
AtlasRep — A
GAP 4 Package

(Version 2.1.6)

Robert A. Wilson
Richard A. Parker
Simon Nickerson

John N. Bray
Thomas Breuer

Robert A. Wilson Email: R.A.Wilson@qmul.ac.uk
Homepage: http://www.maths.qmw.ac.uk/~raw

Richard A. Parker Email: richpark@gmx.co.uk

Simon Nickerson
Homepage: http://nickerson.org.uk/groups

John N. Bray Email: J.N.Bray@qmul.ac.uk
Homepage: http://www.maths.qmw.ac.uk/~jnb

Thomas Breuer Email: sam@Math.RWTH-Aachen.De
Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer

mailto://R.A.Wilson@qmul.ac.uk
http://www.maths.qmw.ac.uk/~raw
mailto://richpark@gmx.co.uk
http://nickerson.org.uk/groups
mailto://J.N.Bray@qmul.ac.uk
http://www.maths.qmw.ac.uk/~jnb
mailto://sam@Math.RWTH-Aachen.De
https://www.math.rwth-aachen.de/~Thomas.Breuer

AtlasRep — A GAP 4 Package 2

Copyright
© 2002–2022

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
later, see http://www.gnu.org/licenses.

http://www.gnu.org/licenses

Contents

1 Introduction to the AtlasRep Package 5
1.1 The ATLAS of Group Representations . 5
1.2 The GAP Interface to the ATLAS of Group Representations 6
1.3 What’s New in AtlasRep, Compared to Older Versions? 6
1.4 Acknowledgements . 15

2 Tutorial for the AtlasRep Package 17
2.1 Accessing a Specific Group in AtlasRep . 18
2.2 Accessing Specific Generators in AtlasRep . 20
2.3 Basic Concepts used in AtlasRep . 21
2.4 Examples of Using the AtlasRep Package . 23

3 The User Interface of the AtlasRep Package 35
3.1 Accessing vs. Constructing Representations . 35
3.2 Group Names Used in the AtlasRep Package . 35
3.3 Standard Generators Used in the AtlasRep Package 36
3.4 Class Names Used in the AtlasRep Package . 36
3.5 Accessing Data via AtlasRep . 39
3.6 Browse Applications Provided by AtlasRep . 62

4 Customizations of the AtlasRep Package 64
4.1 Installing the AtlasRep Package . 64
4.2 User Preferences of the AtlasRep Package . 65
4.3 Web Contents for the AtlasRep Package . 68
4.4 Extending the ATLAS Database . 69

5 Extensions of the AtlasRep Package 70
5.1 Notify Additional Data . 70
5.2 The Effect of Extensions on the User Interface . 73
5.3 An Example of Extending the AtlasRep Data . 73

6 New GAP Objects and Utility Functions provided by the AtlasRep Package 80
6.1 Straight Line Decisions . 80
6.2 Black Box Programs . 86
6.3 Representations of Minimal Degree . 91
6.4 A JSON Interface . 95

3

AtlasRep — A GAP 4 Package 4

7 Technicalities of the AtlasRep Package 98
7.1 Global Variables Used by the AtlasRep Package 98
7.2 How to Customize the Access to Data files . 100
7.3 Reading and Writing MeatAxe Format Files . 101
7.4 Reading and Writing ATLAS Straight Line Programs 104
7.5 Data Types Used in the AtlasRep Package . 107
7.6 Filenames Used in the AtlasRep Package . 110
7.7 The record component identifier used by the AtlasRep Package 114
7.8 The Tables of Contents of the AtlasRep Package 115
7.9 Sanity Checks for the AtlasRep Package . 118

References 123

Index 124

Chapter 1

Introduction to the AtlasRep Package

The aim of the GAP 4 package AtlasRep is to provide a link between GAP and databases such as the
ATLAS of Group Representations [WWT+], which comprises generating permutations and matrices
for many almost simple groups, and information about their maximal subgroups. This database is
available independent of GAP at

http://atlas.math.rwth-aachen.de/Atlas/v3.
The AtlasRep package consists of this database (see Section 1.1) and a GAP interface (see Sec-

tion 1.2); the latter is extended by further information available via the internet (see Section 4.3).
This package manual has the following parts.

