
gsl_vector_free(xiqr);
gsl_vector_free(xSn);
gsl_vector_free(xQn);
gsl_vector_free(xsd);
gsl_rng_free(r);

(continues on next page)
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gsl_movstat_free(w);

return 0;

}

23.12.3 Example 3: User-defined Moving Window

This example program illustrates how a user can define their own moving window function to apply to an input vector.
It constructs a random noisy time series of length N = 1000 with some outliers added. Then it applies a moving
window trimmed mean to the time series with trim parameter o = 0.1. The length of the moving window is K = 11,
so the smallest and largest sample of each window is discarded prior to computing the mean. The results are shown in
Fig. 23.3.

40 T T
Data =——
Trimmed mean

30 F W4 VI

10 - i f 4

I L I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
time

Fig. 23.3: Noisy time series data (black) with moving window trimmed mean (red)

The program is given below.

#include <stdio.h>
#include <stdlib.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_movstat.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_statistics.h>

double
func(const size_t n, double x[], void * params)

(continues on next page)
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{
const double alpha = *(double *) params;
gsl_sort(x, 1, n);
return gsl_stats_trmean_from_sorted_data(alpha, x, 1, n);
}
int
main(void)
{
const size_t N = 1000; /* length of time series */
const size_t K = 11; /* window size */
double alpha = 0.1; /* trimmed mean parameter */
gsl_vector *x = gsl_vector_alloc(N); /* input vector */
gsl_vector *y = gsl_vector_alloc(N); /* filtered output vector for alphal
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
gsl_movstat_workspace *w = gsl_movstat_alloc(K);
gsl_movstat_function F;
size_t 1i;
double sum = 0.0;
/% generate input signal */
for (i = 0; i < N; ++i)
{
double ui = gsl_ran_gaussian(r, 1.0);
double outlier = (gsl_rng_uniform(r) < 0.01) ? 10.0*GSL_SIGN(ui) : 0.0;
sum += ui;
gsl_vector_set(x, i, sum + outlier);
}
/* apply moving window function */
F.function = func;
F.params = &alpha;
gsl_movstat_apply(GSL_MOVSTAT_END_PADVALUE, &F, x, y, W);
/* print results */
for (1 = 0; i < N; ++i)
{
double xi = gsl_vector_get(x, i);
double yi = gsl_vector_get(y, i);
printf("%f %f\n", xi, yi);
}
gsl_vector_free(x);
gsl_vector_free(y);
gsl_rng_free(r);
gsl_movstat_free(w);
return 0;
}

:'c/
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23.13 References and Further Reading

The following publications are relevant to the algorithms described in this chapter,
* W.Hardle and W. Steiger, Optimal Median Smoothing, Appl. Statist., 44 (2), 1995.

* D. Lemire, Streaming Maximum-Minimum Filter Using No More than Three Comparisons per Element, Nordic
Journal of Computing, 13 (4), 2006 (https://arxiv.org/abs/cs/0610046).

* B. P. Welford, Note on a method for calculating corrected sums of squares and products, Technometrics, 4 (3),
1962.
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CHAPTER
TWENTYFOUR

DIGITAL FILTERING

24.1 Introduction

The filters discussed in this chapter are based on the following moving data window which is centered on i-th sample:
WH ={2i—g,....2i ..., Tiyn}

Here, H is a non-negative integer called the window half-length, which represents the number of samples before and
after sample ¢. The total window length is K = 2H + 1.

24.2 Handling Endpoints

When processing samples near the ends of the input signal, there will not be enough samples to fill the window W
defined above. Therefore the user must specify how to construct the windows near the end points. This is done by
passing an input argument of type gs1_filter_end_t:

type gsl_filter_end_t
This data type specifies how to construct windows near end points and can be selected from the following choices:

GSL_FILTER_END_PADZERO
With this option, a full window of length K will be constructed by inserting zeros into the window near
the signal end points. Effectively, the input signal is modified to

z=40,...,0,z1,29,...,Tp—1,%n,0,...,0}
N—— —

H zeros H zeros
to ensure a well-defined window for all x;.

GSL_FILTER_END_PADVALUE
With this option, a full window of length K will be constructed by padding the window with the first and
last sample in the input signal. Effectively, the input signal is modified to

= {xla"'7',1717:1;153327"'7xn717mnaxn7~-~>xn}
——— ———

H H

GSL_FILTER_END_TRUNCATE
With this option, no padding is performed, and the windows are simply truncated as the end points are
approached.
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24.3 Linear Digital Filters

24.3.1 Gaussian Filter

The Gaussian filter convolves the input signal with a Gaussian kernel or window. This filter is often used as a smoothing
or noise reduction filter. The Gaussian kernel is defined by

G(k) = e 3 lomnm)” = /207

for —(K — 1)/2 < k < (K —1)/2, and K is the size of the kernel. The parameter « specifies the number of
standard deviations o desired in the kernel. So for example setting o = 3 would define a Gaussian window of length
K which spans £30. It is often more convenient to specify the parameter « rather than the standard deviation o when
constructing the kernel, since a fixed value of @ would correspond to the same shape of Gaussian regardless of the size
K. The appropriate value of the standard deviation depends on K and is related to o as

K—-1
2¢

The routines below accept « as an input argument instead of o.

