AutPGrp
A GAP4 Package

Bettina Eick and Eamonn O’Brien

A W N -

4.2
43
4.4
4.5
4.6

Introduction

The automorphism group method
The underlying function
Influencing the algorithm

Outline of the algorithm

The initialisation step

Stabilisers in matrix groups
Searching for a small generating set
An interactive version of the algorithm
Acknowledgements

Additional Features of the Package

Index

Contents

© © o L & A W

10
10
11
12
13

Introduction

Given an arbitrary finite group, the computation of its automorphism group is a very difficult task. Pioneer work
in this area was carried out by Felsch & Neubiiser (1970), whose algorithm used the output of their subgroup lattice
program. A technique developed by Neubiiser in the early 1970s sought to compute the automorphism group viewed as
a permutation group acting on unions of certain conjugacy classes of the group. A similar method was implemented
by Hulpke (1997) in the GAP 4 library. Recently, Cannon & Holt (1999) presented a new algorithm which uses a
“hybrid group” approach.

More efficient approaches are available to determine the automorphism group for groups satisfying certain properties.
Following the work of Shoda (1928), Hulpke in 1997 implemented a practical method for finite abelian groups in the
GAP 4 library. Wursthorn (1993) adapted modular group algebra techniques to compute the automorphism groups of
p-groups; the GAP 3 share package Sisyphos includes an implementation. Smith (1994) introduced an algorithm for
finite solvable groups which is available in the AutAg share package of GAP 3.

Moreover, the p-group generation method of Newman (1977) and O’Brien (1990) can be modified to compute the
automorphism group of a finite p-group as outlined in O’Brien (1995). This algorithm is implemented in the ANU pq
C program.

Here we introduce a new function to compute the automorphism group of a finite p-group. The underlying algorithm
is a refinement of the methods described in O’Brien (1995). In particular, this implementation is more efficient in both
time and space requirements and hence has a wider range of applications than the ANU pq method. Our package is
written in GAP code and it makes use of a number of methods from the GAP library such as the MeatAxe for matrix
groups and permutation group functions.

The GAP 4 package ANUPQ, which is an interface to most of the functionality of the ANU pq C program, uses the
AutPGrp package to compute automorphism groups of p-groups.

We have compared our method to the others available in GAP. Our package usually out-performs all but the method
designed for finite abelian groups. We note that our method uses the small groups library in certain cases and hence
our algorithm is more effective if the small groups library is installed.

1»

2»

The automorphism
group method

The AutPGrp package installs a method for AutomorphismGroup for a finite p-group (see also Section 40.7 in the
GAP Reference Manual).

AutomorphismGroup(G) M

The input is a finite p-group G. If the filters IsPGroup, IsFinite and CanEasilyComputePcgs are set and true for
G, the method selection of GAP 4 invokes this algorithm.

The output of the method is an automorphism group, whose generators are given in GroupHomomorphismByImages
format in terms of their action on the underlying group G.

InfoAutGrp \'%

This is a GAP InfoClass (these are described in Chapter 7.4 in the GAP Reference Manual). By assigning an info-level
in the range 1 to 4 via

SetInfolLevel (InfoAutGrp, info-level)

varying levels of information on the progress of the computation, will be obtained.

gap> LoadPackage("autpgrp", false);
true

gap> G := SmallGroup(32, 15);
<pc group of size 32 with 5 generators>

gap> SetInfolevel(InfoAutGrp, 1);

gap> AutomorphismGroup(G);

#I step 1: 272 -- init automorphisms
#I step 2: 272 -- aut grp has size 2
#I step 3: 271 -- aut grp has size 32
#I final step: convert

<group of size 64 with 6 generators>

The algorithm proceeds by induction down the lower p-central series of G and the information corresponds to the
steps of this induction. In the following example we observe that the method also accepts permutation groups as input,
provided they satisfy the required filters.

gap> G := DihedralGroup(IsPermGroup, 275);;
gap> IsPGroup(G);

true

gap> CanEasilyComputePcgs(G) ;

true

gap> IsFinite(G);

true

gap> A := AutomorphismGroup(G) ;

#I step 1: 272 -- init automorphisms

#I step 2: 271 -- aut grp has size 2

#I step 3: 271 -- aut grp has size 8

#I step 4: 271 -- aut grp has size 32

#I final step: convert

<group of size 128 with 7 generators>

gap> A.1;