A tutorial
gives an overview how the functions of the package can be used, see Chapter 2.

User interface functions
are described in Chapter 3.

Customizations of the package
are described in Chapter 4.

Information how to extend the database
can be found in Chapter 5.

More technical information
can be found in the chapters 6 (concerning GAP objects that are introduced by the package)
and 7 (concerning global variables and sanity checks).

1.1 The ATLAS of Group Representations

The ATLAS of Group Representations [WWT+] consists of matrices over various rings, permutations,
and shell scripts encoding so-called black box programs (see [Nic06] and Section 6.2). Many of
these scripts are straight line programs (see [BSWW01], [SWW00], and (Reference: Straight Line
Programs)) and straight line decisions (see Section 6.1). These programs can be used to compute
certain elements in a group G from its standard generators (see [Wil96] and Section 3.3) for example
generators of maximal subgroups of G or representatives of conjugacy classes of G.

5

http://atlas.math.rwth-aachen.de/Atlas/v3

AtlasRep — A GAP 4 Package 6

The ATLAS of Group Representations has been prepared by Robert Wilson, Peter Walsh, Jonathan
Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton, Simon Nickerson, Steve Linton, John Bray,
and Rachel Abbott (in reverse alphabetical order).

The information was computed and composed using computer algebra systems such as MeatAxe
(see [Rin]), Magma (see [CP96]), and GAP (in reverse alphabetical order). Part of the constructions
have been documented in the literature on almost simple groups, or the results have been used in such
publications, see for example the bibliographies in [CCN+85] and [BN95] which are available online
at http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl.

If you use the ATLAS of Group Representations to solve a problem then please send a short email
to R.A.Wilson@qmul.ac.uk about it. The ATLAS of Group Representations database should be
referenced with the entry [WWT+] in the bibliography of this manual.

If your work made use of functions of the GAP interface (see Section 1.2) then you should also
reference this interface, using the information printed by the GAP function Cite (Reference: Cite).

For referencing the GAP system in general, use the entry [GAP19] in the bibliography of this
manual, see also http://www.gap-system.org.

1.2 The GAP Interface to the ATLAS of Group Representations

The GAP interface to the ATLAS of Group Representations consists of essentially two parts.

• First, there is the user interface which allows the user to get an overview of the contents of the
database, and to access the data in GAP format; this is described in Chapter 3. Advanced users
may add their own data to the database, this is described in Chapter 5.

• Second, there is administrational information, which covers also the declaration of GAP objects
such as straight line decisions and black box programs. This is important mainly for users
interested in the actual implementation (e. g., for modifying the package) or in using it together
with the C-MeatAxe standalone (see [Rin]); this is described in Chapter 7.

Information concerning the C-MeatAxe, including the manual [Rin], can be found at
http://www.math.rwth-aachen.de/~MTX

The interface and this manual have been provided by Thomas Breuer, except for the interpreter for
black box programs (see Section 6.2), which is due to Simon Nickerson. Comments, bug reports, and
hints for improving the interface can be sent to sam@math.rwth-aachen.de.

1.3 What’s New in AtlasRep, Compared to Older Versions?

1.3.1 What’s New in Version 2.1.6? (October 2022)

The package now requires the utils package [BGH+22], and uses its Download (Utils: Download)
function for downloading remote files. The former user preference FileTransferTool of the At-
lasRep package is no longer supported; it had been used in older versions to distinguish between
different download tools.

A method for ConjugacyClasses (Reference: ConjugacyClasses attribute) has been added
that uses a straight line program for computing class representatives of a group that has been cre-
ated with AtlasGroup (3.5.8), provided such a program is available. Thanks to Frank Lübeck for
suggesting this.

http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl
mailto://R.A.Wilson@qmul.ac.uk
http://www.gap-system.org
http://www.math.rwth-aachen.de/~MTX
mailto://sam@math.rwth-aachen.de

AtlasRep — A GAP 4 Package 7

1.3.2 What’s New in Version 2.1.5? (August 2022)

Two bugs concerning local file permissions and the handling of download failures were fixed. Thanks
to Frank Lübeck and Fabian Zickgraf for reporting these problems.