The Gaussian filter offers a convenient way of differentiating and smoothing an input signal in a single pass. Using the
derivative property of a convolution,

d dG

pr (Gxzx) = Pkl
the input signal z(¢) can be smoothed and differentiated at the same time by convolution with a derivative Gaussian
kernel, which can be readily computed from the analytic expression above. The same principle applies to higher order
derivatives.

gsl_filter_gaussian_workspace *gsl_filter_gaussian_alloc(const size_t K)
This function initializes a workspace for Gaussian filtering using a kernel of size K. Here, H = K/2. If K is
even, it is rounded up to the next odd integer to ensure a symmetric window. The size of the workspace is O(K).

void gsl_filter_gaussian_free(gsl_filter_gaussian_workspace *w)
This function frees the memory associated with w.

int gsl_filter_gaussian(const gs/_filter_end_t endtype, const double alpha, const size_t order, const gsi_vector
*X, gsl_vector *y, gsl_filter_gaussian_workspace *w)
This function applies a Gaussian filter parameterized by alpha to the input vector x, storing the output in y. The
derivative order is specified by order, with 0 corresponding to a Gaussian, 1 corresponding to a first derivative
Gaussian, and so on. The parameter endtype specifies how the signal end points are handled. It is allowed for
x =y for an in-place filter.

int gsl_filter_gaussian_kernel (const double alpha, const size_t order, const int normalize, gsi_vector *kernel)
This function constructs a Gaussian kernel parameterized by alpha and stores the output in kernel. The pa-
rameter order specifies the derivative order, with ® corresponding to a Gaussian, 1 corresponding to a first
derivative Gaussian, and so on. If normalize is set to 1, then the kernel will be normalized to sum to one on
output. If normalize is set to 0, no normalization is performed.
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24.4 Nonlinear Digital Filters

The nonlinear digital filters described below are based on the window median, which is given by
m; = median {W;"} = median {z;_py,...,zi,...,ziyn}

The median is considered robust to local outliers, unlike the mean. Median filters can preserve sharp edges while at
the same removing signal noise, and are used in a wide range of applications.

24.4.1 Standard Median Filter

The standard median filter (SMF) simply replaces the sample ; by the median m; of the window W : This filter has
one tuning parameter given by H. The standard median filter is considered highly resistant to local outliers and local
noise in the data sequence {x;}.

gsl_filter_median_workspace *gsl_filter_median_alloc(const size_t K)
This function initializes a workspace for standard median filtering using a symmetric centered moving window
of size K. Here, H = K/2. If K is even, it is rounded up to the next odd integer to ensure a symmetric window.
The size of the workspace is O(7K).

void gsl_filter_median_free(gsl_filter_median_workspace *w)
This function frees the memory associated with w.

int gsl_filter_median(const gs/_filter_end_t endtype, const gsi_vector *x, gsl_vector *y,
gsl_filter_median_workspace *w)
This function applies a standard median filter to the input x, storing the output in y. The parameter endtype
specifies how the signal end points are handled. It is allowed to have x = y for an in-place filter.

24.4.2 Recursive Median Filter

The recursive median filter (RMF) is a modification of the SMF to include previous filter outputs in the window before
computing the median. The filter’s response is

Y; = median (yi—H7 ey Yim1, X5, i1, - - ~;Ii+H)

Sometimes, the SMF must be applied several times in a row to achieve adequate smoothing (i.e. a cascade filter). The
RMF, on the other hand, converges to a root sequence in one pass, and can sometimes provide a smoother result than
several passes of the SMF. A root sequence is an input which is left unchanged by the filter. So there is no need to apply
a recursive median filter twice to an input vector.

gsl_filter_rmedian_workspace *gsl_filter_rmedian_alloc(const size_t K)
This function initializes a workspace for recursive median filtering using a symmetric centered moving window
of size K. Here, H = K/2. If K is even, it is rounded up to the next odd integer to ensure a symmetric window.
The size of the workspace is O(K).

void gsl_filter_rmedian_free(gsl_filter_rmedian_workspace *w)
This function frees the memory associated with w.

int gsl_filter_rmedian(const gsl_filter_end_t endtype, const gsl_vector *x, gsl_vector *y,
gsl_filter_rmedian_workspace *w)
This function applies a recursive median filter to the input x, storing the output in y. The parameter endtype
specifies how the signal end points are handled. It is allowed to have x = y for an in-place filter.
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24.4.3 Impulse Detection Filter

Impulsive noise is characterized by short sequences of data points distinct from those in the surrounding neighborhood.
This section describes a powerful class of filters, also known as impulse rejection filters and decision-based filters,
designed to detect and remove such outliers from data. The filter’s response is given by

yi= 4 |z —m;| < tS;
’ mi, |w; —mg| > tS;

where m; is the median value of the window WiH , S; is a robust estimate of the scatter or dispersion for the window
WH, and t is a tuning parameter specifying the number of scale factors needed to determine that a point is an outlier.
The main idea is that the median m; will be unaffected by a small number of outliers in the window, and so a given
sample x; is tested to determine how far away it is from the median in terms of the local scale estimate .S;. Samples
which are more than ¢ scale estimates away from the median are labeled as outliers and replaced by the window median
m;. Samples which are less than ¢ scale estimates from the median are left unchanged by the filter.

Note that when ¢ = 0, the impulse detection filter is equivalent to the standard median filter. When ¢t — oo, it becomes
the identity filter. This means the impulse detection filter can be viewed as a “less aggressive” version of the standard
median filter, becoming less aggressive as ¢ is increased. Note that this filter modifies only samples identified as outliers,
while the standard median filter changes all samples to the local median, regardless of whether they are outliers. This
fact, plus the additional flexibility offered by the additional tuning parameter ¢ can make the impulse detection filter a
better choice for some applications.

