
GAP — A Tutorial

Release 4.12.1, 2022-10-20

The GAP Group

The GAP Group Email: support@gap-system.org
Homepage: https://www.gap-system.org

mailto://support@gap-system.org
https://www.gap-system.org

GAP — A Tutorial 2

Copyright
Copyright © (1987-2022) for the core part of the GAP system by the GAP Group.

Most parts of this distribution, including the core part of the GAP system are distributed under the terms
of the GNU General Public License, see https://www.gnu.org/licenses/gpl.html or the file GPL in the
etc directory of the GAP installation.

More detailed information about copyright and licenses of parts of this distribution can be found in
(Reference: Copyright and License).

GAP is developed over a long time and has many authors and contributors. More detailed information can
be found in (Reference: Authors and Maintainers).

https://www.gnu.org/licenses/gpl.html

Contents

1 Preface 5
1.1 The GAP System . 5
1.2 Further Information about GAP . 7

2 A First Session with GAP 9
2.1 Starting and Leaving GAP . 9
2.2 Loading Source Code from a File . 10
2.3 The Read Evaluate Print Loop . 10
2.4 Constants and Operators . 12
2.5 Variables versus Objects . 14
2.6 Objects vs. Elements . 16
2.7 About Functions . 16
2.8 Help . 17
2.9 Further Information introducing the System . 18

3 Lists and Records 20
3.1 Plain Lists . 20
3.2 Identical Lists . 23
3.3 Immutability . 24
3.4 Sets . 25
3.5 Ranges . 26
3.6 For and While Loops . 27
3.7 List Operations . 29
3.8 Vectors and Matrices . 30
3.9 Plain Records . 32
3.10 Further Information about Lists . 33

4 Functions 34
4.1 Writing Functions . 34
4.2 If Statements . 35
4.3 Local Variables . 36
4.4 Recursion . 37
4.5 Further Information about Functions . 38

3

GAP — A Tutorial 4

5 Groups and Homomorphisms 39
5.1 Permutation groups . 39
5.2 Actions of Groups . 42
5.3 Subgroups as Stabilizers . 46
5.4 Group Homomorphisms by Images . 51
5.5 Nice Monomorphisms . 54
5.6 Further Information about Groups and Homomorphisms 56

6 Vector Spaces and Algebras 57
6.1 Vector Spaces . 57
6.2 Algebras . 60
6.3 Further Information about Vector Spaces and Algebras 66

7 Domains 67
7.1 Domains as Sets . 67
7.2 Algebraic Structure . 68
7.3 Notions of Generation . 68
7.4 Domain Constructors . 69
7.5 Forming Closures of Domains . 69
7.6 Changing the Structure . 69
7.7 Subdomains . 70
7.8 Further Information about Domains . 71

8 Operations and Methods 72
8.1 Attributes . 72
8.2 Properties and Filters . 73
8.3 Immediate and True Methods . 75
8.4 Operations and Method Selection . 75

References 78

Index 79

Chapter 1

Preface

Welcome to GAP. This preface serves not only to introduce this manual, “the GAP Tutorial”, but also
as an introduction to the system as a whole.

GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the aim
of the system, which is introduced in this tutorial manual. Since that choice, the system has become
somewhat broader, and you will also find information about algorithms and programming for other
algebraic structures, such as semigroups and algebras.

In addition to this manual, there are GAP Reference Manual containing detailed documentation
of the mathematical functionality of GAP, and HPC-GAP Reference Manual documenting a multi-
threaded version of GAP.

There is also a document CHANGES.md in the root directory on the most essential changes from
previous GAP releases. A lot of the functionality of the system and a number of contributed extensions
are provided as “GAP packages” and each of these has its own manual.

Subsequent sections of this preface explain the structure of the system and list sources of further
information about GAP.

1.1 The GAP System

GAP is a free, open and extensible software package for computation in discrete abstract algebra. The
terms “free” and “open” describe the conditions under which the system is distributed – in brief, it is
free of charge (except possibly for the immediate costs of delivering it to you), you are free to pass it
on within certain limits, and all of the workings of the system are open for you to examine and change.
Details of these conditions can be found in Section (Reference: Copyright and License).

The system is “extensible” in that you can write your own programs in the GAP language, and
use them in just the same way as the programs which form part of the system (the “library”). Indeed,
we actively support the contribution, refereeing and distribution of extensions to the system, in the
form of “GAP packages”. Further details of this can be found in Chapter (Reference: Using and
Developing GAP Packages), and on our website.

Development of GAP began at Lehrstuhl D für Mathematik, RWTH-Aachen, under the leadership
of Joachim Neubüser in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In 1997
coordination of GAP development, now very much an international effort, was transferred to St An-
drews. A complete internal redesign and almost complete rewrite of the system was completed over
the following years and version 4.1 was released in July 1999. A sign of the further internationaliza-
tion of the project was the GAP 4.4 release in 2004, which has been coordinated from Colorado State

5

GAP — A Tutorial 6

University, Fort Collins.
More information on the motivation and development of GAP to date,

can be found on our website in a section entitled “Some History of GAP”:
https://www.gap-system.org/Doc/History/history.html.

For those readers who have used an earlier version of GAP, an overview of the changes from
GAP 4.4 and a brief summary of changes from earlier versions is given in CHANGES.md file in the
main directory.

The system that you are getting now consists of a “core system” and a number of packages. The
core system consists of four main parts.

1. A kernel, written in C, which provides the user with

• automatic dynamic storage management, which the user needn’t bother about when pro-
gramming;

• a set of time-critical basic functions, e.g. “arithmetic”, operations for integers, finite fields,
permutations and words, as well as natural operations for lists and records;

• an interpreter for the GAP language, an untyped imperative programming language with
functions as first class objects and some extra built-in data types such as permutations and
finite field elements. The language supports a form of object-oriented programming, simi-
lar to that supported by languages like C++ and Java but with some important differences.

• a small set of system functions allowing the GAP programmer to handle files and execute
external programs in a uniform way, regardless of the particular operating system in use.

• a set of programming tools for testing, debugging, and timing algorithms.

• a “read-eval-view” style user interface.

2. A much larger library of GAP functions that implement algebraic and other algorithms. Since
this is written entirely in the GAP language, the GAP language is both the main implementation
language and the user language of the system. Therefore a user can, as easily as the original
programmers, investigate and vary algorithms of the library and add new ones to it, first for their
own use and eventually for the benefit of all GAP users.

3. A library of group theoretical data which contains various libraries of groups, including the
library of small groups (containing all groups of order at most 2000, except those of order 1024)
and others. Large libraries of ordinary and Brauer character tables and Tables of Marks are
included as packages.

4. The documentation. This is available as on-line help, as printable files in PDF format and as
HTML for viewing with a Web browser.

Also included with the core system are some test files and a few small utilities which we hope you
will find useful.

GAP packages are self-contained extensions to the core system. A package contains GAP
code and its own documentation and may also contain data files or external programs to which the
GAP code provides an interface. These packages may be loaded into GAP using the LoadPackage

(Reference: LoadPackage) command, and both the package and its documentation are then available
just as if they were parts of the core system. Some packages may be loaded automatically, when GAP
is started, if they are present. Some packages, because they depend on external programs, may only

https://www.gap-system.org/Doc/History/history.html

GAP — A Tutorial 7

be available on the operating systems where those programs are available (usually UNIX). You should
note that, while the packages included with this release are the most recent versions ready for release
at this time, new packages and new versions may be released at any time and can be easily installed in
your copy of GAP.

With GAP there are two packages (the library of ordinary and Brauer character tables, and the
library of tables of marks) which contain functionality developed from parts of the GAP core system.
These have been moved into packages for ease of maintenance and to allow new versions to be released
independently of new releases of the core system. The library of small groups should also be regarded
as a package, although it does not currently use the standard package mechanism. Other packages
contain functionality which has never been part of the core system, and may extend it substantially,
implementing specific algorithms to enhance its capabilities, providing data libraries, interfaces to
other computer algebra systems and data sources such as the electronic version of the Atlas of Finite
Group Representations; therefore, installation and usage of packages is recommended.

Further details about GAP packages can be found in chapter (Reference:
Using and Developing GAP Packages), and on the GAP website here:
https://www.gap-system.org/Packages/packages.html.

1.2 Further Information about GAP

Information about GAP is best obtained from the GAP website https://www.gap-system.org.
There you will find, amongst other things:

• directions to the sites from which you can download the current GAP distribution, all accepted
and deposited GAP packages, and a selection of other contributions.

• the GAP manual and an archive of the gap-forum mailing list, formatted for reading with a
Web browser, and indexed for searching.

• information about GAP developers, and about the email addresses available for comment, dis-
cussion and support.

We would particularly ask you to note the following things:

• The GAP Forum – an email discussion forum for comments, discussions or questions about
GAP. You must subscribe to the list before you can post to it, see the website for details. In
particular we will announce new releases in this mailing list.

• The email address support@gap-system.org to which you are asked to send any questions or
bug reports which do not seem likely to be of interest to the whole GAP Forum. Please give
a (short, if possible) self-contained excerpt of a GAP session containing both input and output
that illustrates your problem (including comments of why you think it is a bug) and state the
type of the machine, operating system, (compiler used, if UNIX/Linux) and the version of GAP
you are using (the first line after the GAP 4 banner starting GAP, Version 4...).

• We also ask you to send a brief message to support@gap-system.org when you install GAP.

• The correct form of citation of GAP, which we ask you use whenever you publish scientific
results obtained using GAP.

https://www.gap-system.org/Packages/packages.html
https://www.gap-system.org
mailto://support@gap-system.org
mailto://support@gap-system.org

GAP — A Tutorial 8

It finally remains for us to wish you all pleasure and success in using GAP, and to invite your
constructive comment and criticism.

The GAP Group,
2022-10-20

Chapter 2

A First Session with GAP

This tutorial introduces you to the GAP system. It is written with users in mind who have just man-
aged to start GAP for the first time on their computer and want to learn the basic facts about GAP
by playing around with some instructive examples. Therefore, this tutorial contains at many places
examples consisting of several lines of input (which you should type on your terminal) followed by
the corresponding output (which GAP produces as an answer to your input).

We encourage you to actually run through these examples on your computer. This will support
your feeling for GAP as a tool, which is the leading aim of this tutorial. Do not believe any statement
in it as long as you cannot verify it for your own version of GAP. You will learn to distinguish
between small deviations of the behavior of your personal GAP from the printed examples and serious
nonsense.

Since the printing routines of GAP are in some sense machine dependent you will for instance
encounter a different layout of the printed objects in different environments. But the contents should
always be the same. In case you encounter serious nonsense it is highly recommended that you send a
bug report to support@gap-system.org.

The examples in this tutorial should explain everything you have to know in order to be able to
use GAP. The reference manual then gives a more systematic treatment of the various types of objects
that GAP can manipulate. It seems desirable neither to start this systematic course with the most
elementary (and most boring) structures, nor to confront you with all the complex data types before
you know how they are composed from elementary structures. For this reason this tutorial wants
to provide you with a basic understanding of GAP objects, on which the reference manual will then
build when it explains everything in detail. So after having mastered this tutorial, you can immediately
plunge into the exciting parts of GAP and only read detailed information about elementary things (in
the reference manual) when you really need them.

Each chapter of this tutorial contains a section with references to the reference manual at the end.

2.1 Starting and Leaving GAP

If the program is correctly installed then you usually start GAP by simply typing gap at the prompt of
your operating system followed by the RETURN key, sometimes this is also called the NEWLINE key.

Example
$ gap

GAP answers your request with its beautiful banner and then it shows its own prompt gap> asking

9

mailto://support@gap-system.org

GAP — A Tutorial 10

you for further input. (You can avoid the banner with the command line option -b; more command
line options are described in Section (Reference: Command Line Options).)

Example
gap>

The usual way to end a GAP session is to type quit; at the gap> prompt. Do not omit the
semicolon!

Example
gap> quit;

$

On some systems you could type CTRL-D to yield the same effect. In any situation GAP is ended
by typing CTRL-C twice within a second. Here as always, a combination like CTRL-D means that
you have to press the D key while you hold down the CTRL key.

On some systems minor changes might be necessary. This is explained in GAP installation in-
structions (see the INSTALL file in the GAP root directory, or the GAP website).

In most places whitespace characters (i.e. SPACEs, TABs and RETURNs) are insignificant for the
meaning of GAP input. Identifiers and keywords must however not contain any whitespace. On the
other hand, sometimes there must be whitespace around identifiers and keywords to separate them
from each other and from numbers. We will use whitespace to format more complicated commands
for better readability.

A comment in GAP starts with the symbol # and continues to the end of the line. Comments are
treated like whitespace by GAP. We use comments in the printed examples in this tutorial to explain
certain lines of input or output.

2.2 Loading Source Code from a File

The most convenient way of creating larger pieces of GAP code is to write them to some text file. For
this purpose you can simply use your favorite text editor. You can load such a file into GAP using the
Read (Reference: Read) function:

Example
gap> Read("../../GAPProgs/Example.g");

You can either give the full absolute path name of the source file or its relative path name from the
current directory.

2.3 The Read Evaluate Print Loop

GAP is an interactive system. It continuously executes a read evaluate print loop. Each expression
you type at the keyboard is read by GAP, evaluated, and then the result is shown.

The interactive nature of GAP allows you to type an expression at the keyboard and see its value
immediately. You can define a function and apply it to arguments to see how it works. You may even
write whole programs containing lots of functions and test them without leaving the program.

When your program is large it will be more convenient to write it on a file and then read that file
into GAP. Preparing your functions in a file has several advantages. You can compose your functions

GAP — A Tutorial 11

more carefully in a file (with your favorite text editor), you can correct errors without retyping the
whole function and you can keep a copy for later use. Moreover you can write lots of comments into
the program text, which are ignored by GAP, but are very useful for human readers of your program
text. GAP treats input from a file in the same way that it treats input from the keyboard. Further
details can be found in section Read (Reference: Read).

A simple calculation with GAP is as easy as one can imagine. You type the problem just after
the prompt, terminate it with a semicolon and then pass the problem to the program with the RETURN

key. For example, to multiply the difference between 9 and 7 by the sum of 5 and 6, that is to calculate
(9−7)∗ (5+6), you type exactly this last sequence of symbols followed by ; and RETURN.

Example
gap> (9 - 7) * (5 + 6);

22

gap>

Then GAP echoes the result 22 on the next line and shows with the prompt that it is ready for the
next problem. Henceforth, we will no longer print this additional prompt.

If you make a mistake while typing the line, but before typing the final RETURN, you can use the
DELETE key (or sometimes BACKSPACE key) to delete the last typed character. You can also move
the cursor back and forward in the line with CTRL-B and CTRL-F and insert or delete characters
anywhere in the line. The line editing commands are fully described in section (Reference: Line
Editing).

If you did omit the semicolon at the end of the line but have already typed RETURN, then GAP has
read everything you typed, but does not know that the command is complete. The program is waiting
for further input and indicates this with a partial prompt >. This problem is solved by simply typing
the missing semicolon on the next line of input. Then the result is printed and the normal prompt
returns.

Example
gap> (9 - 7) * (5 + 6)

> ;

22

So the input can consist of several lines, and GAP prints a partial prompt > in each input line
except the first, until the command is completed with a semicolon. (GAP may already evaluate part
of the input when RETURN is typed, so for long calculations it might take some time until the partial
prompt appears.) Whenever you see the partial prompt and you cannot decide what GAP is still
waiting for, then you have to type semicolons until the normal prompt returns. In every situation the
exact meaning of the prompt gap> is that the program is waiting for a new problem.

But even if you mistyped the command more seriously, you do not have to type it all again.
Suppose you mistyped or forgot the last closing parenthesis. Then your command is syntactically
incorrect and GAP will notice it, incapable of computing the desired result.

Example
gap> (9 - 7) * (5 + 6;

Syntax error:) expected

(9 - 7) * (5 + 6;

^

GAP — A Tutorial 12

Instead of the result an error message occurs indicating the place where an unexpected symbol
occurred with an arrow sign ^ under it. As a computer program cannot know what your intentions
really were, this is only a hint. But in this case GAP is right by claiming that there should be a closing
parenthesis before the semicolon. Now you can type CTRL-P to recover the last line of input. It will
be written after the prompt with the cursor in the first position. Type CTRL-E to take the cursor to the
end of the line, then CTRL-B to move the cursor one character back. The cursor is now on the position
of the semicolon. Enter the missing parenthesis by simply typing). Now the line is correct and may
be passed to GAP by hitting the RETURN key. Note that for this action it is not necessary to move the
cursor past the last character of the input line.

Each line of commands you type is sent to GAP for evaluation by pressing RETURN regardless of
the position of the cursor in that line. We will no longer mention the RETURN key from now on.

Sometimes a syntax error will cause GAP to enter a break loop. This is indicated by the special
prompt brk>. If another syntax error occurs while GAP is in a break loop, the prompt will change to
brk_02>, brk_03> and so on. You can leave the current break loop and exit to the next outer one by
either typing quit; or by hitting CTRL-D. Eventually GAP will return to its normal state and show
its normal prompt gap> again.

2.4 Constants and Operators

In an expression like (9 - 7) * (5 + 6) the constants 5, 6, 7, and 9 are being composed by the
operators +, * and - to result in a new value.

There are three kinds of operators in GAP, arithmetical operators, comparison operators, and
logical operators. You have already seen that it is possible to form the sum, the difference, and the
product of two integer values. There are some more operators applicable to integers in GAP. Of course
integers may be divided by each other, possibly resulting in noninteger rational values.

Example
gap> 12345/25;

2469/5

Note that the numerator and denominator are divided by their greatest common divisor and that
the result is uniquely represented as a division instruction.

The next self-explanatory example demonstrates negative numbers.
Example

gap> -3; 17 - 23;

-3

-6

The exponentiation operator is written as ^. This operation in particular might lead to very large
numbers. This is no problem for GAP as it can handle numbers of (almost) any size.

Example
gap> 3^132;

955004950796825236893190701774414011919935138974343129836853841

The mod operator allows you to compute one value modulo another.
Example

gap> 17 mod 3;

2

GAP — A Tutorial 13

Note that there must be whitespace around the keyword mod in this example since 17mod3 or
17mod would be interpreted as identifiers. The whitespace around operators that do not consist of
letters, e.g., the operators * and -, is not necessary.

GAP knows a precedence between operators that may be overridden by parentheses.
Example

gap> (9 - 7) * 5 = 9 - 7 * 5;

false

Besides these arithmetical operators there are comparison operators in GAP. A comparison results
in a boolean value which is another kind of constant. The comparison operators =, <>, <, <=, > and
>=, test for equality, inequality, less than, less than or equal, greater than and greater than or equal,
respectively.

Example
gap> 10^5 < 10^4;

false

The boolean values true and false can be manipulated via logical operators, i. e., the unary
operator not and the binary operators and and or. Of course boolean values can be compared, too.