1.3.3 What’s New in Version 2.1.4? (August 2022)

A few changes in the code for downloading files were needed in order to make some CI tests happy.

1.3.4 What’s New in Version 2.1.3? (August 2022)

The server address for the core part of the database has changed.
Additional table of contents files are now available, which contain checksums in SHA256 format

instead of the checksums computed by CrcFile (Reference: CrcFile) and CrcString (Reference:
CrcString). Note that the latter values can be interpreted only by GAP.

For 364 representations, the corresponding characters have been identified and can thus be used for
accessing these representations with OneAtlasGeneratingSetInfo (3.5.6), see DisplayAtlasInfo
(3.5.1).

1.3.5 What’s New in Version 2.1.2? (March 2022)

Not much.
The release of Version 2.1.2 was necessary for technical reasons: Now the testfile mentioned in

PackageInfo.g exits GAP in the end, and the external links in the package documentation were
corrected (the links in version 2.1.1 pointed to a wrong directory).

1.3.6 What’s New in Version 2.1.1? (February 2022)

• The new function EvaluatePresentation (3.5.11) computes the images of the relators of a
presentation (see Section 6.1.7).

• The new function StandardGeneratorsData (3.5.12) allows one to compute standard gener-
ators from given generators, provided a recipe for that task (a “find” straight line program) for
the group in question is available.

• The function AtlasGroup (3.5.8) sets known information about the group and the representa-
tion, such as IsPrimitive (Reference: IsPrimitive).

(Thanks to Steve Linton for suggesting this feature.)

• The function ResultOfBBoxProgram (6.2.4) now admits an optional argument, which is used
as options record in calls to RunBBoxProgram (6.2.3).

• The new user preference "AtlasRepJsonFilesAddresses" (see Section 4.2.14) allows one
to use Json format data files for matrix representations in characteristic zero, which in turn
makes it possible to create the matrices over prescribed fields, for example fields returned by
AlgebraicExtension (Reference: AlgebraicExtension). The information stored in the table
of contents file about the field of entries of the matrix representations has been extended by a
GAP independent description of this field and the defining polynomial used in the Json format
data files.

AtlasRep — A GAP 4 Package 8

• When the value of the user preference "AtlasRepDataDirectory" is an empty string then
data files that are fetched from remote servers are read into the GAP session without storing the
files. (An advantage is that one need not care about where one has permissions for storing files.
A disadvantage is of course that one has to fetch a file again whenever it is needed.)

1.3.7 What’s New in Version 2.1.0? (May 2019)

The main differences to earlier versions concern extensions of the available data. Up to now, such
extensions were possible only in the sense that one could notify certain locally available files to the
package’s functions. With this version, it becomes possible to notify also remote data files, i. e.,
data files which have to be downloaded before they can be read into GAP, in the same way as the
data from the ATLAS of Group Representations. Two extensions of this kind become automatically
available with this package version, see Section 5.1 for details.

Thus the focus of the package has changed. In earlier versions, it provided a GAP interface
to the data in the ATLAS of Group Representations, whereas now this database is regarded as one
collection (the “core part”) among others. Where applicable, the package manual tries to distinguish
between general data available to the AtlasRep functions and the data from the ATLAS of Group
Representations.

In order to provide this new functionality, the following changes have been implemented. Note
that some are incompatible changes, compared with earlier versions of the package.

• The format of the identifier components of the records returned by AtlasGenerators

(3.5.3), AtlasProgram (3.5.4), etc., has been changed for those data that belong to extensions,
see 7.7. In the new format, the name of the extension is not added to the group name but to the
individual filenames; this allows for example the combination of files from the core database
and from extensions in one identifier. Functions for converting between the old and the new
format are available, see AtlasRepIdentifier (7.7.1).