It is important to have a robust and accurate scale estimate .S; in order to detect impulse outliers even in the presence of
noise. The window standard deviation is not typically a good choice, as it can be significantly perturbed by the presence
of even one outlier. GSL offers the following choices (specified by a parameter of type gsl_filter_scale_t) for
computing the scale estimate .S;, all of which are robust to the presence of impulse outliers.

type gsl_filter_scale_t
This type specifies how the scale estimate S; of the window W is calculated.

GSL_FILTER_SCALE_MAD
This option specifies the median absolute deviation (MAD) scale estimate, defined by

S; = 1.4826 x median {|W" — m;|}

This choice of scale estimate is also known as the Hampel filter in the statistical literature. See here for
more information.

GSL_FILTER_SCALE_IQR
This option specifies the interquartile range (IQR) scale estimate, defined as the difference between the 75th
and 25th percentiles of the window W,

Si = 0.7413 (Qo.75 — Qo.25)

where @), is the p-quantile of the window WH . The idea is to throw away the largest and smallest 25% of
the window samples (where the outliers would be), and estimate a scale from the middle 50%. The factor
0.7413 provides an unbiased estimate of the standard deviation for Gaussian data.

GSL_FILTER_SCALE_SN
This option specifies the so-called .S,, statistic proposed by Croux and Rousseeuw. See /ere for more
information.

GSL_FILTER_SCALE_QN
This option specifies the so-called @Q,, statistic proposed by Croux and Rousseeuw. See here for more
information.
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Warning: While the scale estimates defined above are much less sensitive to outliers than the standard deviation,
they can suffer from an effect called implosion. The standard deviation of a window W/? will be zero if and only
if all samples in the window are equal. However, it is possible for the MAD of a window to be zero even if all the
samples in the window are not equal. For example, if K /2 + 1 or more of the K samples in the window are equal
to some value x*, then the window median will be equal to x*. Consequently, at least K/2 + 1 of the absolute
deviations |z; — x*| will be zero, and so the MAD will be zero. In such a case, the Hampel filter will act like the
standard median filter regardless of the value of ¢. Caution should also be exercised if dividing by 5.

gsl_filter_impulse_workspace *gsl_filter_impulse_alloc(const size_t K)
This function initializes a workspace for impulse detection filtering using a symmetric moving window of size
K. Here, H = K/2. If K is even, it is rounded up to the next odd integer to ensure a symmetric window. The
size of the workspace is O(6K).

void gsl_filter_impulse_free(gsl_filter_impulse_workspace *w)
This function frees the memory associated with w.

int gsl_filter_impulse(const gsi_filter_end_t endtype, const gsl_filter_scale_t scale_type, const double t, const

gsl_vector *x, gsl_vector *y, gsl_vector *xmedian, gs/_vector *xsigma, size_t *noutlier,
gsl_vector_int *joutlier, gsl_filter_impulse_workspace *w)

These functions apply an impulse detection filter to the input vector x, storing the filtered output in y. The tuning

parameter ¢ is provided in t. The window medians m; are stored in xmedian and the .S; are stored in xsigma on

output. The number of outliers detected is stored in noutIier on output, while the locations of flagged outliers

are stored in the boolean array ioutlier. The input ioutlier may be NULL if not desired. It is allowed to have

x =y for an in-place filter.

24.5 Examples

24.5.1 Gaussian Example 1
This example program illustrates the Gaussian filter applied to smoothing a time series of length N = 500 with a kernel
size of K = 51. Three filters are applied with parameters o = 0.5, 3, 10. The results are shown in Fig. 24.1.

We see that the filter corresponding to o = 0.5 applies the most smoothing, while o« = 10 corresponds to the least
amount of smoothing. The program is given below.

#include <stdio.h>
#include <stdlib.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_filter.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>

int

main(void)

{
const size_t N = 500; “ length of time series */
const size_t K = 51; * window size */

const double alpha[3] = { 0.5, 3.0, 10.0 };
gsl_vector *x = gsl_vector_alloc(N);
gsl_vector *yl = gsl_vector_alloc(N);

* alpha values */
* input vector */
* filtered output vector for alphal */

SIS

(continues on next page)
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Fig. 24.1: Top panel: Gaussian kernels (unnormalized) for « = 0.5,3,10. Bottom panel: Time series (gray) with

Gaussian filter output for same « values.
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< filtered output vector for alpha2 */
< filtered output vector for alpha3 */
“ Gaussian kernel for alphal */
* Gaussian kernel for alpha2 */
“ Gaussian kernel for alpha3 */

gsl_vector *y2 = gsl_vector_alloc(N);
gsl_vector *y3 = gsl_vector_alloc(N);
gsl_vector *kl1 = gsl_vector_alloc(K);
gsl_vector *k2 = gsl_vector_alloc(K);
gsl_vector *k3 = gsl_vector_alloc(K);
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
gsl_filter_gaussian_workspace *gauss_p = gsl_filter_gaussian_alloc(XK);
size_t i;

double sum = 0.0;

SIS

/* generate input signal */
for (4 = 0; 1 < N; ++1)

{
double ui = gsl_ran_gaussian(r, 1.0);
sum += ui;
gsl_vector_set(x, i, sum);