Example
gap> not true; true and false; true or false;

false

false

true

gap> 10 > 0 and 10 < 100;

true

Another important type of constants in GAP are permutations. They are written in cycle notation
and they can be multiplied.

Example
gap> (1,2,3);

(1,2,3)

gap> (1,2,3) * (1,2);

(2,3)

The inverse of the permutation (1,2,3) is denoted by (1,2,3)^-1. Moreover the caret operator
^ is used to determine the image of a point under a permutation and to conjugate one permutation by
another.

Example
gap> (1,2,3)^-1;

(1,3,2)

gap> 2^(1,2,3);

3

gap> (1,2,3)^(1,2);

(1,3,2)

The various other constants that GAP can deal with will be introduced when they are used, for
example there are elements of finite fields such as Z(8), and complex roots of unity such as E(4).

The last type of constants we want to mention here are the characters, which are simply objects
in GAP that represent arbitrary characters from the character set of the operating system. Character
literals can be entered in GAP by enclosing the character in singlequotes '.

GAP — A Tutorial 14

Example
gap> 'a';

'a'

gap> '*';

'*'

There are no operators defined for characters except that characters can be compared.
In this section you have seen that values may be preceded by unary operators and combined by

binary operators placed between the operands. There are rules for precedence which may be over-
ridden by parentheses. A comparison results in a boolean value. Boolean values are combined via
logical operators. Moreover you have seen that GAP handles numbers of arbitrary size. Numbers and
boolean values are constants. There are other types of constants in GAP like permutations. You are
now in a position to use GAP as a simple desktop calculator.

2.5 Variables versus Objects

The constants described in the last section are specified by certain combinations of digits and mi-
nus signs (in the case of integers) or digits, commas and parentheses (in the case of permutations).
These sequences of characters always have the same meaning to GAP. On the other hand, there
are variables, specified by a sequence of letters and digits (including at least one letter), and their
meaning depends on what has been assigned to them. An assignment is done by a GAP command
sequence_of_letters_and_digits := meaning , where the sequence on the left hand side is
called the identifier of the variable and it serves as its name. The meaning on the right hand side
can be a constant like an integer or a permutation, but it can also be almost any other GAP object.
From now on, we will use the term object to denote something that can be assigned to a variable.

There must be no whitespace between the : and the = in the assignment operator. Also do not
confuse the assignment operator with the single equality sign = which in GAP is only used for the test
of equality.

Example
gap> a:= (9 - 7) * (5 + 6);

22

gap> a;

22

gap> a * (a + 1);

506

gap> a = 10;

false

gap> a:= 10;

10

gap> a * (a + 1);

110

After an assignment the assigned object is echoed on the next line. The printing of the object of a
statement may be in every case prevented by typing a double semicolon.

Example
gap> w:= 2;;

GAP — A Tutorial 15

After the assignment the variable evaluates to that object if evaluated. Thus it is possible to refer
to that object by the name of the variable in any situation.

This is in fact the whole secret of an assignment. An identifier is bound to an object and from this
moment points to that object. Nothing more. This binding is changed by the next assignment to that
identifier. An identifier does not denote a block of memory as in some other programming languages.
It simply points to an object, which has been given its place in memory by the GAP storage manager.
This place may change during a GAP session, but that doesn’t bother the identifier. The identifier
points to the object, not to a place in the memory.

For the same reason it is not the identifier that has a type but the object. This means on the other
hand that the identifier a which now is bound to an integer object may in the same session point to any
other object regardless of its type.

Identifiers may be sequences of letters and digits containing at least one letter. For example abc

and a0bc1 are valid identifiers. But also 123a is a valid identifier as it cannot be confused with any
number. Just 1234 indicates the number 1234 and cannot be at the same time the name of a variable.

Since GAP distinguishes upper and lower case, a1 and A1 are different identifiers. Keywords such
as quit must not be used as identifiers. You will see more keywords in the following sections.

In the remaining part of this manual we will ignore the difference between variables, their names
(identifiers), and the objects they point to. It may be useful to think from time to time about what is
really meant by terms such as “the integer w”.

There are some predefined variables coming with GAP. Many of them you will find in the remain-
ing chapters of this manual, since functions are also referred to via identifiers.

You can get an overview of all GAP variables by entering NamesGVars(). Many of these are
predefined. If you are interested in the variables you have defined yourself in the current GAP session,
you can enter NamesUserGVars().

Example
gap> NamesUserGVars();

["a", "w"]

This seems to be the right place to state the following rule: The name of every global variable
in the GAP library starts with a capital letter. Thus if you choose only names starting with a small
letter for your own variables you will not attempt to overwrite any predefined variable. (Note that
most of the predefined variables are read-only, and trying to change their values will result in an error
message.)

There are some further interesting variables one of which will be introduced now.
Whenever GAP returns an object by printing it on the next line this object is assigned to the

variable last. So if you computed
Example

gap> (9 - 7) * (5 + 6);

22

and forgot to assign the object to the variable a for further use, you can still do it by the following
assignment.

Example
gap> a:= last;

22

GAP — A Tutorial 16

Moreover there are variables last2 and last3, you can guess their values.
In this section you have seen how to assign objects to variables. These objects can later be accessed

through the name of the variable, its identifier. You have also encountered the useful concept of the
last variables storing the latest returned objects. And you have learned that a double semicolon
prevents the result of a statement from being printed.

2.6 Objects vs. Elements

In the last section we mentioned that every object is given a certain place in memory by the GAP
storage manager (although that place may change in the course of a GAP session). In this sense,
objects at different places in memory are never equal, and if the object pointed to by the variable a

(to be more precise, the variable with identifier a) is equal to the object pointed to by the variable
b, then we should better say that they are not only equal but identical. GAP provides the function
IsIdenticalObj (Reference: IsIdenticalObj) to test whether this is the case.

Example
gap> a:= (1,2);; IsIdenticalObj(a, a);

true

gap> b:= (1,2);; IsIdenticalObj(a, b);

false

gap> b:= a;; IsIdenticalObj(a, b);

true

As the above example indicates, GAP objects a and b can be unequal although they are equal
from a mathematical point of view, i.e., although we should have a = b . It may be that the objects
a and b are stored in different places in memory, or it may be that we have an equivalence relation
defined on the set of objects under which a and b belong to the same equivalence class. For example,
if a = x3 and b = x−5 are words in the finitely presented group ⟨x | x2 = 1⟩, we would have a = b in
that group.

GAP uses the equality operator = to denote such a mathematical equality, not the identity of ob-
jects. Hence we often have a = b although IsIdenticalObj(a, b) = false. The operator =
defines an equivalence relation on the set of all GAP objects, and we call the corresponding equiva-
lence classes elements. Phrasing it differently, the same element may be represented by various GAP
objects.

Non-trivial examples of elements that are represented by different objects (objects that really look
different, not ones that are merely stored in different memory places) will occur only when we will be
considering composite objects such as lists or domains.

2.7 About Functions

A program written in the GAP language is called a function. Functions are special GAP objects.
Most of them behave like mathematical functions. They are applied to objects and will return a new
object depending on the input. The function Factorial (Reference: Factorial), for example, can be
applied to an integer and will return the factorial of this integer.

Example
gap> Factorial(17);

355687428096000

GAP — A Tutorial 17

Applying a function to arguments means to write the arguments in parentheses following the func-
tion. Several arguments are separated by commas, as for the function Gcd (Reference: Gcd) which
computes the greatest common divisor of two integers.

Example
gap> Gcd(1234, 5678);

2

There are other functions that do not return an object but only produce a side effect, for example
changing one of their arguments. These functions are sometimes called procedures. The function
Print (Reference: Print) is only called for the side effect of printing something on the screen.

Example
gap> Print(1234, "\n");

1234

In order to be able to compose arbitrary text with Print (Reference: Print), this function itself
will not produce a line break after printing. Thus we had another newline character "\n" printed to
start a new line.

Some functions will both change an argument and return an object such as the function Sortex

(Reference: Sortex) that sorts a list and returns the permutation of the list elements that it has per-
formed. You will not understand right now what it means to change an object. We will return to this
subject several times in the next sections.

A comfortable way to define a function yourself is the maps-to operator -> consisting of a minus
sign and a greater sign with no whitespace between them. The function cubed which maps a number
to its cube is defined on the following line.

Example
gap> cubed:= x -> x^3;

function(x) ... end

After the function has been defined, it can now be applied.
Example

gap> cubed(5);

125

More complicated functions, especially functions with more than one argument cannot be defined
in this way. You will see how to write your own GAP functions in Section 4.1.

In this section you have seen GAP objects of type function. You have learned how to apply a
function to arguments. This yields as result a new object or a side effect. A side effect may change an
argument of the function. Moreover you have seen an easy way to define a function in GAP with the
maps-to operator.

2.8 Help

The content of the GAP manuals is also available as on-line help. A GAP session loads a long list
of index entries. This typically contains all chapter and section headers, all names of documented
functions, operations and so on, as well as some explicit index entries defined in the manuals.

The format of a query is as follows.

GAP — A Tutorial 18

?[book:][?]topic

A simple example would be to type ?help at the GAP prompt. If there is a single section with
index entry topic then this is displayed directly.

If there are several matches you get an overview like in the example below.
Example

gap> ?sets

Help: several entries match this topic - type ?2 to get match [2]

[1] Tutorial: Sets

[2] Reference: Sets

[3] Reference: sets

[4] Reference: Sets of Subgroups

[5] Reference: setstabilizer

GAP’s manuals consist of several books, which are indicated before the colon in the list above.
A help query can be restricted to one book by using the optional book : part. For example ?tut :

sets will display the first of these help sections. More precisely, the parts of the string book which
are separated by white space are interpreted as beginnings of the first words in the name of the book.
Try ?books to see the list of available books and their names.

The search for a matching topic (and optional book) is done case insensitively. If there is another
? before the topic , then a substring search for topic is performed on all index entries. Otherwise
the parts of topic which are separated by white space are considered as beginnings of the first words
in an index entry.

White space is normalized in the search string (and the index entries).
Examples. All the following queries lead to the chapter of the reference manual which explains

the use of GAP’s help system in more detail.
Example

gap> ?Reference: The Help System

gap> ? REF : t h s

gap> ?ref:? help system

The query ??sets shows all help sections in all books whose index entries contain the substring
sets.

As mentioned in the example above a complete list of commands for the help system is available
in Section ?Ref: The Help System of the reference manual. In particular there are commands
to browse through the help sections, see ?Ref: Browsing through the Sections and there is
a way to influence the way how the help sections are displayed, see ?Ref: SetHelpViewer. For
example you can use an external pager program, a Web browser, dvi-previewer and/or pdf-viewer for
reading GAP’s online help.

2.9 Further Information introducing the System

For large amounts of input data, it might be advisable to write your input first into a file, and then read
this into GAP; see Read (Reference: Read), Edit (Reference: Edit) for this.

The definition of the GAP syntax can be looked up in Chapter (Reference: The Programming
Language). A complete list of command line editing facilities is found in Section (Reference: Line
Editing). The break loop is described in Section (Reference: Break Loops).

GAP — A Tutorial 19

Operators are explained in more detail in Sections (Reference: Expressions) and (Reference:
Comparisons). You will find more information about boolean values in Chapters (Reference:
Booleans) and (Reference: Boolean Lists). Permutations are described in Chapter (Reference:
Permutations) and characters in Chapter (Reference: Strings and Characters).

Variables and assignments are described in more detail in (Reference: Variables) and
(Reference: Assignments). A complete list of keywords is contained in (Reference: Keywords).

More about functions can be found in (Reference: Function Calls) and (Reference: Procedure
Calls).

Chapter 3

Lists and Records

Modern mathematics, especially algebra, is based on set theory. When sets are represented in a com-
puter, they inadvertently turn into lists. That’s why we start our survey of the various objects GAP can
handle with a description of lists and their manipulation. GAP regards sets as a special kind of lists,
namely as lists without holes or duplicates whose entries are ordered with respect to the precedence
relation <.

After the introduction of the basic manipulations with lists in 3.1, some difficulties concerning
identity and mutability of lists are discussed in 3.2 and 3.3. Sets, ranges, row vectors, and matrices are
introduced as special kinds of lists in 3.4, 3.5, 3.8. Handy list operations are shown in 3.7. Finally we
explain how to use records in 3.9.

3.1 Plain Lists

A list is a collection of objects separated by commas and enclosed in brackets. Let us for example
construct the list primes of the first ten prime numbers.

Example
gap> primes:= [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

The next two primes are 31 and 37. They may be appended to the existing list by the function
Append which takes the existing list as its first and another list as a second argument. The second
argument is appended to the list primes and no value is returned. Note that by appending another list
the object primes is changed.

Example
gap> Append(primes, [31, 37]);

gap> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

You can as well add single new elements to existing lists by the function Add which takes the
existing list as its first argument and a new element as its second argument. The new element is added
to the list primes and again no value is returned but the list primes is changed.

Example
gap> Add(primes, 41);

gap> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]

20

GAP — A Tutorial 21

Single elements of a list are referred to by their position in the list. To get the value of the seventh
prime, that is the seventh entry in our list primes, you simply type

Example
gap> primes[7];

17

This value can be handled like any other value, for example multiplied by 2 or assigned to a
variable. On the other hand this mechanism allows one to assign a value to a position in a list. So the
next prime 43 may be inserted in the list directly after the last occupied position of primes. This last
occupied position is returned by the function Length.

Example
gap> Length(primes);

13

gap> primes[14]:= 43;

43

gap> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]

Note that this operation again has changed the object primes. The next position after the end of
a list is not the only position capable of taking a new value. If you know that 71 is the 20th prime,
you can enter it right now in the 20th position of primes. This will result in a list with holes which is
however still a list and now has length 20.

Example
gap> primes[20]:= 71;

71

gap> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]

gap> Length(primes);

20

The list itself however must exist before a value can be assigned to a position of the list. This list
may be the empty list [].

Example
gap> lll[1]:= 2;

Error, Variable: 'lll' must have a value

gap> lll:= []; lll[1]:= 2;

[]

2

Of course existing entries of a list can be changed by this mechanism, too. We will not do it here
because primes then may no longer be a list of primes. Try for yourself to change the 17 in the list
into a 9.

To get the position of 17 in the list primes use the function Position (Reference: Position)
which takes the list as its first argument and the element as its second argument and returns the position
of the first occurrence of the element 17 in the list primes. If the element is not contained in the list
then Position (Reference: Position) will return the special object fail.

GAP — A Tutorial 22

Example
gap> Position(primes, 17);

7

gap> Position(primes, 20);

fail

In all of the above changes to the list primes, the list has been automatically resized. There is no
need for you to tell GAP how big you want a list to be. This is all done dynamically.

It is not necessary for the objects collected in a list to be of the same type.
Example

gap> lll:= [true, "This is a String",,, 3];

[true, "This is a String",,, 3]

In the same way a list may be part of another list.
Example

gap> lll[3]:= [4,5,6];; lll;

[true, "This is a String", [4, 5, 6],, 3]

A list may even be part of itself.
Example

gap> lll[4]:= lll;

[true, "This is a String", [4, 5, 6], ~, 3]

Now the tilde in the fourth position of lll denotes the object that is currently printed. Note that the
result of the last operation is the actual value of the object lll on the right hand side of the assignment.
In fact it is identical to the value of the whole list lll on the left hand side of the assignment.

A string is a special type of list, namely a dense list of characters, where dense means that the
list has no holes. Here, characters are special GAP objects representing an element of the character
set of the operating system. The input of printable characters is by enclosing them in single quotes '.
A string literal can either be entered as the list of characters or by writing the characters between
doublequotes ". Strings are handled specially by Print (Reference: Print). You can learn much
more about strings in the reference manual.

Example
gap> s1 := ['H','a','l','l','o',' ','w','o','r','l','d','.'];

"Hallo world."

gap> s1 = "Hallo world.";

true

gap> s1[7];

'w'

Sublists of lists can easily be extracted and assigned using the operator list{ positions }.
Example

gap> sl := lll{ [1, 2, 3] };

[true, "This is a String", [4, 5, 6]]

gap> sl{ [2, 3] } := ["New String", false];

["New String", false]

gap> sl;

[true, "New String", false]

This way you get a new list whose i-th entry is that element of the original list whose position is
the i-th entry of the argument in the curly braces.

GAP — A Tutorial 23

3.2 Identical Lists

This second section about lists is dedicated to the subtle difference between equality and identity of
lists. It is really important to understand this difference in order to understand how complex data
structures are realized in GAP. This section applies to all GAP objects that have subobjects, e.g., to
lists and to records. After reading the section 3.9 about records you should return to this section and
translate it into the record context.

Two lists are equal if all their entries are equal. This means that the equality operator = returns
true for the comparison of two lists if and only if these two lists are of the same length and for each
position the values in the respective lists are equal.

Example
gap> numbers := primes;; numbers = primes;

true

We assigned the list primes to the variable numbers and, of course they are equal as they have
both the same length and the same entries. Now we will change the third number to 4 and compare
the result again with primes.

Example
gap> numbers[3]:= 4;; numbers = primes;

true

You see that numbers and primes are still equal, check this by printing the value of primes.
The list primes is no longer a list of primes! What has happened? The truth is that the lists primes
and numbers are not only equal but they are also identical. primes and numbers are two variables
pointing to the same list. If you change the value of the subobject numbers[3] of numbers this will
also change primes. Variables do not point to a certain block of storage memory but they do point
to an object that occupies storage memory. So the assignment numbers := primes did not create a
new list in a different place of memory but only created the new name numbers for the same old list
of primes.

From this we see that the same object can have several names.
If you want to change a list with the contents of primes independently from primes you will have

to make a copy of primes by the function ShallowCopy which takes an object as its argument and
returns a copy of the argument. (We will first restore the old value of primes.)

Example
gap> primes[3]:= 5;; primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]

gap> numbers:= ShallowCopy(primes);; numbers = primes;

true

gap> numbers[3]:= 4;; numbers = primes;

false

Now numbers is no longer equal to primes and primes still is a list of primes. Check this by
printing the values of numbers and primes.

Lists and records can be changed this way because GAP objects of these types have subobjects.
To clarify this statement consider the following assignments.

Example
gap> i:= 1;; j:= i;; i:= i+1;;

GAP — A Tutorial 24

By adding 1 to i the value of i has changed. What happens to j? After the second statement j
points to the same object as i, namely to the integer 1. The addition does not change the object 1 but
creates a new object according to the instruction i+1. It is actually the assignment that changes the
value of i. Therefore j still points to the object 1. Integers (like permutations and booleans) have no
subobjects. Objects of these types cannot be changed but can only be replaced by other objects. And
a replacement does not change the values of other variables. In the above example an assignment of a
new value to the variable numbers would also not change the value of primes.

Finally try the following examples and explain the results.
Example

gap> l:= [];; l:= [l];

[[]]

gap> l[1]:= l;

[~]

Now return to Section 3.1 and find out whether the functions Add (Reference: Add) and Append

(Reference: Append) change their arguments.