Pcgs([(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10),
(1, 2,3, 4,5,6, 7,8, 9,10,11,12,13,14,15,16),
(1, 3,5,7,9,11,13,15)(2, 4, 6, 8,10,12,14,16),
(1,5, 9,13)(C2, 6,10,14)(3, 7,11,15)(4, 8,12,16),
(1, 902,100(3,11)(4,12)(5,13)(6,14)(7,15)(8,16) 1) ->

[(1, 2)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10),
(1, 2,3, 4,5,6, 7,8, 9,10,11,12,13,14,15,16),
(1, 3,5, 7, 9,11,13,15)(2, 4, 6, 8,10,12,14,16),
(1,5, 9,13)(C2, 6,10,14)(3, 7,11,15)(4, 8,12,16),
(1, 902,100(3,11)(4,12)(5,13)(6,14)(7,15) (8,16)]

gap> Order(A.1);

16

The underlying
function

Underlying the method installation for AutomorphismGroup is the function AutomorphismGroupPGroup. This
function is intended for expert users who wish to influence the steps of the algorithm. Note also that Automor-
phismGroup will always choose default values.

1» AutomorphismGroupPGroup(G [,flag]l) F

The input is a finite p-group as above and an optional flag which can be true or false. Here the filters for G need
not be set, but they should be true for G. The possible values for flag are considered later in Chapter 4. If flag is not
supplied, the algorithm proceeds similarly to the method installed for AutomorphismGroup, but it produces slightly
more detailed output. The output of the function is a record which contains the following fields:

glAutos

a set of automorphisms which together with agAutos generate the automorphism group;
glOrder

an integer whose product with the agOrders gives the size of the automorphism group;
aghAutos

a polycyclic generating sequence for a soluble normal subgroup of the automorphism group;
agOrder

the relative orders corresponding to agAutos;

one

the identity element of the automorphism group;
group

the underlying group G;
size

the size of the automorphism group.

We do not return an automorphism group in the standard form because we wish to distinguish between agAutos and
glAutos; the latter act non-trivially on the Frattini quotient of G. This hybrid-group description of the automorphism
group permits more efficient computations with it. The following function converts the output of Automorphism-
GroupPGroup to the output of AutomorphismGroup.

2» ConvertHybridAutGroup(A) F

gap> LoadPackage("autpgrp", false);
true

gap> H := SmallGroup (729, 34);
<pc group of size 729 with 6 generators>

3

gap> A := AutomorphismGroupPGroup (H) ;
rec(glAutos := [1],
glOrder := 1,
agAutos := [Pcgs([f1, f2, £3, f4, f5, £f6])
-> [f172, f2, £3°2xf4, f4, f5°2*xf6, f6],
Pcgs([f1, £f2, £3, f4, £f5, £f6 1)
-> [f272, f1, f3xf5°2, £5°2, f4xf6"2, f6°2],
Pcgs([f1, f2, £3, f4, £f5, £6])
-> [f172, £272, £3*f4"2xf5"2xf6, f4°2+f6, f5°2*f6, f6],
Pcgs([f1, £2, £3, f4, f5, £f6 1)
-> [f1xf3, f2, f3*f5°2, f4xf6"2, f5, f6],
Pcgs([f1, £f2, £3, f4, £f5, £f6 1)
-> [f1, f2xf3, f3*xf4, f4, f5xf6, f6],
Pcgs([f1, f2, £3, f4, f5, 6 1)
-> [fixf4, f2, f3xf6°2, f4, f5, f6],
Pcgs([f1, £2, £3, f4, f5, £f6 1)
-> [f1, f2xf4, £3, f4, f5, f6],
Pcgs([f1, f2, £3, f4, f5, f6 1)
-> [f1xf5, f2, £3, f4, f5, f6],
Pcgs([f1, f2, £3, f4, £f5, £f6])
-> [f1, f2xf5, f3*xf6, f4, f5, f6],
Pcgs([f1, £f2, £3, f4, f5, £f6 1)
-> [f1xf6, £f2, £3, f4, f5, 6 1,
Pcgs([f1, f2, £3, f4, £f5, £6])
-> [f1, foxfé, £3, f4, £5, f6]],
agOrder := [2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 31,

one = IdentityMapping(<pc group of size 729 with 6 generators>),
group := <pc group of size 729 with 6 generators>,
size = 52488)

gap> ConvertHybridAutGroup(A);
<group of size 52488 with 11 generators>

Let A be the automorphism group of a p-group G as computed by AutomorphismGroupPGroup. Then the following
function can compute a pc group isomorphic to the solvable part of A stored in the record component A.agGroup. This
solvable part forms a subgroup of the automorphism group which contains at least the automorphisms centralizing the
Frattini factor of G. The pc group facilitates various further computations with A.