1

/* compute kernels without normalization */

gsl_filter_gaussian_kernel(alpha[0], 0, 0, kl1);
gsl_filter_gaussian_kernel(alpha[1], 0, 0, k2);
gsl_filter_gaussian_kernel(alpha[2], 0, 0, k3);

/% apply filters */

gsl_filter_gaussian(GSL_FILTER_END_PADVALUE, alpha[0], 0, x, yl, gauss_p);
gsl_filter_gaussian(GSL_FILTER_END_PADVALUE, alpha[1], 0, x, y2, gauss_p);
gsl_filter_gaussian(GSL_FILTER_END_PADVALUE, alpha[2], 0, x, y3, gauss_p);

/* print kernels */
for (i = 0; 1 < K; ++1)
{
double kl1i gsl_vector_get(kl, i);
double k2i = gsl_vector_get(k2, i);
double k3i gsl_vector_get(k3, i);

printf("” \n", kli, k2i, k3i);
}

printf("\n\n");

/% print filter results */
for (i = 0; i < N; ++1)
{
double xi = gsl_vector_get(x, i);
double yli = gsl_vector_get(yl, i);
double y2i = gsl_vector_get(y2, i);
double y3i = gsl_vector_get(y3, i);

printf(" \n", xi, yli, y2i, y3i);
}

gsl_vector_free(x);

(continues on next page)
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gsl_vector_free(yl);
gsl_vector_free(y2);
gsl_vector_free(y3);
gsl_vector_free(kl);
gsl_vector_free(k2);
gsl_vector_free(k3);
gsl_rng_free(r);
gsl_filter_gaussian_free(gauss_p);

return 0;

24.5.2 Gaussian Example 2

A common application of the Gaussian filter is to detect edges, or sudden jumps, in a noisy input signal. It is used both
for 1D edge detection in time series, as well as 2D edge detection in images. Here we will examine a noisy time series
of length N = 1000 with a single edge. The input signal is defined as

0, n<N/2
x(”)_e(”H{ 0.5, n>N/2

where e(n) is Gaussian random noise. The program smooths the input signal with order 0, 1, and 2 Gaussian filters of
length K = 61 with a = 3. For comparison, the program also computes finite differences of the input signal without
smoothing. The results are shown in Fig. 24.2.

The finite difference approximation of the first derivative (second row) shows the common problem with differentiating
a noisy signal. The noise is amplified and makes it extremely difficult to detect the sharp gradient at sample 500. The
third row shows the first order Gaussian smoothed signal with a clear peak at the location of the edge. Alternatively,
one could examine the second order Gaussian smoothed signal (fourth row) and look for zero crossings to determine
the edge location.

The program is given below.

#include <stdio.h>
#include <stdlib.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_filter.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>

int
main(void)
{
const size_t N = 1000; /* length of time series */
const size_t K = 61; /* window size */
const double alpha = 3.0; /* Gaussian kernel has +/- 3 standard.
—deviations */
gsl_vector *x = gsl_vector_alloc(N); /* input vector */
gsl_vector *y = gsl_vector_alloc(N); /% filtered output vector */
gsl_vector *dy = gsl_vector_alloc(N); /* first derivative filtered vector */

(continues on next page)
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Fig. 24.2: Top row: original input signal z(n) (black) with Gaussian smoothed signal in red. Second row: First finite
differences of input signal. Third row: Input signal smoothed with a first order Gaussian filter. Fourth row: Input signal
smoothed with a second order Gaussian filter.
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gsl_vector *d2y = gsl_vector_alloc(N); /* second derivative filtered vector */
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);

gsl_filter_gaussian_workspace *gauss_p = gsl_filter_gaussian_alloc(X);

size_t 1i;

/* generate input signal */
for (i = 0; i < N; ++i)
{
double xi A>N/2)7?0.5:0.0;
double ei = gsl_ran_gaussian(r, 0.1);

gsl_vector_set(x, i, xi + ei);

}

/* apply filters */

gsl_filter_gaussian(GSL_FILTER_END_PADVALUE, alpha, 0, x, y, gauss_p);
gsl_filter_gaussian(GSL_FILTER_END_PADVALUE, alpha, 1, x, dy, gauss_p);
gsl_filter_gaussian(GSL_FILTER_END_PADVALUE, alpha, 2, x, d2y, gauss_p);

/* print results */
for (i = 0; 1 < N; ++i)
{

double xi = gsl_vector_get(x, i);
double yi = gsl_vector_get(y, i);
double dyi = gsl_vector_get(dy, i);
double d2yi = gsl_vector_get(d2y, i);
double dxi;

/* compute finite difference of x vector */
if (i ==0)
dxi = gsl_vector_get(x, i + 1) - xi;
else if (A == N - 1)
dxi = gsl_vector_get(x, i) - gsl_vector_get(x, i - 1);
else
dxi = 0.5 * (gsl_vector_get(x, i + 1) - gsl_vector_get(x, i - 1));

printf("%.12e %.12e %.12e %.12e %.12e\n",
Xi,
yi,
dxi,
dyi,
d2yi);
}

gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(dy);
gsl_vector_free(d2y);
gsl_rng_free(r);
gsl_filter_gaussian_free(gauss_p);

return 0;

(continues on next page)
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24.5.3 Square Wave Signal Example

The following example program illustrates the median filters on a noisy square wave signal. Median filters are well
known for preserving sharp edges in the input signal while reducing noise. The program constructs a 5 Hz square wave
signal with Gaussian noise added. Then the signal is filtered with a standard median filter and recursive median filter
using a symmetric window of length K = 7. The results are shown in Fig. 24.3.