3.3 Immutability

GAP has a mechanism that protects lists against changes like the ones that have bothered us in Sec-
tion 3.2. The function Immutable (Reference: Immutable) takes as argument a list and returns an
immutable copy of it, i.e., a list which looks exactly like the old one, but has two extra properties:
(1) The new list is immutable, i.e., the list itself and its subobjects cannot be changed. (2) In con-
structing the copy, every part of the list that can be changed has been copied, so that changes to the
old list will not affect the new one. In other words, the new list has no mutable subobjects in common
with the old list.

Example
gap> list := [1, 2, "three", [4]];; copy := Immutable(list);;

gap> list[3][5] := 'w';; list; copy;

[1, 2, "threw", [4]]

[1, 2, "three", [4]]

gap> copy[3][5] := 'w';

List Assignment: <list> must be a mutable list

not in any function

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' and ignore the assignment to continue

brk> quit;

As a consequence of these rules, in the immutable copy of a list which contains an already im-
mutable list as subobject, this immutable subobject need not be copied, because it is unchangeable.
Immutable lists are useful in many complex GAP objects, for example as generator lists of groups.
By making them immutable, GAP ensures that no generators can be added to the list, removed or
exchanged. Such changes would of course lead to serious inconsistencies with other knowledge that
may already have been calculated for the group.

A converse function to Immutable (Reference: Immutable) is ShallowCopy (Reference: Shal-
lowCopy), which produces a new mutable list whose i-th entry is the i-th entry of the old list. The

GAP — A Tutorial 25

single entries are not copied, they are just placed in the new list. If the old list is immutable, and hence
the list entries are immutable themselves, the result of ShallowCopy (Reference: ShallowCopy) is
mutable only on the top level.

It should be noted that also other objects than lists can appear in mutable or immutable form.
Records (see Section 3.9) provide another example.

3.4 Sets

GAP knows several special kinds of lists. A set in GAP is a list that contains no holes (such a list
is called dense) and whose elements are strictly sorted w.r.t. <; in particular, a set cannot contain
duplicates. (More precisely, the elements of a set in GAP are required to lie in the same family, but
roughly this means that they can be compared using the < operator.)

This provides a natural model for mathematical sets whose elements are given by an explicit
enumeration.

GAP also calls a set a strictly sorted list, and the function IsSSortedList (Reference: IsS-
SortedList) tests whether a given list is a set. It returns a boolean value. For almost any list whose
elements are contained in the same family, there exists a corresponding set. This set is constructed by
the function Set (Reference: Set) which takes the list as its argument and returns a set obtained from
this list by ignoring holes and duplicates and by sorting the elements.

The elements of the sets used in the examples of this section are strings.
Example

gap> fruits:= ["apple", "strawberry", "cherry", "plum"];

["apple", "strawberry", "cherry", "plum"]

gap> IsSSortedList(fruits);

false

gap> fruits:= Set(fruits);

["apple", "cherry", "plum", "strawberry"]

Note that the original list fruits is not changed by the function Set (Reference: Set). We have
to make a new assignment to the variable fruits in order to make it a set.

The operator in is used to test whether an object is an element of a set. It returns a boolean value
true or false.

Example
gap> "apple" in fruits;

true

gap> "banana" in fruits;

false

The operator in can also be applied to ordinary lists. It is however much faster to perform a
membership test for sets since sets are always sorted and a binary search can be used instead of a
linear search. New elements may be added to a set by the function AddSet (Reference: AddSet)
which takes the set fruits as its first argument and an element as its second argument and adds the
element to the set if it wasn’t already there. Note that the object fruits is changed.

Example
gap> AddSet(fruits, "banana");

gap> fruits; # The banana is inserted in the right place.

["apple", "banana", "cherry", "plum", "strawberry"]

GAP — A Tutorial 26

gap> AddSet(fruits, "apple");

gap> fruits; # fruits has not changed.

["apple", "banana", "cherry", "plum", "strawberry"]

Note that inserting new elements into a set with AddSet (Reference: AddSet) is usually more
expensive than simply adding new elements at the end of a list.

Sets can be intersected by the function Intersection (Reference: Intersection) and united by
the function Union (Reference: Union) which both take two sets as their arguments and return the
intersection resp. union of the two sets as a new object.

Example
gap> breakfast:= ["tea", "apple", "egg"];

["tea", "apple", "egg"]

gap> Intersection(breakfast, fruits);

["apple"]

The arguments of the functions Intersection (Reference: Intersection) and Union

(Reference: Union) could be ordinary lists, while their result is always a set. Note that in the preced-
ing example at least one argument of Intersection (Reference: Intersection) was not a set. The
functions IntersectSet (Reference: IntersectSet) and UniteSet (Reference: UniteSet) also form
the intersection resp. union of two sets. They will however not return the result but change their first
argument to be the result. Try them carefully.

3.5 Ranges

A range is a finite arithmetic progression of integers. This is another special kind of list. A range is
described by the first two values and the last value of the arithmetic progression which are given in
the form [first,second..last]. In the usual case of an ascending list of consecutive integers the
second entry may be omitted.

Example
gap> [1..999999]; # a range of almost a million numbers

[1 .. 999999]

gap> [1, 2..999999]; # this is equivalent

[1 .. 999999]

gap> [1, 3..999999]; # here the step is 2

[1, 3 .. 999999]

gap> Length(last);

500000

gap> [999999, 999997 .. 1];

[999999, 999997 .. 1]

This compact printed representation of a fairly long list corresponds to a compact internal rep-
resentation. The function IsRange (Reference: IsRange) tests whether an object is a range, the
function ConvertToRangeRep (Reference: ConvertToRangeRep) changes the representation of a
list that is in fact a range to this compact internal representation.

Example
gap> a:= [-2,-1,0,1,2,3,4,5];

[-2, -1, 0, 1, 2, 3, 4, 5]

GAP — A Tutorial 27

gap> IsRange(a);

true

gap> ConvertToRangeRep(a);; a;

[-2 .. 5]

gap> a[1]:= 0;; IsRange(a);

false

Note that this change of representation does not change the value of the list a. The list a still
behaves in any context in the same way as it would have in the long representation.

3.6 For and While Loops

Given a list pp of permutations we can form their product by means of a for loop instead of writing
down the product explicitly.

Example
gap> pp:= [(1,3,2,6,8)(4,5,9), (1,6)(2,7,8), (1,5,7)(2,3,8,6),

> (1,8,9)(2,3,5,6,4), (1,9,8,6,3,4,7,2)];;

gap> prod:= ();

()

gap> for p in pp do

> prod:= prod*p;

> od;

gap> prod;

(1,8,4,2,3,6,5,9)

First a new variable prod is initialized to the identity permutation (). Then the loop variable p

takes as its value one permutation after the other from the list pp and is multiplied with the present
value of prod resulting in a new value which is then assigned to prod.

The for loop has the following syntax
for var in list do statements od;

The effect of the for loop is to execute the statements for every element of the list . A for

loop is a statement and therefore terminated by a semicolon. The list of statements is enclosed by
the keywords do and od (reverse do). A for loop returns no value. Therefore we had to ask explicitly
for the value of prod in the preceding example.

The for loop can loop over any kind of list, even a list with holes. In many programming languages
the for loop has the form

for var from first to last do statements od;

In GAP this is merely a special case of the general for loop as defined above where the list in
the loop body is a range (see 3.5):

for var in [first..last] do statements od;

You can for instance loop over a range to compute the factorial 15! of the number 15 in the
following way.

Example
gap> ff:= 1;

1

gap> for i in [1..15] do

> ff:= ff * i;

> od;

GAP — A Tutorial 28

gap> ff;

1307674368000

The while loop has the following syntax
while condition do statements od;

The while loop loops over the statements as long as the condition evaluates to true. Like
the for loop the while loop is terminated by the keyword od followed by a semicolon.

We can use our list primes to perform a very simple factorization. We begin by initializing a
list factors to the empty list. In this list we want to collect the prime factors of the number 1333.
Remember that a list has to exist before any values can be assigned to positions of the list. Then we
will loop over the list primes and test for each prime whether it divides the number. If it does we will
divide the number by that prime, add it to the list factors and continue.

Example
gap> n:= 1333;;

gap> factors:= [];;

gap> for p in primes do

> while n mod p = 0 do

> n:= n/p;

> Add(factors, p);

> od;

> od;

gap> factors;

[31, 43]

gap> n;

1

As n now has the value 1 all prime factors of 1333 have been found and factors contains a
complete factorization of 1333. This can of course be verified by multiplying 31 and 43.

This loop may be applied to arbitrary numbers in order to find prime factors. But as primes is not
a complete list of all primes this loop may fail to find all prime factors of a number greater than 2000,
say. You can try to improve it in such a way that new primes are added to the list primes if needed.

You have already seen that list objects may be changed. This of course also holds for the list in a
loop body. In most cases you have to be careful not to change this list, but there are situations where
this is quite useful. The following example shows a quick way to determine the primes smaller than
1000 by a sieve method. Here we will make use of the function Unbind to delete entries from a list,
and the if statement covered in 4.2.

Example
gap> primes:= [];;

gap> numbers:= [2..1000];;

gap> for p in numbers do

> Add(primes, p);

> for n in numbers do

> if n mod p = 0 then

> Unbind(numbers[n-1]);

> fi;

> od;

> od;

GAP — A Tutorial 29

The inner loop removes all entries from numbers that are divisible by the last detected prime p.
This is done by the function Unbind which deletes the binding of the list position numbers[n-1]

to the value n so that afterwards numbers[n-1] no longer has an assigned value. The next element
encountered in numbers by the outer loop necessarily is the next prime.

In a similar way it is possible to enlarge the list which is looped over. This yields a nice and short
orbit algorithm for the action of a group, for example.

More about for and while loops can be found in the sections (Reference: While)
and (Reference: For).

3.7 List Operations

There is a more comfortable way than that given in the previous section to compute the product of a
list of numbers or permutations.

Example
gap> Product([1..15]);

1307674368000

gap> Product(pp);

(1,8,4,2,3,6,5,9)

The function Product (Reference: Product) takes a list as its argument and computes the product
of the elements of the list. This is possible whenever a multiplication of the elements of the list is
defined. So Product (Reference: Product) executes a loop over all elements of the list.

There are other often used loops available as functions. Guess what the function Sum (Reference:
Sum) does. The function List (Reference: list and non-list difference) may take a list and a function
as its arguments. It will then apply the function to each element of the list and return the corresponding
list of results. A list of cubes is produced as follows with the function cubed from Section 4.

Example
gap> cubed:= x -> x^3;;

gap> List([2..10], cubed);

[8, 27, 64, 125, 216, 343, 512, 729, 1000]

To add all these cubes we might apply the function Sum (Reference: Sum) to the last list. But we
may as well give the function cubed to Sum (Reference: Sum) as an additional argument.

Example
gap> Sum(last) = Sum([2..10], cubed);

true

The primes less than 30 can be retrieved out of the list primes from Section 3.1 by the function
Filtered (Reference: Filtered). This function takes the list primes and a property as its arguments
and will return the list of those elements of primes which have this property. Such a property will be
represented by a function that returns a boolean value. In this example the property of being less than
30 can be represented by the function x -> x < 30 since x < 30 will evaluate to true for values x
less than 30 and to false otherwise.

Example
gap> Filtered(primes, x -> x < 30);

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

GAP — A Tutorial 30

We have already mentioned the operator { } that forms sublists. It takes a list of positions as its
argument and will return the list of elements from the original list corresponding to these positions.

Example
gap> primes{ [1 .. 10] };

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Finally we mention the function ForAll (Reference: ForAll) that checks whether a property
holds for all elements of a list. It takes as its arguments a list and a function that returns a boolean
value. ForAll (Reference: ForAll) checks whether the function returns true for all elements of the
list.

Example
gap> list:= [1, 2, 3, 4];;

gap> ForAll(list, x -> x > 0);

true

gap> ForAll(list, x -> x in primes);

false

You will find more predefined for loops in chapter (Reference: Lists).

3.8 Vectors and Matrices

This section describes how GAP uses lists to represent row vectors and matrices. A row vector is a
dense list of elements from a common field. A matrix is a dense list of row vectors over a common
field and of equal length.

Example
gap> v:= [3, 6, 2, 5/2];; IsRowVector(v);

true

Row vectors may be added and multiplied by scalars from their field. Multiplication of row vectors
of equal length results in their scalar product.

Example
gap> 2 * v; v * 1/3;

[6, 12, 4, 5]

[1, 2, 2/3, 5/6]

gap> v * v; # the scalar product of `v' with itself

221/4

Note that the expression v * 1/3 is actually evaluated by first multiplying v by 1 (which yields
again v) and by then dividing by 3. This is also an allowed scalar operation. The expression v/3

would result in the same value.
Such arithmetical operations (if the results are again vectors) result in mutable vectors except if the

operation is binary and both operands are immutable; thus the vectors shown in the examples above
are all mutable.

So if you want to produce a mutable list with 100 entries equal to 25, you can simply say 25 + 0

* [1 .. 100]. Note that ranges are also vectors (over the rationals), and that [1 .. 100] is
mutable.

A matrix is a dense list of row vectors of equal length.

GAP — A Tutorial 31

Example
gap> m:= [[1,-1, 1],

> [2, 0,-1],

> [1, 1, 1]];

[[1, -1, 1], [2, 0, -1], [1, 1, 1]]

gap> m[2][1];

2

Syntactically a matrix is a list of lists. So the number 2 in the second row and the first column of
the matrix m is referred to as the first element of the second element of the list m via m[2][1].

A matrix may be multiplied by scalars, row vectors and other matrices. (If the row vectors and
matrices involved in such a multiplication do not have suitable dimensions then the “missing” entries
are treated as zeros, so the results may look unexpectedly in such cases.)

Example
gap> [1, 0, 0] * m;

[1, -1, 1]

gap> [1, 0, 0, 2] * m;

[1, -1, 1]

gap> m * [1, 0, 0];

[1, 2, 1]

gap> m * [1, 0, 0, 2];

[1, 2, 1]

Note that multiplication of a row vector with a matrix will result in a linear combination of the
rows of the matrix, while multiplication of a matrix with a row vector results in a linear combination
of the columns of the matrix. In the latter case the row vector is considered as a column vector.

A vector or matrix of integers can also be multiplied with a finite field scalar and vice versa. Such
products result in a matrix over the finite field with the integers mapped into the finite field in the
obvious way. Finite field matrices are nicer to read when they are Displayed rather than Printed.
(Here we write Z(q) to denote a primitive root of the finite field with q elements.)

Example
gap> Display(m * One(GF(5)));

1 4 1

2 . 4

1 1 1

gap> Display(m^2 * Z(2) + m * Z(4));

z = Z(4)

z^1 z^1 z^2

1 1 z^2

z^1 z^1 z^2

Submatrices can easily be extracted using the expression mat{rows}{columns}. They can also
be assigned to, provided the big matrix is mutable (which it is not if it is the result of an arithmetical
operation, see above).

Example
gap> sm := m{ [1, 2] }{ [2, 3] };

[[-1, 1], [0, -1]]

gap> sm{ [1, 2] }{ [2] } := [[-2],[0]];; sm;

[[-1, -2], [0, 0]]

GAP — A Tutorial 32

The first curly brackets contain the selection of rows, the second that of columns.
Matrices appear not only in linear algebra, but also as group elements, provided they are invert-

ible. Here we have the opportunity to meet a group-theoretical function, namely Order (Reference:
Order), which computes the order of a group element.

Example
gap> Order(m * One(GF(5)));

8

gap> Order(m);

infinity

For matrices whose entries are more complex objects, for example rational functions, GAP’s
Order (Reference: Order) methods might not be able to prove that the matrix has infinite order, and
one gets the following warning.

Example
#I Order: warning, order of <mat> might be infinite

In such a case, if the order of the matrix really is infinite, you will have to interrupt GAP by pressing
ctl-C (followed by ctl-D or quit; to leave the break loop).

To prove that the order of m is infinite, we also could look at the minimal polynomial of m over the
rationals.

Example
gap> f:= MinimalPolynomial(Rationals, m);; Factors(f);

[x_1-2, x_1^2+3]

Factors (Reference: Factors) returns a list of irreducible factors of the polynomial f. The first
irreducible factor X −2 reveals that 2 is an eigenvalue of m, hence its order cannot be finite.

3.9 Plain Records

A record provides another way to build new data structures. Like a list a record contains subobjects.
In a record the elements, the so-called record components, are not indexed by numbers but by names.

In this section you will see how to define and how to use records. Records are changed by assign-
ments to record components or by unbinding record components.

Initially a record is defined as a comma separated list of assignments to its record components.
Example

gap> date:= rec(year:= 1997,

> month:= "Jul",

> day:= 14);

rec(day := 14, month := "Jul", year := 1997)

The value of a record component is accessible by the record name and the record component name
separated by one dot as the record component selector.

Example
gap> date.year;

1997

GAP — A Tutorial 33

Assignments to new record components are possible in the same way. The record is automatically
resized to hold the new component.

Example
gap> date.time:= rec(hour:= 19, minute:= 23, second:= 12);

rec(hour := 19, minute := 23, second := 12)

gap> date;

rec(day := 14, month := "Jul",

time := rec(hour := 19, minute := 23, second := 12), year := 1997)

Records are objects that may be changed. An assignment to a record component changes the
original object. The remarks made in Sections 3.2 and 3.3 about identity and mutability of lists are
also true for records.

Sometimes it is interesting to know which components of a certain record are bound. This infor-
mation is available from the function RecNames (Reference: RecNames), which takes a record as its
argument and returns a list of names of all bound components of this record as a list of strings.

Example
gap> RecNames(date);

["time", "year", "month", "day"]

Now return to Sections 3.2 and 3.3 and find out what these sections mean for records.

3.10 Further Information about Lists

(The following cross-references point to the GAP Reference Manual.)
You will find more about lists, sets, and ranges in Chapter (Reference: Lists), in particular

more about identical lists in Section (Reference: Identical Lists). A more detailed description
of strings is contained in Chapter (Reference: Strings and Characters). Fields are described in
Chapter (Reference: Fields and Division Rings), some known fields in GAP are described in Chap-
ters (Reference: Rational Numbers), (Reference: Abelian Number Fields), and (Reference:
Finite Fields). Row vectors and matrices are described in more detail in Chapters (Reference: Row
Vectors) and (Reference: Matrices); note that GAP supports also linear algebra for objects which
are not lists, see Chapter (Reference: Vector and Matrix Objects). Vector spaces are described
in Chapter (Reference: Vector Spaces), further matrix related structures are described in Chap-
ters (Reference: Matrix Groups), (Reference: Algebras), and (Reference: Lie Algebras).

You will find more list operations in Chapter (Reference: Lists).
Records and functions for records are described in detail in Chapter (Reference: Records).