PcGroupAutPGroup(A) F

computes a pc presentation for the solvable part of the automorphism group A defined by A.agGroup. A is the output
of the function AutomorphismGroupPGroup.

gap> H := SmallGroup (729, 34);;

gap> A := AutomorphismGroupPGroup(H);;

gap> B := PcGroupAutPGroup(A);

<pc group of size 52488 with 11 generators>

gap> I := InnerAutGroupPGroup(B);

Group([£5, £f4"2xf8, £672+%f9°2, f11°2, 1072, <identity> of ...])

Influencing
the algorithm

A number of choices can be made by the user to influence the performance of AutomorphismGroupPGroup. Below
we identify these choices and their default values used in AutomorphismGroup. We use the optional argument flag
of AutomorphismGroupPGroup to invoke user-defined choices. The possible values for flag are

flag = false
the user-defined defaults are employed in the algorithm. See below for a list of possibilities.

flag = true
invokes the interactive version of the algorithm as described in Section 4.5.

In the next section we give a brief outline of the algorithm which is necessary to understand the possible choices. Then
we introduce the choices the later sections of this chapter.

4.1 Outline of the algorithm

The basic algorithm proceeds by induction down the lower p-central series of a given p-group G; that is, it successively
computes Aut(G;) for the quotients G; = G/P;(G) of the descending sequence of subgroups defined by P;(G) = G
and P;11(G) = [Pi(G),G]P;(G)? for i > 1. Hence, in the initial step of the algorithm, Aut(G,) = GL(d, p) where d
is the rank of the elementary abelian group G,. In the inductive step it determines Aut(G,;) from Aut(G;). For this
purpose we introduce an action of Aut(G;) on a certain elementary abelian p-group M (the p-multiplicator of G;).
The main computation of the inductive step is the determination of the stabiliser in Aut(G;) of a subgroup U of M (the
allowable subgroup for G;,). This stabiliser calculation is the bottle-neck of the algorithm.

Our package incorporates a number of refinements designed to simplify this stabiliser computation. Some of these
refinements incur overheads and hence they are not always invoked. The features outlined below allow the user to
select them.

Observe that the initial step of the algorithm returns GL(d, p). But Au#(G) may induce on G, a proper subgroup, say
K, of GL(d,p). Any intermediate subgroup of GL(d, p) which contains K suffices for the algorithm and we supply
two methods to construct a suitable subgroup: these use characteristic subgroups or invariants of normal subgroups of
G. (See Section 4.2.)

In the inductive step an action of Auz(G;) on an elementary abelian group M is used. This action is computed as a
matrix action on a vector space. To simplify the orbit-stabiliser computation of the subspace U of M, we can construct
the stabiliser of U by iteration over a sequence of Auz(G;)-invariant subspaces of M. (See Section 4.3.)

Orbit-stabiliser computations in finite solvable groups given by a polycyclic generating sequence are much more
efficient than generic computations of this type. Thus our algorithm makes use of a large solvable normal subgroup S
of Aut(G;). Further, it is useful if the generating set of Aut(G;) outside S is as small as possible. To achieve this we
determine a permutation representation of Auz(G;)/S and use this to reduce the number of generators if possible. (See
Section 4.4.)

1»

Section 3. Stabilisers in matrix groups 9

4.2 The initialisation step

Assume we seek to compute the automorphism group of a p-group G having Frattini rank d. We first determine as
small as possible a subgroup of GL(d, p) whose extension can act on G.