15

Data
Standard Median Filcer
Recursive Median Filer

0.5 4

-1.5

time (s)

Fig. 24.3: Original time series is in gray. The standard median filter output is in green and the recursive median filter
output is in red.

Both filters preserve the sharp signal edges while reducing the noise. The recursive median filter achieves a smoother
result than the standard median filter. The “blocky” nature of the output is characteristic of all median filters. The
program is given below.

#include <stdio.h>
#include <stdlib.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_filter.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>

int

main(void)

{
const size_t N = 1000; /* length of time series */
const size_t K = 7; /* window size */

(continues on next page)

24.5. Examples 329




GNU Scientific Library, Release 2.7

(continued from previous page)

const double f = 5.0; /* frequency of square wave in Hz.
Ly

gsl_filter_median_workspace *median_p = gsl_filter_median_alloc(K);

gsl_filter_rmedian_workspace *rmedian_p = gsl_filter_rmedian_alloc(K);

gsl_vector *t = gsl_vector_alloc(N); /* time */

gsl_vector *x = gsl_vector_alloc(N); /* input vector */

gsl_vector *y_median = gsl_vector_alloc(N); /% median filtered output */

gsl_vector *y_rmedian = gsl_vector_alloc(N); /* recursive median filtered.
—output */

gsl_rng *r = gsl_rng_alloc(gsl_rng_default);

size_t i;

/% generate input signal */
for (i = 0; i < N; ++i)
{
double ti = (double) i / (N - 1.0);
double tmp = sin(2.0 * M_PI * f * ti);
double xi = (tmp >= 0.0) ? 1.0 : -1.0;
double ei = gsl_ran_gaussian(r, 0.1);

gsl_vector_set(t, i, ti);
gsl_vector_set(x, i, xi + ei);

}

gsl_filter_median(GSL_FILTER_END_PADVALUE, x, y_median, median_p);
gsl_filter_rmedian(GSL_FILTER_END_PADVALUE, x, y_rmedian, rmedian_p);

/* print results */
for (i = 0; i < N; ++i)
{
double ti = gsl_vector_get(t, i);
double xi = gsl_vector_get(x, i);
double medi = gsl_vector_get(y_median, i);
double rmedi = gsl_vector_get(y_rmedian, i);

printf("%f %f %f %f\n",
ti,
Xi,
medi,
rmedi);

}

gsl_vector_free(t);
gsl_vector_free(x);
gsl_vector_free(y_median);
gsl_vector_free(y_rmedian);
gsl_rng_free(r);
gsl_filter_median_free(median_p);

return 0;

}
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24.5.4 Impulse Detection Example

The following example program illustrates the impulse detection filter. First, it constructs a sinusoid signal of length
N = 1000 with Gaussian noise added. Then, about 1% of the data are perturbed to represent large outliers. An impulse
detecting filter is applied with a window size K = 25 and tuning parameter ¢ = 4, using the @), statistic as the robust
measure of scale. The results are plotted in Fig. 24.4.
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Fig. 24.4: Original time series is in blue, filter output is in green, upper and lower intervals for detecting outliers are in
red and yellow respectively. Detected outliers are marked with squares.

The program is given below.

#include
#include

#include
#include
#include
#include
#include

int

main(void)

{
const size_t N
const size_t K
const double t

<stdio.h>
<stdlib.h>

<gsl/gsl_math.h>
<gsl/gsl_filter.h>
<gsl/gsl_rng.h>
<gsl/gsl_randist.h>
<gsl/gsl_vector.h>

1000;
25;
4.0;

—outlier detection */

* X
-.':y

gsl_vector
gsl_vector
gsl_vector
gsl_vector

gsl_vector_alloc(N);
gsl_vector_alloc(N);
*xmedian = gsl_vector_alloc(N);
*Xsigma
gsl_vector_int *ioutlier = gsl_vector_int_alloc(N);

gsl_vector_alloc(N);

* window medians

length of time series */

* window size */
* number of scale factors for.

* input vector */

output (filtered) vector */
:':/
window scale estimates
outlier detected? */

-,':/

(continues on next page)
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*

gsl_filter_impulse_workspace w = gsl_filter_impulse_alloc(K);
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);

size_t noutlier;

size_t 1i;

/* generate input signal */
for (i = 0; i < N; ++i)
{
double xi = 10.0 * sin(2.0 * M_PI * i / (double) N);
double ei = gsl_ran_gaussian(r, 2.0);
double u = gsl_rng_uniform(r);
double outlier = (u < 0.01) ? 15.0*GSL_SIGN(ei) : 0.0;

gsl_vector_set(x, i, xi + ei + outlier);

}

/% apply impulse detection filter */
gsl_filter_impulse(GSL_FILTER_END_TRUNCATE, GSL_FILTER_SCALE_QN, t, X, vV,
xmedian, xsigma, &noutlier, ioutlier, w);

/* print results */
for (A = 0; 1 < N; ++i)
{
double xi = gsl_vector_get(x, i);
double yi = gsl_vector_get(y, i);
double xmedi = gsl_vector_get(xmedian, i);
double xsigmai = gsl_vector_get(xsigma, i);
int outlier = gsl_vector_int_get(ioutlier, i);

printf("%zu %f %f %f %f %d\n",
i,
Xi,
yi,
xmedi + t * xsigmai,
xmedi - t * xsigmai,
outlier);

}

gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(xmedian);
gsl_vector_free(xsigma);
gsl_vector_int_free(ioutlier);
gsl_filter_impulse_free(w);
gsl_rng_free(r);

return 0;
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24.6 References and Further Reading

The following publications are relevant to the algorithms described in this chapter,

» F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform, Proceedings of
the IEEE, 66 (1), 1978.