Chapter 4

Functions

You have already seen how to use functions in the GAP library, i.e., how to apply them to arguments.
In this section you will see how to write functions in the GAP language. You will also see how to

use the if statement and declare local variables with the local statement in the function definition.
Loop constructions via while and for are discussed further, as are recursive functions.

4.1 Writing Functions

Writing a function that prints hello, world. on the screen is a simple exercise in GAP.
Example

gap> sayhello:= function()

> Print("hello, world.\n");

> end;

function() ... end

This function when called will only execute the Print statement in the second line. This will
print the string hello, world. on the screen followed by a newline character \n that causes the
GAP prompt to appear on the next line rather than immediately following the printed characters.

The function definition has the following syntax.
function(arguments) statements end

A function definition starts with the keyword function followed by the formal parameter list
arguments enclosed in parenthesis (). The formal parameter list may be empty as in the example.
Several parameters are separated by commas. Note that there must be no semicolon behind the closing
parenthesis. The function definition is terminated by the keyword end.

A GAP function is an expression like an integer, a sum or a list. Therefore it may be assigned to
a variable. The terminating semicolon in the example does not belong to the function definition but
terminates the assignment of the function to the name sayhello. Unlike in the case of integers, sums,
and lists the value of the function sayhello is echoed in the abbreviated fashion function() ...

end. This shows the most interesting part of a function: its formal parameter list (which is empty in
this example). The complete value of sayhello is returned if you use the function Print (Reference:
Print).

Example
gap> Print(sayhello, "\n");

function ()

Print("hello, world.\n");

34

GAP — A Tutorial 35

return;

end

Note the additional newline character "\n" in the Print (Reference: Print) statement. It is
printed after the object sayhello to start a new line. The extra return statement is inserted by GAP
to simplify the process of executing the function.

The newly defined function sayhello is executed by calling sayhello() with an empty argument
list.

Example
gap> sayhello();

hello, world.

However, this is not a typical example as no value is returned but only a string is printed.

4.2 If Statements

In the following example we define a function sign which determines the sign of an integer.
Example

gap> sign:= function(n)

> if n < 0 then

> return -1;

> elif n = 0 then

> return 0;

> else

> return 1;

> fi;

> end;

function(n) ... end

gap> sign(0); sign(-99); sign(11);

0

-1

1

This example also introduces the if statement which is used to execute statements depending on
a condition. The if statement has the following syntax.

if condition then statements elif condition then statements else statements fi

There may be several elif parts. The elif part as well as the else part of the if statement
may be omitted. An if statement is no expression and can therefore not be assigned to a variable.
Furthermore an if statement does not return a value.

Fibonacci numbers are defined recursively by f (1) = f (2) = 1 and f (n) = f (n− 1)+ f (n− 2)
for n ≥ 3. Since functions in GAP may call themselves, a function fib that computes Fibonacci
numbers can be implemented basically by typing the above equations. (Note however that this is a
very inefficient way to compute f (n).)

Example
gap> fib:= function(n)

> if n in [1, 2] then

> return 1;

> else

GAP — A Tutorial 36

> return fib(n-1) + fib(n-2);

> fi;

> end;

function(n) ... end

gap> fib(15);

610

There should be additional tests for the argument n being a positive integer. This function fib

might lead to strange results if called with other arguments. Try inserting the necessary tests into this
example.

4.3 Local Variables

A function gcd that computes the greatest common divisor of two integers by Euclid’s algorithm will
need a variable in addition to the formal arguments.

Example
gap> gcd:= function(a, b)

> local c;

> while b <> 0 do

> c:= b;

> b:= a mod b;

> a:= c;

> od;

> return c;

> end;

function(a, b) ... end

gap> gcd(30, 63);

3

The additional variable c is declared as a local variable in the local statement of the function
definition. The local statement, if present, must be the first statement of a function definition. When
several local variables are declared in only one local statement they are separated by commas.

The variable c is indeed a local variable, that is local to the function gcd. If you try to use the
value of c in the main loop you will see that c has no assigned value unless you have already assigned
a value to the variable c in the main loop. In this case the local nature of c in the function gcd prevents
the value of the c in the main loop from being overwritten.

Example
gap> c:= 7;;

gap> gcd(30, 63);

3

gap> c;

7

We say that in a given scope an identifier identifies a unique variable. A scope is a lexical part
of a program text. There is the global scope that encloses the entire program text, and there are local
scopes that range from the function keyword, denoting the beginning of a function definition, to
the corresponding end keyword. A local scope introduces new variables, whose identifiers are given
in the formal argument list and the local declaration of the function. The usage of an identifier in a
program text refers to the variable in the innermost scope that has this identifier as its name.

GAP — A Tutorial 37

4.4 Recursion

We have already seen recursion in the function fib in Section 4.2. Here is another, slightly more
complicated example.

We will now write a function to determine the number of partitions of a positive integer. A partition
of a positive integer is a descending list of numbers whose sum is the given integer. For example
[4,2,1,1] is a partition of 8. Note that there is just one partition of 0, namely []. The complete set of all
partitions of an integer n may be divided into subsets with respect to the largest element. The number
of partitions of n therefore equals the sum of the numbers of partitions of n− i with elements less than
or equal to i for all possible i. More generally the number of partitions of n with elements less than m
is the sum of the numbers of partitions of n− i with elements less than i for i less than m and n. This
description yields the following function.

Example
gap> nrparts:= function(n)

> local np;

> np:= function(n, m)

> local i, res;

> if n = 0 then

> return 1;

> fi;

> res:= 0;

> for i in [1..Minimum(n,m)] do

> res:= res + np(n-i, i);

> od;

> return res;

> end;

> return np(n,n);

> end;

function(n) ... end

We wanted to write a function that takes one argument. We solved the problem of determining
the number of partitions in terms of a recursive procedure with two arguments. So we had to write
in fact two functions. The function nrparts that can be used to compute the number of partitions
indeed takes only one argument. The function np takes two arguments and solves the problem in the
indicated way. The only task of the function nrparts is to call np with two equal arguments.

We made np local to nrparts. This illustrates the possibility of having local functions in GAP.
It is however not necessary to put it there. np could as well be defined on the main level, but then the
identifier np would be bound and could not be used for other purposes, and if it were used the essential
function np would no longer be available for nrparts.

Now have a look at the function np. It has two local variables res and i. The variable res is used
to collect the sum and i is a loop variable. In the loop the function np calls itself again with other
arguments. It would be very disturbing if this call of np was to use the same i and res as the calling
np. Since the new call of np creates a new scope with new variables this is fortunately not the case.

Note that the formal parameters n and m of np are treated like local variables.
(Regardless of the recursive structure of an algorithm it is often cheaper (in terms of computing

time) to avoid a recursive implementation if possible (and it is possible in this case), because a function
call is not very cheap.)

GAP — A Tutorial 38

4.5 Further Information about Functions

The function syntax is described in Section (Reference: Functions). The if statement is described in
more detail in Section (Reference: If). More about Fibonacci numbers is found in Section Fibonacci
(Reference: Fibonacci) and more about partitions in Section Partitions (Reference: Partitions).

Chapter 5

Groups and Homomorphisms

In this chapter we will show some computations with groups. The examples deal mostly with per-
mutation groups, because they are the easiest to input. The functions mentioned here, like Group

(Reference: Group), Size (Reference: Size) or SylowSubgroup (Reference: SylowSubgroup),
however, are the same for all kinds of groups, although the algorithms which compute the information
of course will be different in most cases.

5.1 Permutation groups

Permutation groups are so easy to input because their elements, i.e., permutations, are so easy to type:
they are entered and displayed in disjoint cycle notation. So let’s construct a permutation group:

Example
gap> s8 := Group((1,2), (1,2,3,4,5,6,7,8));

Group([(1,2), (1,2,3,4,5,6,7,8)])

We formed the group generated by the permutations (1,2) and (1,2,3,4,5,6,7,8), which is
well known to be the symmetric group S8 on eight points, and assigned it to the identifier s8. Now
S8 contains the alternating group on eight points which can be described in several ways, e.g., as the
group of all even permutations in s8, or as its derived subgroup. Once we ask GAP to verify that the
group is an alternating group acting in its natural permutation representation, the system will display
the group accordingly.

Example
gap> a8 := DerivedSubgroup(s8);

Group([(1,2,3), (2,4,3), (2,4,5), (2,5,6,3,4), (3,7,4), (2,6)

(4,7,8,5)])

gap> Size(a8); IsAbelian(a8); IsPerfect(a8);

20160

false

true

gap> IsNaturalAlternatingGroup(a8);

true

gap> a8;

Alt([1 .. 8])

Once information about a group like s8 or a8 has been computed, it is stored in the group so
that it can simply be looked up when it is required again. This holds for all pieces of information

39

GAP — A Tutorial 40

in the previous example. Namely, a8 stores its order and that it is nonabelian and perfect, and s8

stores its derived subgroup a8. Had we computed a8 as CommutatorSubgroup(s8, s8), how-
ever, it would not have been stored, because it would then have been computed as a function of
two arguments, and hence one could not attribute it to just one of them. (Of course the function
CommutatorSubgroup (Reference: CommutatorSubgroup) can compute the commutator subgroup
of two arbitrary subgroups.) The situation is a bit different for Sylow p-subgroups: The function
SylowSubgroup (Reference: SylowSubgroup) also requires two arguments, namely a group and a
prime p, but the result is stored in the group –namely together with the prime p in a list that can be
accessed with ComputedSylowSubgroups, but we won’t dwell on the details here.

Example
gap> syl2 := SylowSubgroup(a8, 2);; Size(syl2);

64

gap> Normalizer(a8, syl2) = syl2;

true

gap> cent := Centralizer(a8, Centre(syl2));; Size(cent);

192

gap> DerivedSeries(cent);; List(last, Size);

[192, 96, 32, 2, 1]

We have typed double semicolons after some commands to avoid the output of the groups (which
would be printed by their generator lists). Nevertheless, the beginner is encouraged to type a single
semicolon instead and study the full output. This remark also applies for the rest of this tutorial.

With the next examples, we want to calculate a subgroup of a8, then its normalizer and finally de-
termine the structure of the extension. We begin by forming a subgroup generated by three commuting
involutions, i.e., a subgroup isomorphic to the additive group of the vector space 23.

Example
gap> elab := Group((1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8),

> (1,5)(2,6)(3,7)(4,8));;

gap> Size(elab);

8

gap> IsElementaryAbelian(elab);

true

As usual, GAP prints the group by giving all its generators. This can be annoying, especially if
there are many of them or if they are of huge degree. It also makes it difficult to recognize a particular
group when there are already several around. Note that although it is no problem for us to specify a
particular group to GAP, by using well-chosen identifiers such as a8 and elab, it is impossible for
GAP to use these identifiers when printing a group for us, because the group does not know which
identifier(s) point to it, in fact there can be several. In order to give a name to the group itself (rather
than to the identifier), you can use the function SetName (Reference: Name). We do this with the
name 2^3 here which reflects the mathematical properties of the group. From now on, GAP will use
this name when printing the group for us, but we still cannot use this name to specify the group to
GAP, because the name does not know to which group it was assigned (after all, you could assign the
same name to several groups). When talking to the computer, you must always use identifiers.

Example
gap> SetName(elab, "<group of type 2^3>"); elab;

<group of type 2^3>

gap> norm := Normalizer(a8, elab);; Size(norm);

1344

GAP — A Tutorial 41

Now that we have the subgroup norm of order 1344 and its subgroup elab, we want to look at its
factor group. But since we also want to find preimages of factor group elements in norm, we really
want to look at the natural homomorphism defined on norm with kernel elab and whose image is the
factor group.

Example
gap> hom := NaturalHomomorphismByNormalSubgroup(norm, elab);

[(2,3)(6,7), (3,4)(7,8), (3,5)(4,6), (5,7)(6,8), (5,6)(7,8),

(1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,5)(2,6)(3,7)(4,8)

] -> [(1,2)(5,6), (2,3)(6,7), (2,4)(3,5), (4,6)(5,7), (4,5)(6,7),

(), (), ()]

gap> f := Image(hom);

Group([(1,2)(5,6), (2,3)(6,7), (2,4)(3,5), (4,6)(5,7), (4,5)(6,7),

(), (), ()])

gap> Size(f);

168

The factor group is again represented as a permutation group (its last three generators are trivial,
meaning that the last three generators of the preimage are in the kernel of hom). However, the action
domain of this factor group has nothing to do with the action domain of norm. (It only happens that
both are subsets of the natural numbers.) We can now form images and preimages under the natural
homomorphism. The set of preimages of an element under hom is a coset modulo elab. We use the
function PreImages (Reference: PreImages) here because hom is not a bijection, so an element of
the range can have several preimages or none at all.

Example
gap> ker:= Kernel(hom);

Group([(1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,5)(2,6)(3,7)

(4,8)])

gap> x := (1,8,3,5,7,6,2);; Image(hom, x);

(1,7,5,6,2,3,4)

gap> coset := PreImages(hom, last);

RightCoset(Group([(1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,5)

(2,6)(3,7)(4,8)]),(2,8,6,7,3,4,5))

Note that GAP is free to choose any representative for the coset of preimages. Of course the
quotient of two representatives lies in the kernel of the homomorphism.

Example
gap> rep:= Representative(coset);

(2,8,6,7,3,4,5)

gap> x * rep^-1 in ker;

true

The factor group f is a simple group, i.e., it is a non-trivial group whose only normal subgroups
are its trivial subgroup and itself. GAP can detect this fact, and it can then also find the name by
which this simple group is known among group theorists. (Such names are of course not available for
non-simple groups.)

Example
gap> IsSimple(f); IsomorphismTypeInfoFiniteSimpleGroup(f);

true

GAP — A Tutorial 42

rec(

name := "A(1,7) = L(2,7) ~ B(1,7) = O(3,7) ~ C(1,7) = S(2,7) ~ 2A(1,\

7) = U(2,7) ~ A(2,2) = L(3,2)", parameter := [2, 7], series := "L",

shortname := "L3(2)")

gap> SetName(f, "L_3(2)");

We give f the name L_3(2) because the last part of the name string reveals that it is isomorphic
to the simple linear group L3(2). This group, however, also has a lot of other names. Names that
are connected with a = sign are different names for the same matrix group, e.g., A(2,2) is the Lie
type notation for the classical notation L(3,2). Other pairs of names are connected via ~, these then
specify other classical groups that are isomorphic to that linear group (e.g., the symplectic group
S(2,7), whose Lie type notation would be C(1,7)).

The group norm acts on the eight elements of its normal subgroup elab by conjugation, yielding
a representation of L3(2) in s8 which leaves one point fixed (namely point 1). The image of this
representation can be computed with the function Action (Reference: Action homomorphisms);
it is even contained in the group norm and we can show that norm is indeed a split extension of the
elementary abelian group 23 with this image of L3(2).

Example
gap> op := Action(norm, elab);

Group([(), (), (), (5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6),

(2,3)(6,7)])

gap> IsSubgroup(a8, op); IsSubgroup(norm, op);

true

true

gap> IsTrivial(Intersection(elab, op));

true

gap> SetName(norm, "2^3:L_3(2)");

By the way, you should not try the operator < instead of the function IsSubgroup (Reference:
IsSubgroup). Something like

Example
gap> elab < a8;

false

will not cause an error, but the result does not signify anything about the inclusion of one group
in another; < tests which of the two groups is less in some total order. On the other hand, the equality
operator = in fact does test the equality of its arguments.

Summary. In this section we have used the elementary group functions to determine the structure
of a normalizer. We have assigned names to the involved groups which reflect their mathematical
structure and GAP uses these names when printing the groups.

5.2 Actions of Groups

In order to get another representation of a8, we consider another action, namely that on the elements
of a certain conjugacy class by conjugation.

GAP — A Tutorial 43

Example
gap> ccl := ConjugacyClasses(a8);; Length(ccl);

14

gap> List(ccl, c -> Order(Representative(c)));

[1, 2, 2, 3, 6, 3, 4, 4, 5, 15, 15, 6, 7, 7]

gap> List(ccl, Size);

[1, 210, 105, 112, 1680, 1120, 2520, 1260, 1344, 1344, 1344, 3360,

2880, 2880]

Note the difference between Order (Reference: Order) (which means the element order), Size
(Reference: Size) (which means the size of the conjugacy class) and Length (Reference: Length)
(which means the length of a list). We choose to let a8 operate on the class of length 112.

Example
gap> class := First(ccl, c -> Size(c) = 112);;

gap> op := Action(a8, AsList(class),OnPoints);;

We use AsList (Reference: AsList) here to convert the conjugacy class into a list of its elements
whereas we wrote Action(norm, elab) directly in the previous section. The reason is that the
elementary abelian group elab can be quickly enumerated by GAP whereas the standard enumeration
method for conjugacy classes is slower than just explicit calculation of the elements. However, GAP
is reluctant to construct explicit element lists, because for really large groups this direct method is
infeasible.

Note also the function First (Reference: First), used to find the first element in a list which
passes some test.

In this example, we have specified the action function OnPoints (Reference: OnPoints) in this
example, which is defined as OnPoints(d, g) = d ^ g. This “caret” operator denotes conjuga-
tion in a group if both arguments d and g are group elements (contained in a common group), but it
also denotes the natural action of permutations on positive integers (and exponentiation of integers as
well, of course). It is in fact the default action and will be supplied by the system if not given. Another
common action is for example OnRight (Reference: OnRight), which means right multiplication,
defined as d * g. (Group actions in GAP are always from the right.)

We now have a permutation representation op on 112 points, which we test for primitivity. If it is
not primitive, we can obtain a minimal block system (i.e., one where the blocks have minimal length)
by the function Blocks (Reference: Blocks).

Example
gap> IsPrimitive(op, [1 .. 112]);

false

gap> blocks := Blocks(op, [1 .. 112]);;

Note that we must specify the domain of the action. You might think that the functions
IsPrimitive (Reference: IsPrimitive) and Blocks (Reference: Blocks) could use [1 .. 112

] as default domain if no domain was given. But this is not so easy, for example would the default
domain of Group((2,3,4)) be [1 .. 4] or [2 .. 4]? To avoid confusion, all action
functions require that you specify the domain of action. If we had specified [1 .. 113] in the
primitivity test above, point 113 would have been a fixed point (and the action would not even have
been transitive).

Now blocks is a list of blocks (i.e., a list of lists), which we do not print here for the sake of
saving paper (try it for yourself). In fact all we want to know is the size of the blocks, or rather how

GAP — A Tutorial 44

many there are (the product of these two numbers must of course be 112). Then we can obtain a new
permutation group of the corresponding degree by letting op act on these blocks setwise.

Example
gap> Length(blocks[1]); Length(blocks);

2

56

gap> op2 := Action(op, blocks, OnSets);;

gap> IsPrimitive(op2, [1 .. 56]);

true

Note that we give a third argument (the action function OnSets (Reference: OnSets)) to indicate
that the action is not the default action on points but an action on sets of elements given as strictly
sorted lists. (Section (Reference: Basic Actions) lists all actions that are pre-defined by GAP.)