• The records returned by AtlasGenerators (3.5.3) etc. contain also a component contents,
with value the identifier of the part of the database to shich the generators belong.

• The tables of contents of the ATLAS of Group Representations and of extensions are no longer
stored in the form of sequences of calls to GAP functions. Instead, each table of contents is
defined via a JSON format file, see 6.4. In particular, the file atlasprm.json replaces the
former gap/atlasprm.g.

Two advantages of this change are that there is no danger to call unwanted GAP functions when
such files (which are expected to be available in the world wide web) get evaluated, and that the
information is independent of GAP –note that MeatAxe format files and straight line programs
can be used by other program systems as well.

• The functions ReloadAtlasTableOfContents, StoreAtlasTableOfContents, and
ReplaceAtlasTableOfContents are no longer available. They had been intended for
updating the table of contents of the ATLAS of Group Representations, but it has turned out
that this was in fact not useful.

The second major change concerns the handling of user parameters.

AtlasRep — A GAP 4 Package 9

• GAP’s general user preferences mechanism (see SetUserPreference (Reference: SetUser-
Preference)) has been used since version 1.5.1 of the package for dealing with certain cus-
tomizations of AtlasRep’s behaviour, concerning the paths of data directories and two issues
with MeatAxe format files.

Now this mechanism is used in more cases, see Section 4.2 for an overview. The new user
preferences replace certain components of the record AtlasOfGroupRepresentationsInfo

(7.1.5) that were recommended in earlier versions of the package. These components are cur-
rently still available but are no longer used by the package’s functions. Also the global variable
ATLASREP_TOCFILE is no longer supported, use the user preference AtlasRepTOCData instead,
see Section 4.2.3. Analogously, use the user preference HowToReadMeatAxeTextFiles instead
of the no longer available CMeatAxe.FastRead.

The switch to user preferences is an incompatible change if you are used to change the val-
ues of these components in your code, for example in your gaprc file, see (Reference: The
gap.ini and gaprc files). All assignments to these components should be changed to calls of
SetUserPreference (Reference: SetUserPreference).

Another consequence of this change is that the former function
AtlasOfGroupRepresentationsUserParameters of the package is no longer supported, use
ShowUserPreferences (Reference: ShowUserPreferences) or BrowseUserPreferences

(BrowseUserPreferences???) with argument "AtlasRep" instead.

Finally, the following improvements have been added.

• Straight line programs for computing generators of normal subgroups can now be fetched with
AtlasProgram (3.5.4), using the argument "kernel". The available programs of this type are
shown in the DisplayAtlasInfo (3.5.1) overview for a group. More than 200 such programs
are available in a new data directory datapkg of the package. If fact, this collection of files is
part of an extension of the database that is distributed together with the package.

In earlier versions of the package, this kind of information had been available only implicitly; it
had been stored via AGR.KERPRG, which is not supported anymore.

• AtlasProgram (3.5.4) supports more variants of arguments: "contents" can be used to list
the available data extensions, "contents" and "version" can be used to restrict the data un-
der consideration, and one can request a program for computing standard generators of some
maximal subgroup, not just generators (provided that this information is available).

The information about the version of straight line programs is shown by DisplayAtlasInfo

(3.5.1), as well as the availability of straight line programs for computing standard generators
of maximal subgroups.

Making this information more explicit has the side-effect that the access to the AtlasRep data
with BrowseAtlasInfo (BrowseAtlasInfo???) is both safer and simpler, if at least version 1.8.6
of the Browse package is available. (For that, the function AGR.InfoPrgs has been extended
such that also the identifier records are included in the result.)

• Straight line programs for computing standard generators of a maximal subgroup, if available,
can now be fetched with AtlasProgram (3.5.4), using the argument "maxstd".

• The function AtlasRepInfoRecord (3.5.10) now admits a group name as its argument, and
then returns information about the group and its maximal subgroups; this information had been
used before by DisplayAtlasInfo (3.5.1), but it had not been programmatically accessible.