* S-J. Ko, Y-H. Lee, and A. T. Fam. Efficient implementation of one-dimensional recursive median filters, IEEE
transactions on circuits and systems 37.11 (1990): 1447-1450.

* R. K. Pearson and M. Gabbouj, Nonlinear Digital Filtering with Python: An Introduction. CRC Press, 2015.
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CHAPTER
TWENTYFIVE

HISTOGRAMS

This chapter describes functions for creating histograms. Histograms provide a convenient way of summarizing the
distribution of a set of data. A histogram consists of a set of bins which count the number of events falling into a given
range of a continuous variable z. In GSL the bins of a histogram contain floating-point numbers, so they can be used
to record both integer and non-integer distributions. The bins can use arbitrary sets of ranges (uniformly spaced bins
are the default). Both one and two-dimensional histograms are supported.

Once a histogram has been created it can also be converted into a probability distribution function. The library pro-
vides efficient routines for selecting random samples from probability distributions. This can be useful for generating
simulations based on real data.

The functions are declared in the header files gsl_histogram.h and gsl_histogram2d.h.

25.1 The histogram struct

A histogram is defined by the following struct,

type gs1_histogram

size_tn | This is the number of histogram bins
double | The ranges of the bins are stored in an array of n+1 elements pointed to by range.

* range
double | The counts for each bin are stored in an array of n elements pointed to by bin. The bins are
* bin floating-point numbers, so you can increment them by non-integer values if necessary.

The range for bin[i] is given by range[i] to range[i+1]. For n bins there are n+1 entries in the array range.
Each bin is inclusive at the lower end and exclusive at the upper end. Mathematically this means that the bins
are defined by the following inequality,

bin[i] corresponds to range[i] < z < range[i+1]

Here is a diagram of the correspondence between ranges and bins on the number-line for x:

[ bin[0] D[ bin[1] )[ bin[2] D[ bin[3] )[ bin[4] )
P | --mmmmm - | --mmmm - |- mmmm - | --mmmm - |--- x
r[0] r[1] r[2] r[3] r[4] r[5]

In this picture the values of the range array are denoted by r. On the left-hand side of each bin the square
bracket [ denotes an inclusive lower bound (r < x), and the round parentheses ) on the right-hand side denote
an exclusive upper bound (z < r). Thus any samples which fall on the upper end of the histogram are excluded.
If you want to include this value for the last bin you will need to add an extra bin to your histogram.
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The gsl_histogram struct and its associated functions are defined in the header file gs1_histogram.h.

25.2 Histogram allocation

The functions for allocating memory to a histogram follow the style of malloc() and free(). In addition they also
perform their own error checking. If there is insufficient memory available to allocate a histogram then the functions
call the error handler (with an error number of GSL_ENOMEN) in addition to returning a null pointer. Thus if you use
the library error handler to abort your program then it isn’t necessary to check every histogram alloc.

gsl_histogram *gsl_histogram_alloc(size_t n)

This function allocates memory for a histogram with n bins, and returns a pointer to a newly created
gsl_histogram struct. If insufficient memory is available a null pointer is returned and the error handler is
invoked with an error code of GSL_ENOMEN. The bins and ranges are not initialized, and should be prepared
using one of the range-setting functions below in order to make the histogram ready for use.

int gsl_histogram_set_ranges(gs/_histogram *h, const double rangel[], size_t size)

This function sets the ranges of the existing histogram h using the array range of size size. The values of
the histogram bins are reset to zero. The range array should contain the desired bin limits. The ranges can be
arbitrary, subject to the restriction that they are monotonically increasing.

The following example shows how to create a histogram with logarithmic bins with ranges [1,10), [10,100) and
[100,1000):

gsl_histogram * h = gsl_histogram_alloc (3);

/* bin[0] covers the range 1 <= x < 10 */

/% bin[1] covers the range 10 <= x < 100 */

/% bin[2] covers the range 100 <= x < 1000 */
double range[4] = { 1.0, 10.0, 100.0, 1000.0 };

gsl_histogram_set_ranges (h, range, 4);

Note that the size of the range array should be defined to be one element bigger than the number of bins. The
additional element is required for the upper value of the final bin.

int gsl_histogram_set_ranges_uniform(gs/_histogram *h, double xmin, double xmax)

This function sets the ranges of the existing histogram h to cover the range xmin to xmax uniformly. The values
of the histogram bins are reset to zero. The bin ranges are shown in the table below,

bin[0]  corresponds to zmin < x < xmin +d
bin[l1] correspondsto zmin+d <z < zmen + 2d

bin[n-1] corresponds to zmin + (n — 1)d < z < zmaz

where d is the bin spacing, d = (xmax — xmin)/n.

void gsl_histogram_free(gs/_histogram *h)

This function frees the histogram h and all of the memory associated with it.
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25.3 Copying Histograms

int gsl_histogram_memcpy (gs/_histogram *dest, const gsl_histogram *src)
This function copies the histogram src into the pre-existing histogram dest, making dest into an exact copy
of src. The two histograms must be of the same size.

gsl_histogram *gsl_histogram_clone (const gs/_histogram *src)
This function returns a pointer to a newly created histogram which is an exact copy of the histogram src.