The user can choose the initialisation routine by assigning InitAutGroup to any one of the following.
InitAutomorphismGroupOver
to use the minimal overgroups;

InitAutomorphismGroupChar
to use the characteristic subgroups;

InitAutomorphismGroupFull
to use the full GL(d, p).

a) Minimal Overgroups

We determine the minimal over-groups of the Frattini subgroup of G and compute invariants of these which must
be respected by the automorphism group of G. We partition the minimal overgroups and compute the stabiliser in
GL(d, p) of this partition.

The partition of the minimal overgroups is computed using the function PGFingerprint(G, U). This is the time-
consuming part of this initialisation method. The user can overwrite the function PGFingerprint.

b) Characteristic Subgroups

Compute a generating set for the stabiliser in GL(d, p) of a chain of characteristic subgroups of G. In practice, we
construct a characteristic chain by determining 2-step centralisers and omega subgroups of factors of the lower p-
central series.

However, there are often other characteristic subgroups which are not found by these approaches. The user can over-
write the function PGCharSubgroups (G) to supply a set of characteristic subgroups.

¢) Defaults

In the method for AutomorphismGroup we use a default strategy: if the value pdf_ll is less than 1000, then we use
the minimal overgroup approach, otherwise the characteristic subgroups are employed. An exception is made for
homogeneous abelian groups where we initialise the algorithm with the full group GL(d, p).

4.3 Stabilisers in matrix groups

Consider the ith inductive step of the algorithm. Here A < Aut(G;) acts as matrix group on the elementary abelian
p-group M and we want to determine the stabiliser of a subgroup U < M.

We use the MeatAxe to compute a series of A-invariant subspaces through M such that each factor in the series is
irreducible as A-module. Then we use this series to break the computation of Stab, (U) into several smaller orbit-
stabiliser calculations.

Note that a theoretic argument yields an A-invariant subspace of M a priori: the nucleus N. This is always used to split
the computation up. However, it may happen that N = M and hence results in no improvement.

CHOP_MULT v

The invariant series through M is computed and used if the global variable CHOP_MULT is set to true. Otherwise, the
algorithm tries to determine Stabs (U) in one step. By default, CHOP_MULT is true.

1»

10 Chapter 4. Influencing the algorithm

4.4 Searching for a small generating set

After each step of the computation, we attempt to find a nice generating set for the automorphism group of the current
factor.

If the automorphism group is soluble, we store a polycyclic generating set; otherwise, we store such a generating set
for a large soluble normal subgroup S of the automorphism group A, and as few generators outside as possible. If
S = A and a polycyclic generating set for S is known, many steps of the algorithm proceed more rapidly.

NICE_STAB Vv

It may be both time-consuming and difficult to reduce the number of generators for A outside S. Note that if the ini-
tialisation of the algorithm is by InitAutomorphismGroupOver, then we always know a permutation representation
for A/S. Occasionally the search for a small generating set is expensive. If this is observed, one could set the flag
NICE_STAB to false and the algorithm no longer invokes this search.

4.5 An interactive version of the algorithm

The choice of initialisation and the choice of chopping of the p-multiplicator can also be driven by an interactive
version of the algorithm. We give an example.

gap> G := SmallGroup(278, 1000);;

gap> SetInfoLevel(InfoAutGrp, 3);

gap> AutomorphismGroupPGroup(G, true);

#I step 1: 273 -- init automorphisms

choose initialisation (Over/Char/Full): # we choose Full
#I init automorphism group : Full

#I step 2: 273 -- aut grp has size 168

#I computing cover

#I computing matrix action

#I computing stabilizer of U

#I dimU=3 dimN=6 dim M =6

chop M/N and N: (y/n): # we choose n
#1 induce autos and add central autos

#I step 3: 272 -- aut grp has size 12288

#I computing cover

#I computing matrix action

#I computing stabilizer of U

#I dimU=6 dim N=5 dim M =8

chop M/N and N: (y/n): # we choose y
#I induce autos and add central autos

#I final step: convert

rec(

glAutos := [Pcgs([f1, f2, £3, f4, f5, 6, £f7, £8 1) -> [f1, £f2%£f3, £3,
f4, f5, f6xf7, f7, f8 1],
Pcgs([f1, f2, £f3, f4, f5, f6, f7, £f8 1) —>
[f1xf3*f5xf6, f2x£f3, f3, f4, f5xf8, f6*f7, £f7, £f8 1,
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) —>
[f1%£3, f2xfd, £3, f4*f7, f5xf7, f6*f7+f8, 7, £8 1 1, glOrder := 4,
aghAutos :=