AtlasRep — A GAP 4 Package 10

• The sanity checks for the data (see Section 7.9) have been extended, in particular they can be
applied also to data extensions. To some extent, these checks can be used also to derive new
information; the code for that should be regarded as heuristic and experimental, runtimes and
space requirements may be large, depending on the new data to be examined.

• Different header formats are now supported when reading and writing MeatAxe format files,
see Section 4.2.8, and one can set a global default for the creation of mode 2 MeatAxe files, see
Section 4.2.9.

• The function MeatAxeString (7.3.2) admits also an integer matrix as argument.

• The function CMtxBinaryFFMatOrPerm (7.3.4) admits an optional argument base , in order to
write MeatAxe format files that contain either zero based or one based permutations.

• The meaningless lines about p-modular representations of groups with nontrivial p-core have
been removed from the file gap/mindeg.g.

1.3.8 What’s New in Version 1.5.1? (March 2016)

• The paths of the directories where downloaded data files get stored are now customizable, see
Section 4.2.2. Up to now, the data were stored in subdirectories of the package directory, which
might cause problems with write permissions, depending on the installation of the package.
(Note that choosing other data directories can be useful also in order to keep existing local data
files when a new version of GAP or of the AtlasRep package gets installed.) Thanks to Bill
Allombert for pointing out this problem.

• The information about data files from the ATLAS of Group Representations has been extended
by CrcFile (Reference: CrcFile) values. These values are checked whenever data from such
a file are read, and an error is signalled if the checksum does not fit to the expected one. Note
that several users may access the same data files, and a user should not suffer from perhaps
corrupted files that have been downloaded by other users. Thanks to Frank Lübeck for the idea
to introduce this consistency test.

• Whenever StringFile (GAPDoc: StringFile) is called by functions of the package, this hap-
pens in the wrapper function AGR.StringFile, in order to replace occasional line breaks of the
form "\r\n" by "\n". Apparently it may happen that the "\r" is silently smuggled in when
data files get copied to the local computer. Thanks to Marek Mitros for help with detecting and
fixing this problem.

• The function FFMatOrPermCMtxBinary (7.3.5) can now read also permutations stored in binary
files that have been created with version 2.4 of the C-MeatAxe; note that this format is different
from the one that is written by version 2.3. Conversely, CMtxBinaryFFMatOrPerm (7.3.4)
has been generalized such that both formats can be written. The reference to the C-MeatAxe
documentation now points to that of version 2.4. Thanks to Jürgen Müller for pointing out this
problem.

• The function MeatAxeString (7.3.2) can now encode permutation matrices in different ways.
The mode (the first header entry) can be either 2 (then the positions of the nonzero entries are
listed) or 1 or 6 (then all entries of the matrix are listed). In previous versions, the function

AtlasRep — A GAP 4 Package 11

produced a matrix of mode 2 whenever this was possible, but this behaviour is not useful if the
result is not processed by the C-MeatAxe. Thanks to Klaus Lux for pointing out this problem.

• Depending on the terminal capabilities and the user preference DisplayFunction (see 4.2.11),
some non-ASCII characters may appear in the output shown by DisplayAtlasInfo (3.5.1).

1.3.9 What’s New in Version 1.5? (July 2011)

• The function AtlasSubgroup (3.5.9) now admits also the return value of
OneAtlasGeneratingSetInfo (3.5.6) or the return value of AtlasGroup (3.5.8) as its
first argument. The latter is implemented via the new attribute AtlasRepInfoRecord (3.5.10),
which is set in the groups constructed by AtlasGroup (3.5.8).

• Information about transitivity, rank, primitivity, and point stabilizers of many permutation
representations is now available. If applicable then this information appears in the records
returned by OneAtlasGeneratingSetInfo (3.5.6), it is part of the overview shown by
DisplayAtlasInfo (3.5.1), and it is shown also in the data overview in the web, see Section
4.3.

Two new manual sections about point stabilizers have been added, see the sections 2.4.6 and
2.4.7.