25.4 Updating and accessing histogram elements

There are two ways to access histogram bins, either by specifying an = coordinate or by using the bin-index directly.
The functions for accessing the histogram through x coordinates use a binary search to identify the bin which covers
the appropriate range.

int gs1_histogram_increment (gs/_histogram *h, double x)
This function updates the histogram h by adding one (1.0) to the bin whose range contains the coordinate x.

If x lies in the valid range of the histogram then the function returns zero to indicate success. If x is less than the
lower limit of the histogram then the function returns GSL_EDOM, and none of bins are modified. Similarly, if the
value of x is greater than or equal to the upper limit of the histogram then the function returns GSL_EDOM, and
none of the bins are modified. The error handler is not called, however, since it is often necessary to compute
histograms for a small range of a larger dataset, ignoring the values outside the range of interest.

int gsl_histogram_accumulate (gs/_histogram *h, double x, double weight)
This function is similar to gs1_histogram_increment () but increases the value of the appropriate bin in the
histogram h by the floating-point number weight.

double gs1_histogram_get (const gs/_histogram *h, size_t i)
This function returns the contents of the i-th bin of the histogram h. If i lies outside the valid range of indices
for the histogram then the error handler is called with an error code of GSL_EDON and the function returns O.

int gs1_histogram_get_range (const gs/_histogram *h, size_t i, double *lower, double *upper)
This function finds the upper and lower range limits of the i-th bin of the histogram h. If the index 1 is valid
then the corresponding range limits are stored in Iower and upper. The lower limit is inclusive (i.e. events with
this coordinate are included in the bin) and the upper limit is exclusive (i.e. events with the coordinate of the
upper limit are excluded and fall in the neighboring higher bin, if it exists). The function returns O to indicate
success. If i lies outside the valid range of indices for the histogram then the error handler is called and the
function returns an error code of GSL_EDOMN.

double gs1_histogram_max(const gs/_histogram *h)
double gs1_histogram_min(const gs/_histogram *h)

size_t gsl_histogram_bins(const gs/_histogram *h)
These functions return the maximum upper and minimum lower range limits and the number of bins of the
histogram h. They provide a way of determining these values without accessing the gs1_histogram struct
directly.

void gs1_histogram_reset (gs/_histogram *h)
This function resets all the bins in the histogram h to zero.
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25.5 Searching histogram ranges

The following functions are used by the access and update routines to locate the bin which corresponds to a given x
coordinate.

int gsl_histogram_f£find (const gs/_histogram *h, double X, size_t *i)
This function finds and sets the index i to the bin number which covers the coordinate x in the histogram h. The
bin is located using a binary search. The search includes an optimization for histograms with uniform range, and
will return the correct bin immediately in this case. If x is found in the range of the histogram then the function
sets the index i and returns GSL_SUCCESS. If x lies outside the valid range of the histogram then the function
returns GSL_EDOM and the error handler is invoked.

25.6 Histogram Statistics

double gs1_histogram _max_val (const gs/_histogram *h)
This function returns the maximum value contained in the histogram bins.

size_t gs1_histogram_max_bin(const gsl_histogram *h)
This function returns the index of the bin containing the maximum value. In the case where several bins contain
the same maximum value the smallest index is returned.

double gsl_histogram_min_val (const gs/_histogram *h)
This function returns the minimum value contained in the histogram bins.

size_t gsl_histogram_min_bin(const gs/_histogram *h)
This function returns the index of the bin containing the minimum value. In the case where several bins contain
the same minimum value the smallest index is returned.

double gs1_histogram_mean (const gs/_histogram *h)
This function returns the mean of the histogrammed variable, where the histogram is regarded as a probability
distribution. Negative bin values are ignored for the purposes of this calculation. The accuracy of the result is
limited by the bin width.

double gsl_histogram_sigma(const gsl_histogram *h)
This function returns the standard deviation of the histogrammed variable, where the histogram is regarded as
a probability distribution. Negative bin values are ignored for the purposes of this calculation. The accuracy of
the result is limited by the bin width.

double gs1_histogram_sum(const gs/_histogram *h)
This function returns the sum of all bin values. Negative bin values are included in the sum.

25.7 Histogram Operations

int gsl_histogram_equal_bins_p(const gs/_histogram *hl, const gsi_histogram *h2)
This function returns 1 if the all of the individual bin ranges of the two histograms are identical, and 0 otherwise.

int gs1_histogram_add(gs/_histogram *hl, const gs/_histogram *h2)
This function adds the contents of the bins in histogram h2 to the corresponding bins of histogram h1i, i.e.
R} (i) = hq(4) + h2(7). The two histograms must have identical bin ranges.

int gsl_histogram_sub (gs/_histogram *hl, const gsl_histogram *h2)
This function subtracts the contents of the bins in histogram h2 from the corresponding bins of histogram h1,
i.e. Wy (i) = h1(i) — ha(i). The two histograms must have identical bin ranges.
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int gsl_histogram_mul (gs/_histogram *hl, const gsl_histogram *h2)
This function multiplies the contents of the bins of histogram h1 by the contents of the corresponding bins in
histogram h2, i.e. (i) = h1(i) * h2(¢). The two histograms must have identical bin ranges.

int gsl_histogram_div(gsl_histogram *hl, const gsl_histogram *h2)
This function divides the contents of the bins of histogram hI by the contents of the corresponding bins in
histogram h2, i.e. h (i) = h1(i)/h2 (). The two histograms must have identical bin ranges.

int gs1_histogram_scale(gs/_histogram *h, double scale)
This function multiplies the contents of the bins of histogram h by the constant scale, i.e.