Section 6. Acknowledgements 11

[Pcgs([f1, £2, £3, f4, £f5, f6, £7, £8 1) -> [fixf4, f2, £3, f4*f8, f5,
f6, f7, £8 1, Pcgs([f1, f2, £3, f4, £f5, f6, £f7, £8 1) —>
[£f1, f2xf4, £3, f4xf7, £5, f6xf7*xf8, f7, £8],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) —>
[f1xf5, f2, £3, f4, f5, f6, f7, £8],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) —>
[f1, f2xf5, £3, f4, f5, f6, f7, £f8],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £f8 1) —>
[£f1, f2, £3xf5, f4, f5, f6, f7, £8],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) —>
[fi1xf6, £2, £3, f4, f5*xf7xf8, f6, f7, £8 1],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) ->
[f1, f2xf6, f3, f4xf7+f8, f5, f6, f7, f8 1],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) —>
[f1xf8, f2, £3, f4, f5, f6, f7, £8],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) —>
[£f1, f2xf8, £3, f4, f5, f6, f7, £8],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £f8 1) —>
[£f1, f2, £3xf8, f4, f5, f6, f7, £8],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) —>
[f1xf7, f2, £3, f4, f5, f6, £f7, £8],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) —>
[f1, f2xf7, £3, f4, f5, f6, f7, £f8 1],
Pcgs([f1, f2, £3, f4, f5, f6, £f7, £8 1) —>
[£f1, f2, £3xf7, f4, f5, f6, f7, £8] 1,
agOrder := [2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2,2, 2],
one := IdentityMapping(<pc group of size 256 with 8 generators>),
group := <pc group of size 256 with 8 generators>, size := 32768)

Two points are worthy of comment. First, the interactive version of the algorithm permits the user to make a suitable
choice in each step of the algorithm instead of making one choice at the beginning. Secondly, the output of the Info
function shows the ranks of the p-multiplicator and allowable subgroup, and thus allow the user to observe the scale
of difficulty of the computation.

4.6 Acknowledgements

We thank Alexander Hulpke for helping us with efficiency problems. Werner Nickel provided some functions from
the GAP PQuotient which are used in this package.

2»

3»

4»

Additional Features
of the Package

As an additional feature of this package we provide some functions to count extensions of p-groups and Lie algebras
over GF(p). These functions have been used in counting the 2-groups of size 2!°.

NumberOfPClass2PGroups(n, p, k)
determines the number of n-generator p-groups of p-class 2 with Frattini subgroup of order 2.

Number0fPClass2PGroups(n, p)

returns a list of of numbers of n-generator p-groups of p-class 2 with Frattini subgroup of order 2* forkin 1, ... ,n(n+
1)/2.

NumberOfClass2LieAlgebras(n, p, k)

determines the number of n-generator Lie algebras of class 2 over GF'(p) with derived Lie subalgebra of dimension .

NumberOfClass2LieAlgbras(n, p)

returns a list of of numbers of n-generator Lie algebras of class 2 over GF(p) with derived Lie subalgebra of dimension
kforkinl,...,n(n—1)/2.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before

“permutation group”.

A

Acknowledgements, 71/

An interactive version of the algorithm, /0
AutomorphismGroup, 4
AutomorphismGroupPGroup, 6

C
CHOP_MULT, 9
ConvertHybridAutGroup, 6

InfoAutGrp, 4

N
NICE_STAB, 10
NumberOfClass2LieAlgbras, 12

Number0fClass2LieAlgebras, 12
NumberOfPClass2PGroups, 12

O

Outline of the algorithm, §

P

PcGroupAutPGroup, 7

S

Searching for a small generating set, /0
SetInfolLevel, 4
Stabilisers in matrix groups, 9

T

The initialisation step, 9

	Contents
	Introduction
	The automorphism group method
	The underlying function
	Influencing the algorithm
	Outline of the algorithm
	The initialisation step
	Stabilisers in matrix groups
	Searching for a small generating set
	An interactive version of the algorithm
	Acknowledgements

	Additional Features of the Package
	Index
	A
	C
	I
	N
	O
	P
	S
	T