The action of op on the given block system gave us a new representation on 56 points which is
primitive, i.e., the point stabilizer is a maximal subgroup. We compute its preimage in the represen-
tation on eight points using the associated action homomorphisms (which of course in this case are
monomorphisms). We construct the composition of two homomorphisms with the * operator, reading
left-to-right.

Example
gap> ophom := ActionHomomorphism(a8, op);;

gap> ophom2 := ActionHomomorphism(op, op2);;

gap> composition := ophom * ophom2;;

gap> stab := Stabilizer(op2, 2);;

gap> preim := PreImages(composition, stab);

Group([(1,2,4), (6,7,8), (3,6,8), (5,8,6), (1,2)(3,8)])

Alternatively, it is possible to create action homomorphisms immediately (without creating the
action first) by giving the same set of arguments to ActionHomomorphism (Reference: ActionHo-
momorphism).

Example
gap> nophom := ActionHomomorphism(a8, AsList(class));

<action homomorphism>

gap> IsSurjective(nophom);

false

gap> Image(nophom,(1,2,3));

(2,43,14)(3,44,20)(4,45,26)(5,46,32)(6,47,38)(8,13,48)(9,19,53)(10,25,

58)(11,31,63)(12,37,68)(15,49,73)(16,50,74)(17,51,75)(18,52,76)(21,54,

77)(22,55,78)(23,56,79)(24,57,80)(27,59,81)(28,60,82)(29,61,83)(30,62,

84)(33,64,85)(34,65,86)(35,66,87)(36,67,88)(39,69,89)(40,70,90)(41,71,

91)(42,72,92)

In this situation, however (for performance reasons, avoiding computation an image that might
never be needed) the homomorphism is defined to be not into the Image of the action, but into the
full symmetric group, i.e. it is not automatically surjective. Surjectivity can be enforced by giving the
string "surjective" as an extra last argument. The Image of the action homomorphism of course is
the same group in either case.

Example
gap> Size(Range(nophom));

1974506857221074023536820372759924883412778680349753377966562950949028\

GAP — A Tutorial 45

5896977181144089422435502777936659795733823785363827233491968638562181\

1850780464277094400000000000000000000000000

gap> Size(Range(ophom));

20160

gap> nophom := ActionHomomorphism(a8, AsList(class),"surjective");

<action epimorphism>

gap> Size(Range(nophom));

20160

Continuing the example, the normalizer of an element in the conjugacy class class is a group
of order 360, too. In fact, it is a conjugate of the maximal subgroup we had found before, and a
conjugating element in a8 is found by the function RepresentativeAction (Reference: Represen-
tativeAction).

Example
gap> sgp := Normalizer(a8, Subgroup(a8,[Representative(class)]));;

gap> Size(sgp);

360

gap> RepresentativeAction(a8, sgp, preim);

(2,4,3)

One of the most prominent actions of a group is on the cosets of a subgroup. Naïvely this can be
done by constructing the cosets and acting on them by right multiplication.

Example
gap> cosets:=RightCosets(a8,norm);;

gap> op:=Action(a8,cosets,OnRight);

Group([(1,2,3)(4,6,5)(7,8,9)(10,12,11)(13,14,15), (1,2,3)(4,13,9)

(5,7,11)(6,10,15)(8,14,12), (1,11,6)(2,15,4)(3,9,5)(7,13,10)

(8,12,14), (1,10,12,3,13)(2,7,15,14,5)(4,6,8,9,11), (1,12,15)(2,10,5)

(3,11,8)(4,9,13)(6,14,7), (1,4,13,10)(2,15,14,3)(5,12,11,6)(7,9)])

gap> NrMovedPoints(op);

15

A problem with this approach is that creating (and storing) all cosets can be very memory intensive
if the subgroup index gets large. Because of this, GAP provides special objects which act like a list of
elements, but do not actually store elements but compute them on the go. Such a simulated list is called
an enumerator. The easiest example of this concept is the Enumerator (Reference: Enumerator)
of a group. While it behaves like a list of elements, it requires far less storage, and is applicable to
potentially huge groups for which it would be completely infeasible to write down all elements:

Example
gap> enum:=Enumerator(SymmetricGroup(20));

<enumerator of perm group>

gap> Length(enum);

2432902008176640000

gap> enum[123456789012345];

(1,4,15,3,14,11,8,17,6,18,5,7,20,13,10,9,2,12)

gap> Position(enum,(1,2,3,4,5,6,7,8,9,10));

71948729603

For the action on cosets the object of interest is the RightTransversal (Reference: Right-
Transversal) of a subgroup. Again, it does not write out actual elements and thus can be created even
for subgroups of large index.

GAP — A Tutorial 46

Example
gap> t:=RightTransversal(a8,norm);

RightTransversal(Alt([1 .. 8]),2^3:L_3(2))

gap> t[7];

(4,6,5)

gap> Position(t,(4,6,7,8,5));

8

gap> Position(t,(1,2,3));

fail

For the action on cosets there is the added complication that not every group element is in the
transversal (as the last example shows) but the action on cosets of a subgroup usually will not preserve
a chosen set of coset representatives. Because of this issue, all action functionality actually uses
PositionCanonical (Reference: PositionCanonical) instead of Position (Reference: Position).
In general, for elements contained in a list, PositionCanonical (Reference: PositionCanonical)
returns the same as Position. If the element is not contained in the list (and for special lists, such
as transversals), PositionCanonical returns the list element representing the same objects, e.g. the
transversal element representing the same coset.

Example
gap> PositionCanonical(t,(1,2,3));

2

gap> t[2];

(6,7,8)

gap> t[2]/(1,2,3);

(1,3,2)(6,7,8)

gap> last in norm;

true

Thus, acting on a RightTransversal with the OnRight action will in fact (in a slight abuse of
definitions) produce the action of a group on cosets of a subgroup and is in general the most efficient
way of creating this action.

Example
gap> Action(a8,RightTransversal(a8,norm),OnRight);

Group([(1,2,3)(4,6,5)(7,8,9)(10,12,11)(13,14,15), (1,2,3)(4,13,9)

(5,7,11)(6,10,15)(8,14,12), (1,11,6)(2,15,4)(3,9,5)(7,13,10)

(8,12,14), (1,10,12,3,13)(2,7,15,14,5)(4,6,8,9,11), (1,12,15)(2,10,5)

(3,11,8)(4,9,13)(6,14,7), (1,4,13,10)(2,15,14,3)(5,12,11,6)(7,9)])

Summary. In this section we have learned how groups can operate on GAP objects such as in-
tegers and group elements. We have used ActionHomomorphism (Reference: ActionHomomor-
phism), among others, to construct the corresponding actions and homomorphisms and have seen
how transversals can be used to create the action on cosets of a subgroup.

5.3 Subgroups as Stabilizers

Action functions can also be used to construct subgroups. We will try to find several subgroups in
a8 as stabilizers of such actions. One subgroup is immediately available, namely the stabilizer of one
point. The index of the stabilizer must of course be equal to the length of the orbit, i.e., 8.

GAP — A Tutorial 47

Example
gap> u8 := Stabilizer(a8, 1);

Group([(2,3,4,5,6,7,8), (2,4,5,6,7,8,3)])

gap> Index(a8, u8);

8

gap> Orbit(a8, 1); Length(last);

[1, 3, 2, 4, 5, 6, 7, 8]

8

This gives us a hint how to find further subgroups. Each subgroup is the stabilizer of a point of an
appropriate transitive action (namely the action on the cosets of that subgroup or another action that is
equivalent to this action). So the question is how to find other actions. The obvious thing is to operate
on pairs of points. So using the function Tuples (Reference: Tuples) we first generate a list of all
pairs.

Example
gap> pairs := Tuples([1..8], 2);;

Now we would like to have a8 operate on this domain. But we cannot use the default action
OnPoints (Reference: OnPoints) because powering a list by a permutation via the caret operator ^
is not defined. So we must tell the functions from the actions package how the group elements operate
on the elements of the domain (here and below, the word “package” refers to the GAP functionality
for group actions, not to a GAP package). In our example we can do this by simply passing OnPairs

(Reference: OnPairs) as an optional last argument. All functions from the actions package accept
such an optional argument that describes the action. One example is IsTransitive (Reference:
IsTransitive).

Example
gap> IsTransitive(a8, pairs, OnPairs);

false

The action is of course not transitive, since the pairs [1, 1] and [1, 2] cannot lie in the
same orbit. So we want to find out what the orbits are. The function Orbits (Reference: Orbits)
does that for us. It returns a list of all the orbits. We look at the orbit lengths and representatives for
the orbits.

Example
gap> orbs := Orbits(a8, pairs, OnPairs);; Length(orbs);

2

gap> List(orbs, Length);

[8, 56]

gap> List(orbs, o -> o[1]);

[[1, 1], [1, 2]]

The action of a8 on the first orbit (this is the one containing [1,1], try [1,1] in orbs[1]) is of
course equivalent to the original action, so we ignore it and work with the second orbit.

Example
gap> u56 := Stabilizer(a8, orbs[2][1], OnPairs);; Index(a8, u56);

56

GAP — A Tutorial 48

So now we have found a second subgroup. To make the following computations a little bit easier
and more efficient we would now like to work on the points [1 .. 56] instead of the list of pairs.
The function ActionHomomorphism (Reference: ActionHomomorphism) does what we need. It
creates a homomorphism defined on a8 whose image is a new group that acts on [1 .. 56] in
the same way that a8 acts on the second orbit.

Example
gap> h56 := ActionHomomorphism(a8, orbs[2], OnPairs);;

gap> a8_56 := Image(h56);;

We would now like to know if the subgroup u56 of index 56 that we found is maximal or not. As
we have used already in Section 5.2, a subgroup is maximal if and only if the action on the cosets of
this subgroup is primitive.

Example
gap> IsPrimitive(a8_56, [1..56]);

false

Remember that we can leave out the function if we mean OnPoints (Reference: OnPoints) but
that we have to specify the action domain for all action functions.

We see that a8_56 is not primitive. This means of course that the action of a8 on orb[2] is not
primitive, because those two actions are equivalent. So the stabilizer u56 is not maximal. Let us try
to find its supergroups. We use the function Blocks (Reference: Blocks) to find a block system. The
(optional) third argument in the following example tells Blocks (Reference: Blocks) that we want a
block system where 1 and 3 lie in one block.

Example
gap> blocks := Blocks(a8_56, [1..56], [1,3]);;

The result is a list of sets, such that a8_56 acts on those sets. Now we would like the stabilizer of
this action on the sets. Because we want to operate on the sets we have to pass OnSets (Reference:
OnSets) as third argument.

Example
gap> u8_56 := Stabilizer(a8_56, blocks[1], OnSets);;

gap> Index(a8_56, u8_56);

8

gap> u8b := PreImages(h56, u8_56);; Index(a8, u8b);

8

gap> IsConjugate(a8, u8, u8b);

true

So we have found a supergroup of u56 that is conjugate in a8 to u8. This is not surprising, since
u8 is a point stabilizer, and u56 is a two point stabilizer in the natural action of a8 on eight points.

Here is a warning: If you specify OnSets (Reference: OnSets) as third argument to a function
like Stabilizer (Reference: Stabilizer), you have to make sure that the point (i.e. the second
argument) is indeed a set. Otherwise you will get a puzzling error message or even wrong results!
In the above example, the second argument blocks[1] came from the function Blocks (Reference:
Blocks), which returns a list of sets, so everything was OK.

Actually there is a third block system of a8_56 that gives rise to a third subgroup.

GAP — A Tutorial 49

Example
gap> seed:=First(AllBlocks(a8_56),x->Length(x)=2);;

gap> blocks := Blocks(a8_56, [1..56], seed);;

gap> u28_56 := Stabilizer(a8_56, seed, OnSets);;

gap> u28 := PreImages(h56, u28_56);;

gap> Index(a8, u28);

28

We know that the subgroup u28 of index 28 is maximal, because we know that a8 has no subgroups
of index 2, 4, or 7. However we can also quickly verify this by checking that a8_56 acts primitively
on the 28 blocks.

Example
gap> IsPrimitive(a8_56, blocks, OnSets);

true

Stabilizer (Reference: Stabilizer) is not only applicable to groups like a8 but also to their
subgroups like u56. So another method to find a new subgroup is to compute the stabilizer of another
point in u56. Note that u56 already leaves 1 and 2 fixed.

Example
gap> u336 := Stabilizer(u56, 3);;

gap> Index(a8, u336);

336

Other functions are also applicable to subgroups. In the following we show that u336 acts regularly
on the 60 triples of [4 .. 8] which contain no element twice. We construct the list of these
60 triples with the function Orbit (Reference: Orbit) (using OnTuples (Reference: OnTuples) as
the natural generalization of OnPairs (Reference: OnPairs)) and then pass it as action domain to the
function IsRegular (Reference: IsRegular). The positive result of the regularity test means that this
action is equivalent to the actions of u336 on its 60 elements from the right.

Example
gap> IsRegular(u336, Orbit(u336, [4,5,6], OnTuples), OnTuples);

true

Just as we did in the case of the action on the pairs above, we now construct a new permutation
group that acts on [1 .. 336] in the same way that a8 acts on the cosets of u336. But this time
we let a8 operate on a right transversal, just like norm did in the natural homomorphism above.

Example
gap> t := RightTransversal(a8, u336);;

gap> a8_336 := Action(a8, t, OnRight);;

To find subgroups above u336 we again look for nontrivial block systems.
Example

gap> blocks := Blocks(a8_336, [1..336]);; blocks[1];

[1, 43, 85]

We see that the union of u336 with its 43rd and its 85th coset is a subgroup in a8_336, its index
is 112. We can obtain it as the closure of u336 with a representative of the 43rd coset, which can be
found as the 43rd element of the transversal t. Note that in the representation a8_336 on 336 points,
this subgroup corresponds to the stabilizer of the block [1, 43, 85].

GAP — A Tutorial 50

Example
gap> u112 := ClosureGroup(u336, t[43]);;

gap> Index(a8, u112);

112

Above this subgroup of index 112 lies a subgroup of index 56, which is not conjugate to u56. In
fact, unlike u56 it is maximal. We obtain this subgroup in the same way that we obtained u112, this
time forcing two points, namely 7 and 43 into the first block.

Example
gap> blocks := Blocks(a8_336, [1..336], [1,7,43]);;

gap> Length(blocks);

56

gap> u56b := ClosureGroup(u112, t[7]);; Index(a8, u56b);

56

gap> IsPrimitive(a8_336, blocks, OnSets);

true

We already mentioned in Section 5.2 that there is another standard action of permutations, namely
the conjugation. E.g., since no other action is specified in the following example, OrbitLength
(Reference: OrbitLength) simply acts via OnPoints (Reference: OnPoints), and because perm_1

^ perm_2 is defined as the conjugation of perm_2 on perm_1 , in fact we compute the length of the
conjugacy class of (1,2)(3,4)(5,6)(7,8).

Example
gap> OrbitLength(a8, (1,2)(3,4)(5,6)(7,8));

105

gap> orb := Orbit(a8, (1,2)(3,4)(5,6)(7,8));;

gap> u105 := Stabilizer(a8, (1,2)(3,4)(5,6)(7,8));; Index(a8, u105);

105

Note that although the length of a conjugacy class of any element g in any finite group G can be
computed as OrbitLength(G, g), the command Size(ConjugacyClass(G, g)) is prob-
ably more efficient.

Example
gap> Size(ConjugacyClass(a8, (1,2)(3,4)(5,6)(7,8)));

105

Of course the stabilizer u105 is in fact the centralizer of the element (1,2)(3,4)(5,6)(7,8).
Stabilizer (Reference: Stabilizer) notices that and computes the stabilizer using the centralizer
algorithm for permutation groups. In the usual way we now look for the subgroups above u105.

Example
gap> orb:=Set(orb);;

gap> blocks := Blocks(a8, orb);; Length(blocks);

15

gap> Set(blocks[1]);

[(1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,4)(2,3)(5,8)(6,7),

(1,5)(2,6)(3,7)(4,8), (1,6)(2,5)(3,8)(4,7), (1,7)(2,8)(3,5)(4,6),

(1,8)(2,7)(3,6)(4,5)]

GAP — A Tutorial 51

To find the subgroup of index 15 we again use closure. Now we must be a little bit careful to avoid
confusion. u105 is the stabilizer of (1,2)(3,4)(5,6)(7,8). We know that there is a correspondence
between the points of the orbit and the cosets of u105. The point (1,2)(3,4)(5,6)(7,8) corre-
sponds to u105. To get the subgroup above u105 that has index 15 in a8, we must form the closure of
u105 with an element of the coset that corresponds to any other point in the first block. If we choose the
point (1,3)(2,4)(5,7)(6,8), we must use an element of a8 that maps (1,2)(3,4)(5,6)(7,8)
to (1,3)(2,4)(5,7)(6,8). The function RepresentativeAction (Reference: Representative-
Action) does what we need. It takes a group and two points and returns an element of the group that
maps the first point to the second. In fact it also allows you to specify the action as an optional fourth
argument as usual, but we do not need this here. If no such element exists in the group, i.e., if the
two points do not lie in one orbit under the group, RepresentativeAction (Reference: Represen-
tativeAction) returns fail.

Example
gap> rep := RepresentativeAction(a8, (1,2)(3,4)(5,6)(7,8),

> (1,3)(2,4)(5,7)(6,8));

(2,3)(6,7)

gap> u15 := ClosureGroup(u105, rep);; Index(a8, u15);

15

u15 is of course a maximal subgroup, because a8 has no subgroups of index 3 or 5. There is in
fact another class of subgroups of index 15 above u105 that we get by adding (2,3)(6,8) to u105.

Example
gap> u15b := ClosureGroup(u105, (2,3)(6,8));; Index(a8, u15b);

15

gap> RepresentativeAction(a8, u15, u15b);

fail

RepresentativeAction (Reference: RepresentativeAction) tells us that there is no element g
in a8 such that u15 ^ g = u15b. Because ^ also denotes the conjugation of subgroups this tells us
that u15 and u15b are not conjugate.

Summary. In this section we have demonstrated some functions from the actions package. There
is a whole class of functions that we did not mention, namely those that take a single element instead
of a whole group as first argument, e.g., Cycle (Reference: Cycle) and Permutation (Reference:
Permutation). These are fully described in Chapter (Reference: Group Actions).

5.4 Group Homomorphisms by Images

We have already seen examples of group homomorphisms in the last sections, namely natural ho-
momorphisms and action homomorphisms. In this section we will show how to construct a group
homomorphism G → H by specifying a generating set for G and the images of these generators in H.
We use the function GroupHomomorphismByImages(G, H, gens, imgs) where gens is a gen-
erating set for G and imgs is a list whose ith entry is the image of gens [i] under the homomorphism.