• Information about the characters afforded by many matrix and permutation representations
is now available. If applicable then this information appears in the records returned by
OneAtlasGeneratingSetInfo (3.5.6), for matrix representations it is part of the overview
shown by DisplayAtlasInfo (3.5.1), and it is shown also in the data overview in the web, see
Section 4.3.

• The functions Character (Reference: Character for a character table and a list),
Identifier (Reference: Identifier for character tables), IsPrimitive (Reference: Is-
Primitive), IsTransitive (Reference: IsTransitive), Transitivity (Reference: Transi-
tivity), and RankAction (Reference: RankAction) are now supported as input conditions in
DisplayAtlasInfo (3.5.1) and OneAtlasGeneratingSetInfo (3.5.6).

• It is now possible to restrict the data shown by DisplayAtlasInfo (3.5.1) or returned by
OneAtlasGeneratingSetInfo (3.5.6) to private or non-private data.

• A tutorial for beginners was added to the manual, see Chapter 2, and the manual was restruc-
tured.

• In the overview shown by DisplayAtlasInfo (3.5.1) and in the data overview in the web (see
Section 4.3), the ordering of groups was improved such that, e.g., "A9" precedes "A10".

• The function AtlasClassNames (3.4.2) now admits also a Brauer table as its argument, and
works also for character tables of bicyclic extensions of simple groups.

• The group names that are entered in DisplayAtlasInfo (3.5.1),
OneAtlasGeneratingSetInfo (3.5.6), etc., are now case insensitive, and if the package
CTblLib is available then the admissible group names for the GAP character table of the group
in question can be used in these functions.

AtlasRep — A GAP 4 Package 12

• In order to reduce the number of global variables, several functions have been turned into com-
ponents of the new global variable AGR (7.1.4). A few of these functions had been documented
in the previous version, the old values are still available if the package files gap/obsolete.gd
and gap/obsolete.gi have been read. These files are read automatically if GAP’s user pref-
erence "ReadObsolete" is true when the package gets loaded, see (Reference: The gap.ini
file).

• A few nicer characters are used by DisplayAtlasInfo (3.5.1) if GAPInfo.TermEncoding has
the value "UTF-8" and if Print (Reference: Print) is not the display function to be used, see
Section 4.2.11.

• A bug in the function ReloadAtlasTableOfContents was fixed. Thanks to Jack Schmidt for
reporting this bug.

1.3.10 What’s New in Version 1.4? (June 2008)

• In addition to the group orders that were added in version 1.3 (see Section 1.3.12), also many
orders of maximal subgroups are now available. These values occur in the records returned
by AtlasProgram (3.5.4) (for the case of "maxes" type programs) and of the three argument
version of AtlasGenerators (3.5.3); now a size component may be bound. In these cases,
the groups returned by AtlasSubgroup (3.5.9) have the Size (Reference: Size) attribute set.

• The information about the number of maximal subgroups, if available, is now used in
DisplayAtlasInfo (3.5.1).

• In many cases, straight line programs for computing generators of maximal subgroups of a
group G, say, can in fact be used to compute also generators of maximal subgroups of downward
extensions of G; if not then it may suffice to extend the given straight line programs by additional
generators.

Currently this yields more than 200 new possibilities to compute maximal subgroups, this means
a growth by about 25 percent. For example, all maximal subgroups of 12.M22 and 2.Fi22 can
now be accessed via AtlasGenerators (3.5.3).

(Of course this extension means only that one can access the straight line programs in question
automatically via the GAP interface. In principle one could have used them already before,
by explicitly applying a straight line program for a factor group to generators of a group, and
perhaps adding some element in the kernel of the natural epimorphism.)

For this feature, information about the compatibility of standard generators of groups and their
factor groups was added.

• The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of
Brauer Characters [JLPW95] are now available as HTML files, as BibXMLext files, and within
GAP, see BrowseBibliographySporadicSimple (3.6.2).

• If the GAP package Browse (see [BL18]) is loaded then the new functions
BrowseMinimalDegrees (3.6.1) and BrowseBibliographySporadicSimple (3.6.2) are
available; these functions can be called also by choosing the corresponding menu entries of the
Browse application BrowseGapData (BrowseGapData???).