R (i) = hq (i) * scale

int gsl_histogram_shift (gs/_histogram *h, double offset)
This function shifts the contents of the bins of histogram h by the constant offset, i.e.

Ry (i) = ha(i) + offset

25.8 Reading and writing histograms

The library provides functions for reading and writing histograms to a file as binary data or formatted text.

int gsl_histogram_fwrite (FILE *stream, const gs/_histogram *h)
This function writes the ranges and bins of the histogram h to the stream stream in binary format. The return
value is O for success and GSL_EFAILED if there was a problem writing to the file. Since the data is written in
the native binary format it may not be portable between different architectures.

int gsl_histogram_fread(FILE *stream, gsl_histogram *h)
This function reads into the histogram h from the open stream stream in binary format. The histogram h must
be preallocated with the correct size since the function uses the number of bins in h to determine how many
bytes to read. The return value is O for success and GSL_EFAILED if there was a problem reading from the file.
The data is assumed to have been written in the native binary format on the same architecture.

int gsl_histogram_fprintf (FILE *stream, const gs/_histogram *h, const char *range_format, const char
*bin_format)
This function writes the ranges and bins of the histogram h line-by-line to the stream stream using the format
specifiers range_format and bin_format. These should be one of the %g, %e or %£ formats for floating point
numbers. The function returns O for success and GSL_EFAILED if there was a problem writing to the file. The
histogram output is formatted in three columns, and the columns are separated by spaces, like this:

range[0] range[1] bin[0]
range[1] range[2] bin[1]
range[2] range[3] bin[2]

range[n-1] range[n] bin[n-1]

The values of the ranges are formatted using range_format and the value of the bins are formatted using
bin_format. Each line contains the lower and upper limit of the range of the bins and the value of the bin itself.
Since the upper limit of one bin is the lower limit of the next there is duplication of these values between lines
but this allows the histogram to be manipulated with line-oriented tools.

int gsl_histogram_fscanf (FILE *stream, gs/_histogram *h)
This function reads formatted data from the stream stream into the histogram h. The data is assumed to be in
the three-column format used by gs1_histogram_fprintf (). The histogram h must be preallocated with the
correct length since the function uses the size of h to determine how many numbers to read. The function returns
0 for success and GSL_EFATLED if there was a problem reading from the file.
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25.9 Resampling from histograms

A histogram made by counting events can be regarded as a measurement of a probability distribution. Allowing for
statistical error, the height of each bin represents the probability of an event where the value of x falls in the range of
that bin. The probability distribution function has the one-dimensional form p(z)dz where,

p(x) = ni/(Nw;)

In this equation n; is the number of events in the bin which contains x, w; is the width of the bin and N is the total
number of events. The distribution of events within each bin is assumed to be uniform.

25.10 The histogram probability distribution struct

The probability distribution function for a histogram consists of a set of bins which measure the probability of an event
falling into a given range of a continuous variable x. A probability distribution function is defined by the following
struct, which actually stores the cumulative probability distribution function. This is the natural quantity for generating
samples via the inverse transform method, because there is a one-to-one mapping between the cumulative probability
distribution and the range [0,1]. It can be shown that by taking a uniform random number in this range and finding
its corresponding coordinate in the cumulative probability distribution we obtain samples with the desired probability
distribution.

type gsl_histogram_pdf
size_t n This is the number of bins used to approximate the probability distribution function.
double * The ranges of the bins are stored in an array of n + 1 elements pointed to by range.
range
double * sum The cumulative probability for the bins is stored in an array of n elements pointed to by
sum.

The following functions allow you to create a gs1_histogram_pdf struct which represents this probability distribution
and generate random samples from it.

gsl_histogram_pdf *gsl_histogram_pdf_alloc(size_t n)
This function allocates memory for a probability distribution with n bins and returns a pointer to a newly ini-
tialized gs1_histogram_pdf struct. If insufficient memory is available a null pointer is returned and the error
handler is invoked with an error code of GSL_ENOMEHN.

int gsl_histogram_pdf_init (gs/_histogram_pdf *p, const gsl_histogram *h)
This function initializes the probability distribution p with the contents of the histogram h. If any of the bins of h
are negative then the error handler is invoked with an error code of GSL_EDOI because a probability distribution
cannot contain negative values.

void gs1_histogram_pdf_free (gs/_histogram_pdf *p)
This function frees the probability distribution function p and all of the memory associated with it.

double gsl_histogram_pdf_sample(const gs/_histogram_pdf *p, double r)
This function uses r, a uniform random number between zero and one, to compute a single random sample from
the probability distribution p. The algorithm used to compute the sample s is given by the following formula,

s = range[i] + J  (range[i + 1] — range[i])

where 7 is the index which satisfies sum/[i] < r < sum[i+ 1] and delta is (r — suml[i])/(sum][i + 1] — sum][i]).
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25.11 Example programs for histograms

The following program shows how to make a simple histogram of a column of numerical data supplied on stdin. The
program takes three arguments, specifying the upper and lower bounds of the histogram and the number of bins. It then
reads numbers from stdin, one line at a time, and adds them to the histogram. When there is no more data to read it
prints out the accumulated histogram using gsI_histogram_fprintf().

#include <stdio.h>
#include <stdlib.