Example
gap> s4 := Group((1,2,3,4),(1,2));; s3 := Group((1,2,3),(1,2));;

gap> hom := GroupHomomorphismByImages(s4, s3,

> GeneratorsOfGroup(s4), [(1,2),(2,3)]);

[(1,2,3,4), (1,2)] -> [(1,2), (2,3)]

GAP — A Tutorial 52

gap> Kernel(hom);

Group([(1,4)(2,3), (1,3)(2,4)])

gap> Image(hom, (1,2,3));

(1,2,3)

gap> Size(Image(hom, DerivedSubgroup(s4)));

3

Example
gap> PreImage(hom, (1,2,3));

Error, <map> must be an inj. and surj. mapping called from

<function "PreImage">(<arguments>)

called from read-eval loop at line 4 of *stdin*

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk> quit;

Example
gap> PreImagesRepresentative(hom, (1,2,3));

(1,4,2)

gap> PreImage(hom, TrivialSubgroup(s3)); # the kernel

Group([(1,4)(2,3), (1,3)(2,4)])

This homomorphism from S4 onto S3 is well known from elementary group theory. Images
of elements and subgroups under hom can be calculated with the function Image (Reference: Im-
age). But since the mapping hom is not bijective, we cannot use the function PreImage (Reference:
PreImage) for preimages of elements (they can have several preimages). Instead, we have to use
PreImagesRepresentative (Reference: PreImagesRepresentative), which returns one preimage
if at least one exists (and would return fail if none exists, which cannot occur for our surjective hom).
On the other hand, we can use PreImage (Reference: PreImage) for the preimage of a set (which
always exists, even if it is empty).

Suppose we mistype the input when trying to construct a homomorphism as below.
Example

gap> GroupHomomorphismByImages(s4, s3,

> GeneratorsOfGroup(s4), [(1,2,3),(2,3)]);

fail

There is no such homomorphism, hence fail is returned. But note that because of this,
GroupHomomorphismByImages (Reference: GroupHomomorphismByImages) must do some
checks, and this was also done for the mapping hom above. One can avoid these checks if one is sure
that the desired homomorphism really exists. For that, the function GroupHomomorphismByImagesNC
(Reference: GroupHomomorphismByImagesNC) can be used; the NC stands for “no check”.

But note that horrible things can happen if GroupHomomorphismByImagesNC (Reference:
GroupHomomorphismByImagesNC) is used when the input does not describe a homomorphism.

Example
gap> hom2 := GroupHomomorphismByImagesNC(s4, s3,

> GeneratorsOfGroup(s4), [(1,2,3),(2,3)]);

[(1,2,3,4), (1,2)] -> [(1,2,3), (2,3)]

gap> Size(Kernel(hom2));

24

GAP — A Tutorial 53

In other words, GAP claims that the kernel is the full s4, yet hom2 obviously has some non-
trivial images! Clearly there is no such thing as a homomorphism which maps an element of or-
der 4 (namely, (1,2,3,4)) to an element of order 3 (namely, (1,2,3)). But if you use the command
GroupHomomorphismByImagesNC (Reference: GroupHomomorphismByImagesNC), GAP trusts
you.

Example
gap> IsGroupHomomorphism(hom2);

true

And then it produces serious nonsense if the thing is not a homomorphism, as seen above!
Besides the safe command GroupHomomorphismByImages (Reference: GroupHomomor-

phismByImages), which returns fail if the requested homomorphism does not exist, there is
the function GroupGeneralMappingByImages (Reference: GroupGeneralMappingByImages),
which returns a general mapping (that is, a possibly multi-valued mapping) that can be tested with
IsGroupHomomorphism (Reference: IsGroupHomomorphism).

Example
gap> hom2 := GroupGeneralMappingByImages(s4, s3,

> GeneratorsOfGroup(s4), [(1,2,3),(2,3)]);;

gap> IsGroupHomomorphism(hom2);

false

But the possibility of testing for being a homomorphism is not the only reason why GAP
offers group general mappings. Another (more important?) reason is that their existence al-
lows “reversal of arrows” in a homomorphism such as our original hom. By this we mean the
GroupHomomorphismByImages (Reference: GroupHomomorphismByImages) with left and right
sides exchanged, in which case it is of course merely a GroupGeneralMappingByImages (Reference:
GroupGeneralMappingByImages).

Example
gap> rev := GroupGeneralMappingByImages(s3, s4,

> [(1,2),(2,3)], GeneratorsOfGroup(s4));;

Now hom maps a to b if and only if rev maps b to a, for a ∈ s4 and b ∈ s3. Since every such b
has four preimages under hom, it now has four images under rev. Just as the four preimages form a
coset of the kernel V4 ≤s4 of hom, they also form a coset of the cokernel V4 ≤s4 of rev. The cokernel
itself is the set of all images of One(s3). (It is a normal subgroup in the group of all images under
rev.) The operation One (Reference: One) returns the identity element of a group. And this is why
GAP wants to perform such a reversal of arrows: it calculates the kernel of a homomorphism like hom
as the cokernel of the reversed group general mapping (here rev).

Example
gap> CoKernel(rev);

Group([(1,4)(2,3), (1,3)(2,4)])

The reason why rev is not a homomorphism is that it is not single-valued (because hom was
not injective). But there is another critical condition: If we reverse the arrows of a non-surjective
homomorphism, we obtain a group general mapping which is not defined everywhere, i.e., which
is not total (although it will be single-valued if the original homomorphism is injective). GAP re-
quires that a group homomorphism be both single-valued and total, so you will get fail if you say

GAP — A Tutorial 54

GroupHomomorphismByImages(G, H, gens, imgs) where gens does not generate G (even if
this would give a decent homomorphism on the subgroup generated by gens). For a full description,
see Chapter (Reference: Group Homomorphisms).

The last example of this section shows that the notion of kernel and cokernel naturally extends
even to the case where neither hom2 nor its inverse general mapping (with arrows reversed) is a homo-
morphism.

Example
gap> CoKernel(hom2); Kernel(hom2);

Group([(2,3), (1,3)])

Group([(3,4), (2,3,4), (1,2,4)])

gap> IsGroupHomomorphism(InverseGeneralMapping(hom2));

false

Summary. In this section we have constructed homomorphisms by specifying images for a set
of generators. We have seen that by reversing the direction of the mapping, we get group general
mappings, which need not be single-valued (unless the mapping was injective) nor total (unless the
mapping was surjective).

5.5 Nice Monomorphisms

For some types of groups, the best method for calculations in it is to use instead an isomorphic group
in a “better” representation (say, a permutation group). We call an injective homomorphism, that will
give such an isomorphic image a “nice monomorphism”.

For example in the case of a matrix group we can take the action on the underlying vector space
(or a suitable subset) to obtain such a monomorphism:

Example
gap> grp:=GL(2,3);;

gap> dom:=GF(3)^2;;

gap> hom := ActionHomomorphism(grp, dom);; IsInjective(hom);

true

gap> p := Image(hom,grp);

Group([(4,7)(5,8)(6,9), (2,7,6)(3,4,8)])

To demonstrate the technique of nice monomorphisms, we compute the conjugacy classes of the
permutation group and lift them back into the matrix group with the monomorphism hom. Lifting
back a conjugacy class means finding the preimage of the representative and of the centralizer; the
latter is called StabilizerOfExternalSet (Reference: StabilizerOfExternalSet) in GAP (because
conjugacy classes are represented as external sets, see Section (Reference: Conjugacy Classes)).

Example
gap> pcls := ConjugacyClasses(p);; gcls := [];;

gap> for pc in pcls do

> gc:=ConjugacyClass(grp,

> PreImagesRepresentative(hom,Representative(pc)));

> SetStabilizerOfExternalSet(gc,PreImage(hom,

> StabilizerOfExternalSet(pc)));

> Add(gcls, gc);

> od;

gap> List(gcls, Size);

[1, 8, 12, 1, 8, 6, 6, 6]

GAP — A Tutorial 55

All the steps we have made above are automatically performed by GAP if you simply ask for
ConjugacyClasses(grp), provided that GAP already knows that grp is finite (e.g., because you
asked IsFinite(grp) before). The reason for this is that a finite matrix group like grp is “han-
dled by a nice monomorphism”. For such groups, GAP uses the command NiceMonomorphism

(Reference: NiceMonomorphism) to construct a monomorphism (such as the hom in the previous
example) and then proceeds as we have done above.

Example
gap> grp:=GL(2,3);;

gap> IsHandledByNiceMonomorphism(grp);

true

gap> hom := NiceMonomorphism(grp);

<action isomorphism>

gap> p :=Image(hom,grp);

Group([(4,7)(5,8)(6,9), (2,7,6)(3,4,8)])

gap> cc := ConjugacyClasses(grp);; ForAll(cc, x-> x in gcls);

true

gap> ForAll(gcls, x->x in cc); # cc and gcls might be ordered differently

true

Note that a nice monomorphism might be defined on a larger group than grp –so we have to use
Image(hom, grp) and not only Image(hom).

Nice monomorphisms are not only used for matrix groups, but also for other kinds of groups in
which one cannot calculate easily enough. As another example, let us show that the automorphism
group of the quaternion group of order 8 is isomorphic to the symmetric group of degree 4 by exam-
ining the “nice object” associated with that automorphism group.

Example
gap> p:=Group((1,7,6,8)(2,5,3,4), (1,2,6,3)(4,8,5,7));;

gap> aut := AutomorphismGroup(p);; NiceMonomorphism(aut);;

gap> niceaut := NiceObject(aut);

Group([(1,4,2,3), (1,5,4)(2,6,3), (1,2)(3,4), (3,4)(5,6)])

gap> IsomorphismGroups(niceaut, SymmetricGroup(4));

[(1,4,2,3), (1,5,4)(2,6,3), (1,2)(3,4), (3,4)(5,6)] ->

[(1,4,2,3), (1,4,2), (1,2)(3,4), (1,3)(2,4)]

The range of a nice monomorphism is in most cases a permutation group, because nice monomor-
phisms are mostly action homomorphisms. In some cases, like in our last example, the group is
solvable and you might prefer a pc group as nice object. You cannot change the nice monomorphism
of the automorphism group (because it is the value of the attribute NiceMonomorphism (Reference:
NiceMonomorphism)), but you can compose it with an isomorphism from the permutation group
to a pc group to obtain your personal nicer monomorphism. If you reconstruct the automorphism
group, you can even prescribe it this nicer monomorphism as its NiceMonomorphism (Reference:
NiceMonomorphism), because a newly-constructed group will not yet have a NiceMonomorphism

(Reference: NiceMonomorphism) set.
Example

gap> nicer := NiceMonomorphism(aut) * IsomorphismPcGroup(niceaut);;

gap> aut2 := GroupByGenerators(GeneratorsOfGroup(aut));;

gap> SetIsHandledByNiceMonomorphism(aut2, true);

gap> SetNiceMonomorphism(aut2, nicer);

gap> NiceObject(aut2); # a pc group

Group([f1*f2, f2^2*f3, f4, f3])

GAP — A Tutorial 56

The star * denotes composition of mappings from the left to the right, as we have seen in Sec-
tion 5.2 above. Reconstructing the automorphism group may of course result in the loss of other
information GAP had already gathered, besides the (not-so-)nice monomorphism.

Summary. In this section we have seen how calculations in groups can be carried out in isomorphic
images in nicer groups. We have seen that GAP pursues this technique automatically for certain
classes of groups, e.g., for matrix groups that are known to be finite.

5.6 Further Information about Groups and Homomorphisms

Groups and the functions for groups are treated in Chapter (Reference: Groups). There are several
chapters dealing with groups in specific representations, for example Chapter (Reference: Permu-
tation Groups) on permutation groups, (Reference: Polycyclic Groups) on polycyclic (including
finite solvable) groups, (Reference: Matrix Groups) on matrix groups and (Reference: Finitely
Presented Groups) on finitely presented groups. Chapter (Reference: Group Actions) deals with
group actions. Group homomorphisms are the subject of Chapter (Reference: Group Homomor-
phisms).

Chapter 6

Vector Spaces and Algebras

This chapter contains an introduction into vector spaces and algebras in GAP.

6.1 Vector Spaces

A vector space over the field F is an additive group that is closed under scalar multiplication with
elements in F . In GAP, only those domains that are constructed as vector spaces are regarded as
vector spaces. In particular, an additive group that does not know about an acting domain of scalars is
not regarded as a vector space in GAP.

Probably the most common F-vector spaces in GAP are so-called row spaces. They consist of
row vectors, that is, lists whose elements lie in F . In the following example we compute the vector
space spanned by the row vectors [1, 1, 1] and [1, 0, 2] over the rationals.

Example
gap> F:= Rationals;;

gap> V:= VectorSpace(F, [[1, 1, 1], [1, 0, 2]]);

<vector space over Rationals, with 2 generators>

gap> [2, 1, 3] in V;

true

The full row space Fn is created by commands like:
Example

gap> F:= GF(7);;

gap> V:= F^3; # The full row space over F of dimension 3.

(GF(7)^3)

gap> [1, 2, 3] * One(F) in V;

true

In the same way we can also create matrix spaces. Here the short notation field^[dim1,dim2]

can be used:
Example

gap> m1:= [[1, 2], [3, 4]];; m2:= [[0, 1], [1, 0]];;

gap> V:= VectorSpace(Rationals, [m1, m2]);

<vector space over Rationals, with 2 generators>

gap> m1+m2 in V;

true

57

GAP — A Tutorial 58

gap> W:= Rationals^[3,2];

(Rationals^[3, 2])

gap> [[1, 1], [2, 2], [3, 3]] in W;

true

A field is naturally a vector space over itself.
Example

gap> IsVectorSpace(Rationals);

true

If Φ is an algebraic extension of F , then Φ is also a vector space over F (and indeed over any
subfield of Φ that contains F). This field F is stored in the attribute LeftActingDomain (Reference:
LeftActingDomain). In GAP, the default is to view fields as vector spaces over their prime fields. By
the function AsVectorSpace (Reference: AsVectorSpace), we can view fields as vector spaces over
fields other than the prime field.

Example
gap> F:= GF(16);;

gap> LeftActingDomain(F);

GF(2)

gap> G:= AsVectorSpace(GF(4), F);

AsField(GF(2^2), GF(2^4))

gap> F = G;

true

gap> LeftActingDomain(G);

GF(2^2)

A vector space has three important attributes: its field of definition, its dimension and a basis. We
already encountered the function LeftActingDomain (Reference: LeftActingDomain) in the exam-
ple above. It extracts the field of definition of a vector space. The function Dimension (Reference:
Dimension) provides the dimension of the vector space.

Example
gap> F:= GF(9);;

gap> m:= [[Z(3)^0, 0*Z(3), 0*Z(3)], [0*Z(3), Z(3)^0, Z(3)^0]];;

gap> V:= VectorSpace(F, m);

<vector space over GF(3^2), with 2 generators>

gap> Dimension(V);

2

gap> W:= AsVectorSpace(GF(3), V);

<vector space over GF(3), with 4 generators>

gap> V = W;

true

gap> Dimension(W);

4

gap> LeftActingDomain(W);

GF(3)

One of the most important attributes is a basis. For a given basis B of V , every vector v in V can
be expressed uniquely as v = ∑b∈B cbb, with coefficients cb ∈ F .

GAP — A Tutorial 59

In GAP, bases are special lists of vectors. They are used mainly for the computation of coefficients
and linear combinations.

Given a vector space V , a basis of V is obtained by simply applying the function Basis

(Reference: Basis) to V . The vectors that form the basis are extracted from the basis by
BasisVectors (Reference: BasisVectors).

Example
gap> m1:= [[1, 2], [3, 4]];; m2:= [[1, 1], [1, 0]];;

gap> V:= VectorSpace(Rationals, [m1, m2]);

<vector space over Rationals, with 2 generators>

gap> B:= Basis(V);

SemiEchelonBasis(<vector space over Rationals, with

2 generators>, ...)

gap> BasisVectors(Basis(V));

[[[1, 2], [3, 4]], [[0, 1], [2, 4]]]

The coefficients of a vector relative to a given basis are found by the function Coefficients

(Reference: Coefficients). Furthermore, linear combinations of the basis vectors are constructed
using LinearCombination (Reference: LinearCombination).

Example
gap> V:= VectorSpace(Rationals, [[1, 2], [3, 4]]);

<vector space over Rationals, with 2 generators>

gap> B:= Basis(V);

SemiEchelonBasis(<vector space over Rationals, with

2 generators>, ...)

gap> BasisVectors(Basis(V));

[[1, 2], [0, 1]]

gap> Coefficients(B, [1, 0]);

[1, -2]

gap> LinearCombination(B, [1, -2]);

[1, 0]

In the above examples we have seen that GAP often chooses the basis it wants to work with. It is
also possible to construct bases with prescribed basis vectors by giving a list of these vectors as second
argument to Basis (Reference: Basis).

Example
gap> V:= VectorSpace(Rationals, [[1, 2], [3, 4]]);;

gap> B:= Basis(V, [[1, 0], [0, 1]]);

SemiEchelonBasis(<vector space over Rationals, with 2 generators>,

[[1, 0], [0, 1]])

gap> Coefficients(B, [1, 2]);

[1, 2]

We can construct subspaces and quotient spaces of vector spaces. The natural projection map
(constructed by NaturalHomomorphismBySubspace (Reference: NaturalHomomorphismBySub-
space)), connects a vector space with its quotient space.

Example
gap> V:= Rationals^4;

(Rationals^4)

gap> W:= Subspace(V, [[1, 2, 3, 4], [0, 9, 8, 7]]);

GAP — A Tutorial 60

<vector space over Rationals, with 2 generators>

gap> VmodW:= V/W;

(Rationals^2)

gap> h:= NaturalHomomorphismBySubspace(V, W);

<linear mapping by matrix, (Rationals^4) -> (Rationals^2)>

gap> Image(h, [1, 2, 3, 4]);

[0, 0]

gap> PreImagesRepresentative(h, [1, 0]);

[1, 0, 0, 0]

6.2 Algebras

If a multiplication is defined for the elements of a vector space, and if the vector space is closed under
this multiplication then it is called an algebra. For example, every field is an algebra:

Example
gap> f:= GF(8); IsAlgebra(f);

GF(2^3)

true

One of the most important classes of algebras are sub-algebras of matrix algebras. On the set of all
n×n matrices over a field F it is possible to define a multiplication in many ways. The most frequent
are the ordinary matrix multiplication and the Lie multiplication.

Each matrix constructed as [row1 ,row2 , . . .] is regarded by GAP as an ordinary matrix, its mul-
tiplication is the ordinary associative matrix multiplication. The sum and product of two ordinary
matrices are again ordinary matrices.

The full matrix associative algebra can be created as follows:
Example

gap> F:= GF(9);;

gap> A:= F^[3,3];

(GF(3^2)^[3, 3])

An algebra can be constructed from generators using the function Algebra (Reference: Algebra).
It takes as arguments the field of coefficients and a list of generators. Of course the coefficient field
and the generators must fit together; if we want to construct an algebra of ordinary matrices, we may
take the field generated by the entries of the generating matrices, or a subfield or extension field.