AtlasRep — A GAP 4 Package 13

• The function AtlasGroup (3.5.8) now admits also the return value of
OneAtlasGeneratingSetInfo (3.5.6) as its argument.

1.3.11 What’s New in Version 1.3.1? (October 2007)

This version was mainly released in order to fix a few problems. Now one does not get warnings about
unbound variables when the package is loaded and the GAP package IO [Neu14] is not available, and
pathological situations in FFMatOrPermCMtxBinary (7.3.5) (concerning extremely short corrupted
data files and different byte orderings in binary files) are handled more carefully.

Besides this, the two functions AtlasGroup (3.5.8) and AtlasSubgroup (3.5.9) were in-
troduced, and the extended function QuaternionAlgebra (Reference: QuaternionAlgebra) of
GAP 4.4.10 can now be used for describing base rings in OneAtlasGeneratingSetInfo (3.5.6)
and AllAtlasGeneratingSetInfos (3.5.7). (This is the reason why this version of the package
requires at least version 4.4.10 of GAP.)

1.3.12 What’s New in Version 1.3? (June 2007)

• The database was extended, see Section 4.2.4 for the number and size of files.

• New data types and corresponding GAP objects have been introduced, for representing semi-
presentations, presentations, and programs for finding standard generators. For details, see
AtlasProgram (3.5.4), Chapter 6, and Section 7.6.

• The records returned by the functions AtlasGenerators (3.5.3),
OneAtlasGeneratingSetInfo (3.5.6), and AllAtlasGeneratingSetInfos (3.5.7) now
contain the name and (if known) the order of the group in question, and also components
describing the degree in the case of permutation representations or the dimension and the base
ring of the natural module in the case of matrix representations.

• For many of the groups, information about the minimal degree of faithful permutation rep-
resentations and the minimal dimensions of faithful matrix representations in various charac-
teristics is available for DisplayAtlasInfo (3.5.1), OneAtlasGeneratingSetInfo (3.5.6),
and AllAtlasGeneratingSetInfos (3.5.7), see also Section 6.3. For these functions, also
properties such as IsPrimeInt (Reference: IsPrimeInt) can be used to describe the intended
restriction of the output.

• One can now use Pager (Reference: Pager) functionality in DisplayAtlasInfo (3.5.1), see
Section 4.2.11.

An interactive alternative to DisplayAtlasInfo (3.5.1) is provided by the function
BrowseAtlasInfo (BrowseAtlasInfo???) from the new (recommended) GAP package Browse
(see [BL18]).

• The functions OneAtlasGeneratingSetInfo (3.5.6) and AllAtlasGeneratingSetInfos

(3.5.7) now admit also a list of group names as the first argument.

• The functions for actually accessing the data are more flexible now, see Section 7.2.

• For transferring remote data, the GAP package IO (see [Neu14]) can now be used (and is rec-
ommended) as an alternative to wget.

AtlasRep — A GAP 4 Package 14

• The address of the data server has changed. The access to the server is no longer possible via
ftp, thus the mechanism used up to version 1.2, which was based on ftp, had to be rewritten.

The main consequence of this change is that information about updates of the table of contents
is now provided at the package’s homepage. This means that on the one hand, now package
users cannot compute the table of contents directly from the server data, but on the other hand
the update information can be downloaded without the necessity to install perl.

Another consequence is that the system program ls is no longer needed, see Section 1.3.14.

• The package manual has been restructured, extended and improved. It is now based on the
package GAPDoc (see [LN18]).

1.3.13 What’s New in Version 1.2? (November 2003)

Not much.
The release of Version 1.2 became necessary first of all in order to provide a package version

that is compatible with GAP 4.4, since some cross-references into the GAP Reference Manual were
broken due to changes of section names. Additionally, several web addresses concerning the package
itself were changed and thus had to be adjusted.