Example
gap> m1:= [[1, 1], [0, 0]];; m2:= [[0, 0], [0, 1]];;

gap> A:= Algebra(Rationals, [m1, m2]);

<algebra over Rationals, with 2 generators>

An interesting class of algebras for which many special algorithms are implemented is the class
of Lie algebras. They arise for example as algebras of matrices whose product is defined by the Lie
bracket [A,B] = A∗B−B∗A, where ∗ denotes the ordinary matrix product.

Since the multiplication of objects in GAP is always assumed to be the operation * (resp. the infix
operator *), and since there is already the “ordinary” matrix product defined for ordinary matrices,
as mentioned above, we must use a different construction for matrices that occur as elements of Lie
algebras. Such Lie matrices can be constructed by LieObject (Reference: LieObject) from ordinary
matrices, the sum and product of Lie matrices are again Lie matrices.

GAP — A Tutorial 61

Example
gap> m:= LieObject([[1, 1], [1, 1]]);

LieObject([[1, 1], [1, 1]])

gap> m*m;

LieObject([[0, 0], [0, 0]])

gap> IsOrdinaryMatrix(m1); IsOrdinaryMatrix(m);

true

false

gap> IsLieMatrix(m1); IsLieMatrix(m);

false

true

Given a field F and a list mats of Lie objects over F, we can construct the Lie algebra generated
by mats using the function Algebra (Reference: Algebra). Alternatively, if we do not want to be
bothered with the function LieObject (Reference: LieObject), we can use the function LieAlgebra

(Reference: LieAlgebra for an associative algebra) that takes a field and a list of ordinary matrices,
and constructs the Lie algebra generated by the corresponding Lie matrices. Note that this means that
the ordinary matrices used in the call of LieAlgebra (Reference: LieAlgebra for an associative
algebra) are not contained in the returned Lie algebra.

Example
gap> m1:= [[0, 1], [0, 0]];;

gap> m2:= [[0, 0], [1, 0]];;

gap> L:= LieAlgebra(Rationals, [m1, m2]);

<Lie algebra over Rationals, with 2 generators>

gap> m1 in L;

false

A second way of creating an algebra is by specifying a multiplication table. Let A be a finite
dimensional algebra with basis (x1,x2, . . . ,xn), then for 1 ≤ i, j ≤ n the product xix j is a linear com-
bination of basis elements, i.e., there are ck

i j in the ground field such that xix j = ∑
n
k=1 ck

i jxk. It is not
difficult to show that the constants ck

i j determine the multiplication completely. Therefore, the ck
i j are

called structure constants. In GAP we can create a finite dimensional algebra by specifying an array
of structure constants.

In GAP such a table of structure constants is represented using lists. The obvious way to do
this would be to construct a “three-dimensional” list T such that T[i][j][k] equals ck

i j. But it often
happens that many of these constants vanish. Therefore a more complicated structure is used in order
to be able to omit the zeros. A multiplication table of an n-dimensional algebra is an n×n array T such
that T[i][j] describes the product of the i-th and the j-th basis element. This product is encoded in
the following way. The entry T[i][j] is a list of two elements. The first of these is a list of indices
k such that ck

i j is nonzero. The second list contains the corresponding constants ck
i j. Suppose, for

example, that S is the table of an algebra with basis (x1,x2, . . . ,x8) and that S[3][7] equals [[2, 4,

6], [1/2, 2, 2/3]]. Then in the algebra we have the relation x3x7 = (1/2)x2+2x4+(2/3)x6.
Furthermore, if S[6][1] = [[], []] then the product of the sixth and first basis elements is
zero.

Finally two numbers are added to the table. The first number can be 1, -1, or 0. If it is 1, then
the table is known to be symmetric, i.e., ck

i j = ck
ji. If this number is -1, then the table is known to be

antisymmetric (this happens for instance when the algebra is a Lie algebra). The remaining case, 0,

GAP — A Tutorial 62

occurs in all other cases. The second number that is added is the zero element of the field over which
the algebra is defined.

Empty structure constants tables are created by the function EmptySCTable (Reference: Emp-
tySCTable), which takes a dimension d, a zero element z, and optionally one of the strings
"symmetric", "antisymmetric", and returns an empty structure constants table T corresponding
to a d-dimensional algebra over a field with zero element z. Structure constants can be entered into
the table T using the function SetEntrySCTable (Reference: SetEntrySCTable). It takes four ar-
guments, namely T , two indices i and j, and a list of the form [ck1

i j ,k1,c
k2
i j ,k2, . . .]. In this call to

SetEntrySCTable, the product of the i-th and the j-th basis vector in any algebra described by T is set
to ∑l ckl

i jxkl . (Note that in the empty table, this product was zero.) If T knows that it is (anti)symmetric,
then at the same time also the product of the j-th and the i-th basis vector is set appropriately.

Example
gap> T:= EmptySCTable(2, 0, "symmetric");

[[[[], []], [[], []]],

[[[], []], [[], []]], 1, 0]

gap> SetEntrySCTable(T, 1, 2, [1/2,1,1/3,2]); T;

[[[[], []], [[1, 2], [1/2, 1/3]]],

[[[1, 2], [1/2, 1/3]], [[], []]], 1, 0]

If we have defined a structure constants table, then we can construct the corresponding algebra by
AlgebraByStructureConstants (Reference: AlgebraByStructureConstants).

Example
gap> A:= AlgebraByStructureConstants(Rationals, T);

<algebra of dimension 2 over Rationals>

If we know that a structure constants table defines a Lie algebra, then we can construct the cor-
responding Lie algebra by LieAlgebraByStructureConstants (Reference: LieAlgebraByStruc-
tureConstants); the algebra returned by this function knows that it is a Lie algebra, so GAP need not
check the Jacobi identity.

Example
gap> T:= EmptySCTable(2, 0, "antisymmetric");;

gap> SetEntrySCTable(T, 1, 2, [2/3,1]);

gap> L:= LieAlgebraByStructureConstants(Rationals, T);

<Lie algebra of dimension 2 over Rationals>

In GAP an algebra is naturally a vector space. Hence all the functionality for vector spaces is also
available for algebras.

Example
gap> F:= GF(2);;

gap> z:= Zero(F);; o:= One(F);;

gap> T:= EmptySCTable(3, z, "antisymmetric");;

gap> SetEntrySCTable(T, 1, 2, [o, 1, o, 3]);

gap> SetEntrySCTable(T, 1, 3, [o, 1]);

gap> SetEntrySCTable(T, 2, 3, [o, 3]);

gap> A:= AlgebraByStructureConstants(F, T);

<algebra of dimension 3 over GF(2)>

gap> Dimension(A);

3

GAP — A Tutorial 63

gap> LeftActingDomain(A);

GF(2)

gap> Basis(A);

CanonicalBasis(<algebra of dimension 3 over GF(2)>)

Subalgebras and ideals of an algebra can be constructed by specifying a set of generators for the
subalgebra or ideal. The quotient space of an algebra by an ideal is naturally an algebra itself.

Example
gap> m:= [[1, 2, 3], [0, 1, 6], [0, 0, 1]];;

gap> A:= Algebra(Rationals, [m]);;

gap> subA:= Subalgebra(A, [m-m^2]);

<algebra over Rationals, with 1 generator>

gap> Dimension(subA);

2

gap> idA:= Ideal(A, [m-m^3]);

<two-sided ideal in <algebra of dimension 3 over Rationals>,

(1 generator)>

gap> Dimension(idA);

2

gap> B:= A/idA;

<algebra of dimension 1 over Rationals>

The call B:= A/idA creates a new algebra that does not “know” about its connection with A. If we
want to connect an algebra with its factor via a homomorphism, then we first have to create the homo-
morphism (NaturalHomomorphismByIdeal (Reference: NaturalHomomorphismByIdeal)). After
this we create the factor algebra from the homomorphism by the function ImagesSource (Reference:
ImagesSource). In the next example we divide an algebra A by its radical and lift the central idempo-
tents of the factor to the original algebra A.

Example
gap> m1:=[[1,0,0],[0,2,0],[0,0,3]];;

gap> m2:=[[0,1,0],[0,0,2],[0,0,0]];;

gap> A:= Algebra(Rationals, [m1, m2]);;

gap> Dimension(A);

6

gap> R:= RadicalOfAlgebra(A);

<algebra of dimension 3 over Rationals>

gap> h:= NaturalHomomorphismByIdeal(A, R);

<linear mapping by matrix, <algebra of dimension

6 over Rationals> -> <algebra of dimension 3 over Rationals>>

gap> AmodR:= ImagesSource(h);

<algebra of dimension 3 over Rationals>

gap> id:= CentralIdempotentsOfAlgebra(AmodR);

[v.3, v.2+(-3)*v.3, v.1+(-2)*v.2+(3)*v.3]

gap> PreImagesRepresentative(h, id[1]);

[[0, 0, 0], [0, 0, 0], [0, 0, 1]]

gap> PreImagesRepresentative(h, id[2]);

[[0, 0, 0], [0, 1, 0], [0, 0, 0]]

gap> PreImagesRepresentative(h, id[3]);

[[1, 0, 0], [0, 0, 0], [0, 0, 0]]

GAP — A Tutorial 64

Structure constants tables for the simple Lie algebras are present in GAP. They can be con-
structed using the function SimpleLieAlgebra (Reference: SimpleLieAlgebra). The Lie algebras
constructed by this function come with a root system attached.

Example
gap> L:= SimpleLieAlgebra("G", 2, Rationals);

<Lie algebra of dimension 14 over Rationals>

gap> R:= RootSystem(L);

<root system of rank 2>

gap> PositiveRoots(R);

[[2, -1], [-3, 2], [-1, 1], [1, 0], [3, -1], [0, 1]]

gap> CartanMatrix(R);

[[2, -1], [-3, 2]]

Another example of algebras is provided by quaternion algebras. We define a quaternion algebra
over an extension field of the rationals, namely the field generated by

√
5. (The number EB(5) is equal

to 1/2(−1+
√

5). The field is printed as NF(5,[1, 4]).)
Example

gap> b5:= EB(5);

E(5)+E(5)^4

gap> q:= QuaternionAlgebra(FieldByGenerators([b5]));

<algebra-with-one of dimension 4 over NF(5,[1, 4])>

gap> gens:= GeneratorsOfAlgebra(q);

[e, i, j, k]

gap> e:= gens[1];; i:= gens[2];; j:= gens[3];; k:= gens[4];;

gap> IsAssociative(q);

true

gap> IsCommutative(q);

false

gap> i*j; j*i;

k

(-1)*k

gap> One(q);

e

If the coefficient field is a real subfield of the complex numbers then the quaternion algebra is in
fact a division ring.

Example
gap> IsDivisionRing(q);

true

gap> Inverse(e+i+j);

(1/3)*e+(-1/3)*i+(-1/3)*j

So GAP knows about this fact. As in any ring, we can look at groups of units. (The function
StarCyc (Reference: StarCyc) used below computes the unique algebraic conjugate of an element
in a quadratic subfield of a cyclotomic field.)

Example
gap> c5:= StarCyc(b5);

E(5)^2+E(5)^3

gap> g1:= 1/2*(b5*e + i - c5*j);

GAP — A Tutorial 65

(1/2*E(5)+1/2*E(5)^4)*e+(1/2)*i+(-1/2*E(5)^2-1/2*E(5)^3)*j

gap> Order(g1);

5

gap> g2:= 1/2*(-c5*e + i + b5*k);

(-1/2*E(5)^2-1/2*E(5)^3)*e+(1/2)*i+(1/2*E(5)+1/2*E(5)^4)*k

gap> Order(g2);

10

gap> g:=Group(g1, g2);;

#I default `IsGeneratorsOfMagmaWithInverses' method returns `true' for

[(1/2*E(5)+1/2*E(5)^4)*e+(1/2)*i+(-1/2*E(5)^2-1/2*E(5)^3)*j,

(-1/2*E(5)^2-1/2*E(5)^3)*e+(1/2)*i+(1/2*E(5)+1/2*E(5)^4)*k]

gap> Size(g);

120

gap> IsPerfect(g);

true

Since there is only one perfect group of order 120, up to isomorphism, we see that the group g is
isomorphic to SL2(5). As usual, a permutation representation of the group can be constructed using a
suitable action of the group.

Example
gap> cos:= RightCosets(g, Subgroup(g, [g1]));;

gap> Length(cos);

24

gap> hom:= ActionHomomorphism(g, cos, OnRight);;

gap> im:= Image(hom);

Group([(2,3,5,9,15)(4,7,12,8,14)(10,17,23,20,24)(11,19,22,16,13),

(1,2,4,8,3,6,11,20,17,19)(5,10,18,7,13,22,12,21,24,15)(9,16)(14,23)])

gap> Size(im);

120

To get a matrix representation of g or of the whole algebra q, we must specify a basis of the vector
space on which the algebra acts, and compute the linear action of elements w.r.t. this basis.

Example
gap> bas:= CanonicalBasis(q);;

gap> BasisVectors(bas);

[e, i, j, k]

gap> op:= OperationAlgebraHomomorphism(q, bas, OnRight);

<op. hom. AlgebraWithOne(NF(5,[1, 4]),

[e, i, j, k]) -> matrices of dim. 4>

gap> ImagesRepresentative(op, e);

[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

gap> ImagesRepresentative(op, i);

[[0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, -1], [0, 0, 1, 0]]

gap> ImagesRepresentative(op, g1);

[[1/2*E(5)+1/2*E(5)^4, 1/2, -1/2*E(5)^2-1/2*E(5)^3, 0],

[-1/2, 1/2*E(5)+1/2*E(5)^4, 0, -1/2*E(5)^2-1/2*E(5)^3],

[1/2*E(5)^2+1/2*E(5)^3, 0, 1/2*E(5)+1/2*E(5)^4, -1/2],

[0, 1/2*E(5)^2+1/2*E(5)^3, 1/2, 1/2*E(5)+1/2*E(5)^4]]

GAP — A Tutorial 66

6.3 Further Information about Vector Spaces and Algebras

More information about vector spaces can be found in Chapter (Reference: Vector Spaces). Chap-
ter (Reference: Algebras) deals with the functionality for general algebras. Furthermore, concerning
special functions for Lie algebras, there is Chapter (Reference: Lie Algebras).

Chapter 7

Domains

Domain is GAP’s name for structured sets. We already saw examples of domains in Chapters 5
and 6: the groups s8 and a8 in Section 5.1 are domains, likewise the field f and the vector space v

in Section 6.1 are domains. They were constructed by functions such as Group (Reference: Group)
and GF (Reference: GF for field size), and they could be passed as arguments to other functions such
as DerivedSubgroup (Reference: DerivedSubgroup) and Dimension (Reference: Dimension).

7.1 Domains as Sets

First of all, a domain D is a set. If D is finite then a list with the elements of this set can be computed
with the functions AsList (Reference: AsList) and AsSortedList (Reference: AsSortedList). For
infinite D, Enumerator (Reference: Enumerator) and EnumeratorSorted (Reference: Enumera-
torSorted) may work, but it is also possible that one gets an error message.

Domains can be used as arguments of set functions such as Intersection (Reference: Intersec-
tion) and Union (Reference: Union). GAP tries to return a domain in these cases, moreover it tries
to return a domain with as much structure as possible. For example, the intersection of two groups
is (either empty or) again a group, and GAP will try to return it as a group. For Union (Reference:
Union), the situation is different because the union of two groups is in general not a group.

Example
gap> g:= Group((1,2), (3,4));;

gap> h:= Group((3,4), (5,6));;

gap> Intersection(g, h);

Group([(3,4)])

Two domains are regarded as equal w.r.t. the operator “=” if and only if they are equal as sets,
regardless of the additional structure of the domains.

Example
gap> mats:= [[[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]],

> [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]];;

gap> Ring(mats) = VectorSpace(GF(2), mats);

true

Additionally, a domain is regarded as equal to the sorted list of its elements.

67

GAP — A Tutorial 68

Example
gap> g:= Group((1,2));;

gap> l:= AsSortedList(g);

[(), (1,2)]

gap> g = l;

true

gap> IsGroup(l); IsList(g);

false

false

7.2 Algebraic Structure

The additional structure of D is constituted by the facts that D is known to be closed under certain
operations such as addition or multiplication, and that these operations have additional properties. For
example, if D is a group then it is closed under multiplication (D×D→D, (g,h) 7→ g∗h), under taking
inverses (D → D, g 7→ g−1) and under taking the identity g^0 of each element g in D; additionally, the
multiplication in D is associative.

The same set of elements can carry different algebraic structures. For example, a semigroup
is defined as being closed under an associative multiplication, so each group is also a semigroup.
Likewise, a monoid is defined as a semigroup D in which the identity g^0 is defined for every element
g, so each group is a monoid, and each monoid is a semigroup.

Other examples of domains are vector spaces, which are defined as additive groups that are closed
under (left) multiplication with elements in a certain domain of scalars. Also conjugacy classes in a
group D are domains, they are closed under the conjugation action of D.

7.3 Notions of Generation

We have seen that a domain is closed under certain operations. Usually a domain is constructed as the
closure of some elements under these operations. In this situation, we say that the elements generate
the domain.

For example, a list of matrices of the same shape over a common field can be used to generate an
additive group or a vector space over a suitable field; if the matrices are square then we can also use the
matrices as generators of a semigroup, a ring, or an algebra. We illustrate some of these possibilities:

Example
gap> mats:= [[[0*Z(2), Z(2)^0],

> [Z(2)^0, 0*Z(2)]],

> [[Z(2)^0, 0*Z(2)],

> [0*Z(2), Z(2)^0]]];;

gap> Size(AdditiveMagma(mats));

4

gap> Size(VectorSpace(GF(8), mats));

64

gap> Size(Algebra(GF(2), mats));

4

gap> Size(Group(mats));

2

GAP — A Tutorial 69

Each combination of operations under which a domain could be closed gives a notion of generation.
So each group has group generators, and since it is a monoid, one can also ask for monoid generators
of a group.

Note that one cannot simply ask for “the generators of a domain”, it is always necessary to spec-
ify what notion of generation is meant. Access to the different generators is provided by functions
with names of the form GeneratorsOfSomething. For example, GeneratorsOfGroup (Reference:
GeneratorsOfGroup) denotes group generators, GeneratorsOfMonoid (Reference: Generator-
sOfMonoid) denotes monoid generators, and so on. The result of GeneratorsOfVectorSpace

(Reference: GeneratorsOfVectorSpace) is of course to be understood relative to the field of scalars
of the vector space in question.

Example
gap> GeneratorsOfVectorSpace(GF(4)^2);

[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]

gap> v:= AsVectorSpace(GF(2), GF(4)^2);;

gap> GeneratorsOfVectorSpace(v);

[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0], [Z(2^2), 0*Z(2)],

[0*Z(2), Z(2^2)]]

7.4 Domain Constructors

A group can be constructed from a list of group generators gens by Group(gens), likewise one can
construct rings and algebras with the functions Ring (Reference: Ring) and Algebra (Reference:
Algebra).

Note that it is not always or completely checked that gens is in fact a valid list of group generators,
for example whether the elements of gens can be multiplied or whether they are invertible. This means
that GAP trusts you, at least to some extent, that the desired domain Something(gens) does exist.

7.5 Forming Closures of Domains

Besides constructing domains from generators, one can also form the closure of a given domain with
an element or another domain. There are different notions of closure, one has to specify one according
to the desired result and the structure of the given domain. The functions to compute closures have
names such as ClosureSomething. For example, if D is a group and one wants to construct the group
generated by D and an element g then one can use ClosureGroup(D, g).

7.6 Changing the Structure

The same set of elements can have different algebraic structures. For example, it may happen that a
monoid M does in fact contain the inverses of all of its elements, and thus M is equal to the group
formed by the elements of M.

Example
gap> m:= Monoid(mats);;

gap> m = Group(mats);

true

gap> IsGroup(m);

false

GAP — A Tutorial 70

The last result in the above example may be surprising. But the monoid m is not regarded as a
group in GAP, and moreover there is no way to turn m into a group. Let us formulate this as a rule:

The set of operations under which the domain is closed is fixed in the construction of a domain,
and cannot be changed later.

(Contrary to this, a domain can acquire knowledge about properties such as whether the multipli-
cation is associative or commutative.)

If one needs a domain with a different structure than the given one, one can construct a new
domain with the required structure. The functions that do these constructions have names such as
AsSomething, they return a domain that has the same elements as the argument in question but the
structure Something. In the above situation, one can use AsGroup (Reference: AsGroup).

Example
gap> g:= AsGroup(m);;

gap> m = g;

true

gap> IsGroup(g);

true

If it is impossible to construct the desired domain, the AsSomething functions return fail.
Example

gap> AsVectorSpace(GF(4), GF(2)^2);

fail

The functions AsList (Reference: AsList) and AsSortedList (Reference: AsSortedList) men-
tioned above do not return domains, but they fit into the general pattern in the sense that they forget all
the structure of the argument, including the fact that it is a domain, and return an immutable list with
the same elements as the argument has.

7.7 Subdomains

It is possible to construct a domain as a subset of an existing domain. The respective functions have
names such as Subsomething, they return domains with the structure Something. (Note that the
second s in Subsomething is not capitalized.) For example, if one wants to deal with the subgroup of
the domain D that is generated by the elements in the list gens , one can use Subgroup(D, gens).
It is not required that D is itself a group, only that the group generated by gens must be a subset of D .

The superset of a domain S that was constructed by a Subsomething function can be accessed as
Parent(S).

Example
gap> g:= SymmetricGroup(5);;

gap> gens:= [(1,2), (1,2,3,4)];;

gap> s:= Subgroup(g, gens);;

gap> h:= Group(gens);;

gap> s = h;

true

gap> Parent(s) = g;

true

GAP — A Tutorial 71

Many functions return subdomains of their arguments, for example the result of SylowSubgroup(
G, prime) is a group with parent group G .

If you are sure that the domain Something(gens) is contained in the domain D then you can
also call SubsomethingNC(D, gens) instead of Subsomething(D, gens). The NC stands for
“no check”, and the functions whose names end with NC omit the check of containment.

7.8 Further Information about Domains

More information about domains can be found in Chapter (Reference: Domains). Many other
chapters deal with specific types of domain such as groups, vector spaces or algebras.

Chapter 8

Operations and Methods

8.1 Attributes

In the preceding chapters, we have seen how to obtain information about mathematical objects in
GAP: We have to pass the object as an argument to a function. For example, if G is a group one can
call Size(G), and the function will return a value, in our example an integer which is the size of
G . Computing the size of a group generally requires a substantial amount of work, therefore it seems
desirable to store the size somewhere once it has been calculated. You should imagine that GAP stores
the size in some place associated with the object G when Size(G) is executed for the first time, and
if this function call is executed again later, the size is simply looked up and returned, without further
computation.

This means that the behavior of the function Size (Reference: Size) has to depend on whether
the size for the argument G is already known, and if not, that the size must be stored after it has been
calculated. These two extra tasks are done by two other functions that accompany Size(G), namely
the tester HasSize(G) and the setter SetSize(G, size). The tester returns true or false
according to whether G has already stored its size, and the setter puts size into a place from where G
can directly look it up. The function Size (Reference: Size) itself is called the getter, and from the
preceding discussion we see that there must really be at least two methods for the getter: One method
is used when the tester returns false; it is the method which first does the real computation and then
executes the setter with the computed value. A second method is used when the tester returns true; it
simply returns the stored value. This second method is also called the system getter. GAP functions
for which several methods can be available are called operations, so Size (Reference: Size) is an
example of an operation.

Example
gap> G := Group(List([1..3], i-> Random(SymmetricGroup(53))));;

gap> Size(G); time; # the time may of course vary on your machine

4274883284060025564298013753389399649690343788366813724672000000000000

196

gap> Size(G); time;

4274883284060025564298013753389399649690343788366813724672000000000000

0

The convenient thing for the user is that GAP automatically chooses the right method for the
getter, i.e., it calls a real-work getter at most once and the system getter in all subsequent occurrences.

72

GAP — A Tutorial 73

At most once because the value of a function call like Size(G) can also be set for G before the
getter is called at all; for example, one can call the setter directly if one knows the size.

The size of a group is an example of a class of things which in GAP are called attributes. Every
attribute in GAP is represented by a triple of a getter, a setter and a tester. When a new attribute is
declared, all three functions are created together and the getter contains references to the other two.
This is necessary because when the getter is called, it must first consult the tester, and perhaps execute
the setter in the end. Therefore the getter could be implemented as follows:

Example
getter := function(obj)

local value;

if tester(obj) then

value := system_getter(obj);

else

value := real_work_getter(obj);

setter(obj, value);

fi;

return value;

end;

The only function which depends on the mathematical nature of the attribute is the real-work getter,
and this is of course what the programmer of an attribute has to install. In both cases, the getter returns
the same value, which we also call the value of the attribute (properly: the value of the attribute for
the object obj). By the way: The names for setter and tester of an attribute are always composed from
the prefix Set resp. Has and the name of the getter.

As a (not typical) example, note that the GAP function Random (Reference: Random), although
it takes only one argument, is of course not an attribute, because otherwise the first random element
of a group would be stored by the setter and returned over and over again by the system getter every
time Random (Reference: Random) is called in the sequel.

There is a general important rule about attributes: Once the value of an attribute for an object
has been set, it cannot be reset, i.e., it cannot be changed any more. This is achieved by having two
methods not only for the getter but also for the setter: If an object already has an attribute value stored,
i.e., if the tester returns true, the setter simply does nothing.

Example
gap> G := SymmetricGroup(8);; Size(G);

40320

gap> SetSize(G, 0); Size(G);

40320

Summary. In this section we have introduced attributes as triples of getter, setter and tester and we
have explained how these three functions work together behind the scene to provide automatic storage
and look-up of values that have once been calculated. We have seen that there can be several methods
for the same function among which GAP automatically selects an appropriate one.

8.2 Properties and Filters

Certain attributes, like IsAbelian (Reference: IsAbelian), are boolean-valued. Such attributes are
known to GAP as properties, because their values are stored in a slightly different way. A property
also has a getter, a setter and a tester, but in this case, the getter as well as the tester returns a boolean

GAP — A Tutorial 74

value. Therefore GAP stores both values in the same way, namely as bits in a boolean list, thereby
treating property getters and all testers (of attributes or properties) uniformly. These boolean-valued
functions are called filters. You can imagine a filter as a switch which is set either to true or to false.
For every GAP object there is a boolean list which has reserved a bit for every filter GAP knows about.
Strictly speaking, there is one bit for every simple filter, and these simple filters can be combined with
and to form other filters (which are then true if and only if all the corresponding bits are set to true).
For example, the filter IsPermGroup and IsSolvableGroup is made up from several simple filters.

Since they allow only two values, the bits which represent filters can be compared very quickly,
and the scheme by which GAP chooses the method, e.g., for a getter or a setter (as we have seen
in the previous section), is mostly based on the examination of filters, not on the examination of
other attribute values. Details of this method selection are described in chapter (Reference: Method
Selection).

We only present the following rule of thumb here: Each installed method for an attribute, for
example Size (Reference: Size), has a “required filter”, which is made up from certain simple filters
which must yield true for the argument obj for this method to be applicable. To execute a call of
Size(obj), GAP selects among all applicable methods the one whose required filter combines the
most simple filters; the idea behind is that the more an algorithm requires of obj , the more efficient it is
expected to be. For example, if obj is a permutation group that is not (known to be) solvable, a method
with required filter IsPermGroup and IsSolvableGroup is not applicable, whereas a method with
required filter IsPermGroup (Reference: IsPermGroup) can be chosen. On the other hand, if obj
was known to be solvable, the method with required filter IsPermGroup and IsSolvableGroup

would be preferred to the one with required filter IsPermGroup (Reference: IsPermGroup).
It may happen that a method is applicable for a given argument but cannot compute the desired

value. In such cases, the method will execute the statement TryNextMethod();, and GAP calls
the next applicable method. For example, [Sim90] describes an algorithm to compute the size of a
solvable permutation group, which can be used also to decide whether or not a permutation group is
solvable. Suppose that the function size_solvable implements this algorithm, and that is returns the
order of the group if it is solvable and fail otherwise. Then we can install the following method for
Size (Reference: Size) with required filter IsPermGroup (Reference: IsPermGroup).

Example
function(G)

local value;

value := size_solvable(G);

if value <> fail then return value;

else TryNextMethod(); fi;

end;

This method can then be tried on every permutation group (whether known to be solvable or not), and
it would include a mandatory solvability test.

If no applicable method (or no next applicable method) is found, GAP stops with an error message
of the form

Example
Error, no method found! For debugging hints type ?Recovery from NoMethodFound

Error, no 1st choice method found for `Size' on 1 arguments called from

... lines deleted here ...

You would get an error message as above if you asked for Size(1). The message simply says
that there is no method installed for calculating the size of 1. Section (Reference: Recovery from
NoMethodFound-Errors) contains more information on how to deal with these messages.

GAP — A Tutorial 75

Summary. In this section we have introduced properties as special attributes, and filters as the
general concept behind property getters and attribute testers. The values of the filters of an object
govern how the object is treated in the selection of methods for operations.

8.3 Immediate and True Methods

In the example in Section 8.2, we have mentioned that the operation Size (Reference: Size) has a
method for solvable permutation groups that is so far superior to the method for general permutation
groups that it seems worthwhile to try it even if nothing is known about solvability of the group of
which the Size (Reference: Size) is to be calculated. There are other examples where certain methods
are even “cheaper” to execute. For example, if the size of a group is known it is easy to check whether it
is odd, and if so, the Feit-Thompson theorem allows us to set IsSolvableGroup (Reference: IsSolv-
ableGroup) to true for this group. GAP utilizes this celebrated theorem by having an immediate
method for IsSolvableGroup (Reference: IsSolvableGroup) with required filter HasSize which
checks parity of the size and either sets IsSolvableGroup (Reference: IsSolvableGroup) or does
nothing, i.e., calls TryNextMethod(). These immediate methods are executed automatically for an
object whenever the value of a filter changes, so solvability of a group will automatically be detected
when an odd size has been calculated for it (and therefore the value of HasSize for that group has
changed to true).

Some methods are even more immediate, because they do not require any calculation at all: They
allow a filter to be set if another filter is also set. In other words, they model a mathematical implication
like IsGroup and IsCyclic implies IsSolvableGroup and such implications can be installed in
GAP as true methods. To execute true methods, GAP only needs to do some bookkeeping with its
filters, therefore true methods are much faster than immediate methods.

How immediate and true methods are installed is described in (Reference: Immediate Methods)
and (Reference: Logical Implications).

8.4 Operations and Method Selection

The method selection is not only used to select methods for attribute getters but also for arbitrary
operations, which can have more than one argument. In this case, there is a required filter for each
argument (which must yield true for the corresponding arguments).

Additionally, a method with at least two arguments may require a certain relation between the
arguments, which is expressed in terms of the families of the arguments. For example, the methods
for ConjugateGroup(grp, elm) require that elm lies in the family of elements from which grp

is made, i.e., that the family of elm equals the “elements family” of grp .
For permutation groups, the situation is quite easy: all permutations form one family,

PermutationsFamily (Reference: PermutationsFamily), and each collection of permutations, for
example each permutation group, each coset of a permutation group, or each dense list of permuta-
tions, lies in CollectionsFamily(PermutationsFamily).

For other kinds of group elements, the situation can be different. Every call of FreeGroup

(Reference: FreeGroup) constructs a new family of free group elements. GAP refuses to compute
One(FreeGroup(1)) * One(FreeGroup(1)) because the two operands of the multipli-
cation lie in different families and no method is installed for this case.

For further information on family relations, see (Reference: Families).

GAP — A Tutorial 76

If you want to know which properties are already known for an object obj , or which proper-
ties are known to be true, you can use the functions KnownPropertiesOfObject(obj) resp.
KnownTruePropertiesOfObject(obj). This will print a list of names of properties. These names
are also the identifiers of the property getters, by which you can retrieve the value of the properties (and
confirm that they are really true). Analogously, there is the function KnownAttributesOfObject

(Reference: KnownAttributesOfObject) which lists the names of the known attributes, leaving out
the properties.

Since GAP lets you know what it already knows about an object, it is only natural that it also
lets you know what methods it considers applicable for a certain method, and in what order it will try
them (in case TryNextMethod() occurs). ApplicableMethod(opr, [arg_1, arg_2, ...]

) returns the first applicable method for the call opr(arg_1, arg_2, ...). More generally,
ApplicableMethod(opr, [...], 0, nr) returns the nr th applicable method (i.e., the one
that would be chosen after nr − 1 calls of TryNextMethod) and if nr = "all", the sorted list of
all applicable methods is returned. For details, see (Reference: Applicable Methods and Method
Selection).

If you want to see which methods are chosen for certain operations while GAP code is being exe-
cuted, you can call the function TraceMethods (Reference: TraceMethods for a list of operations)
with a list of these operations as arguments.

Example
gap> TraceMethods([Size]);

gap> g:= Group((1,2,3), (1,2));; Size(g);

#I Size: for a permutation group

#I Setter(Size): system setter

#I Size: system getter

#I Size: system getter

6

The system getter is called once to fetch the freshly computed value for returning to the user. The
second call is triggered by an immediate method. To find out by which, we can trace the immediate
methods by saying TraceImmediateMethods(true).

Example
gap> TraceImmediateMethods(true);

gap> g:= Group((1,2,3), (1,2));;

#I immediate: Size

#I immediate: IsCyclic

#I immediate: IsCommutative

#I immediate: IsTrivial

gap> Size(g);

#I Size: for a permutation group

#I immediate: IsNonTrivial

#I immediate: Size

#I immediate: IsFreeAbelian

#I immediate: IsTorsionFree

#I immediate: IsNonTrivial

#I immediate: GeneralizedPcgs

#I Setter(Size): system setter

#I Size: system getter

#I immediate: IsPerfectGroup

#I Size: system getter

GAP — A Tutorial 77

#I immediate: IsEmpty

6

gap> TraceImmediateMethods(false);

gap> UntraceMethods([Size]);

The last two lines switch off tracing again. We now see that the system getter was called by the
immediate method for IsPerfectGroup (Reference: IsPerfectGroup). Also the above-mentioned
immediate method for IsSolvableGroup (Reference: IsSolvableGroup) was not used because the
solvability of g was already found out during the size calculation (cf. the example in Section 8.2).

Summary. In this section and the last we have looked some more behind the scenes and seen that
GAP automatically executes immediate and true methods to deduce information about objects that is
cheaply available. We have seen how this can be supervised by tracing the methods.

References

[Sim90] C. C. Sims. Computing the order of a solvable permutation group. J. Symbolic Comput.,
9(5-6):699–705, 1990. Computational group theory, Part 1. 74

78

Index

ApplicableMethod, 76
arrays, see lists, 20
assignment, 14
AsSomething, 69

break loops, 12

canonical position, 45
ClosureSomething, 69
cokernel, 53
comments, 10
constants, 12

elements, 16
enumerator, 45

family, 25
filters, 73

GeneratorsOfSomething, 68
getter

of an attribute, 72
group general mapping, 53

single-valued, 53
total, 53

GroupHomomorphismByImages vs.
GroupGeneralMappingByImages,
53

homomorphism
action, 45
natural, 41
operation, 45

identifier, 14
IsIdenticalObj, 16

kernel, 53
KnownAttributesOfObject, 75
KnownPropertiesOfObject, 75
KnownTruePropertiesOfObject, 75

last, 15
last2, 15
last3, 15
leaving GAP, 9
line editing, 11, 12
lists

dense, 22
identical, 23
plain, 20
strictly sorted, 25

loading source code from a file, 10
loop

for, 27
while, 27

maps-to operator, 17
matrices, 30
methods, 72

immediate, 75
selection, 73
true, 75

objects, 14
vs. elements, 16
vs. variables, 14

operations, 75
operators, 12

quit, 9

Read, 10
read evaluate print loop, 10
reading source code from a file, 10

setter
of an attribute, 72

Something, 69
starting GAP, 9
strings, 22
Subsomething, 70

79

GAP — A Tutorial 80

SubsomethingNC, 70

tester
of an attribute, 72

TraceMethods, 76
transversal, 45
TryNextMethod, 74

variables, 14
vectors

row, 30

whitespace, 10

	Preface
	The GAP System
	Further Information about GAP

	A First Session with GAP
	Starting and Leaving GAP
	Loading Source Code from a File
	The Read Evaluate Print Loop
	Constants and Operators
	Variables versus Objects
	Objects vs. Elements
	About Functions
	Help
	Further Information introducing the System

	Lists and Records
	Plain Lists
	Identical Lists
	Immutability
	Sets
	Ranges
	For and While Loops
	List Operations
	Vectors and Matrices
	Plain Records
	Further Information about Lists

	Functions
	Writing Functions
	If Statements
	Local Variables
	Recursion
	Further Information about Functions

	Groups and Homomorphisms
	Permutation groups
	Actions of Groups
	Subgroups as Stabilizers
	Group Homomorphisms by Images
	Nice Monomorphisms
	Further Information about Groups and Homomorphisms

	Vector Spaces and Algebras
	Vector Spaces
	Algebras
	Further Information about Vector Spaces and Algebras

	Domains
	Domains as Sets
	Algebraic Structure
	Notions of Generation
	Domain Constructors
	Forming Closures of Domains
	Changing the Structure
	Subdomains
	Further Information about Domains

	Operations and Methods
	Attributes
	Properties and Filters
	Immediate and True Methods
	Operations and Method Selection

	References
	Index