This opportunity was used

• to upgrade the administrational part for loading the package to the mechanism that is recom-
mended for GAP 4.4,

• to extend the test suite, which now covers more consistency checks using the GAP Character
Table Library (see [Bre22]),

• to make the function ScanMeatAxeFile (7.3.1) more robust, due to the fact that the GAP
function PermList (Reference: PermList) now returns fail instead of raising an error,

• to change the way how representations with prescribed properties are accessed (the
new function OneAtlasGeneratingSetInfo (3.5.6) is now preferred to the former
OneAtlasGeneratingSet, and AllAtlasGeneratingSetInfos (3.5.7) has been added in or-
der to provide programmatic access in parallel to the human readable descriptions printed by
DisplayAtlasInfo (3.5.1)),

• and last but not least to include the current table of contents of the underlying database.

For AtlasRep users, the new feature of GAP 4.4 is particularly interesting that due to better kernel
support, reading large matrices over finite fields is now faster than it was in GAP 4.3.

1.3.14 What’s New in Version 1.1? (October 2002)

The biggest change w. r. t. Version 1.1 is the addition of private extensions (see Chapter 5). It includes
a new “free format” for straight line programs (see Section 5.2). Unfortunately, this feature requires
the system program ls, so it may be not available for example under MS Windows operating systems.
[But see Section 1.3.12.]

In order to admit the addition of other types of data, the implementation of several functions has
been changed. Data types are described in Section 7.5. An example of a new data type are quaternionic
representations (see Section 7.6). The user interface itself (see Chapter 3) remained the same.

AtlasRep — A GAP 4 Package 15

As an alternative to perl, one can use wget now for transferring data files (see 4.2).
Data files can be read much more efficiently in GAP 4.3 than in GAP 4.2. In Version 1.1 of the

AtlasRep package, this feature is used for reading matrices and permutations in MeatAxe text format
with ScanMeatAxeFile (7.3.1). As a consequence, (at least) GAP 4.3 is required for AtlasRep
Version 1.1.

The new compress component of the global variable AtlasOfGroupRepresentationsInfo

(7.1.5) allows one to store data files automatically in gzipped form.
For matrix representations in characteristic zero, invariant forms and generators for the centralizer

algebra are now accessible in GAP if they are contained in the source files –this information had been
ignored in Version 1.0.

Additional information is now available via the internet (see 4.3).
The facilities for updating the table of contents have been extended.
The manual is now distributed also in PDF and HTML format; on the other hand, the PostScript

format manual is no longer contained in the archives.
Apart from these changes, a few minor bugs in the handling of MeatAxe files have been fixed, ty-

pos in the documentation have been corrected, and the syntax checks for ATLAS straight line programs
(see 7.4) have been improved.

1.4 Acknowledgements

• Frank Lübeck and Max Neunhöffer kindly provided the perl script that had been used for fetch-
ing remote data until version 1.2. Thanks also to Greg Gamble and Alexander Hulpke for
technical hints concerning “standard” perl.

• Ulrich Kaiser helped with preparing the package for MS Windows.

• Klaus Lux had the idea to support data extensions, see Chapter 5, he did a lot of beta testing,
and helped to fix several bugs.

• Frank Lübeck contributed the functions CMtxBinaryFFMatOrPerm (7.3.4) and
FFMatOrPermCMtxBinary (7.3.5).

• Frank Lübeck and Max Neunhöffer wrote the GAPDoc package [LN18], which is used for
processing the documentation of the AtlasRep package and for processing the bibliographies
included in this package (see BrowseBibliographySporadicSimple (3.6.2)),

• Max Neunhöffer wrote the GAP package IO [Neu14], which is recommended for transferring
data.

• Max Neunhöffer has also suggested the generalization of the data access described in Sec-
tion 7.2, the admissibility of the function Character (Reference: Character for a charac-
ter table and a list) as a filter in DisplayAtlasInfo (3.5.1), OneAtlasGeneratingSetInfo
(3.5.6), and AllAtlasGeneratingSetInfos (3.5.7), and the variant of AtlasRepInfoRecord
(3.5.10) that takes a group name as its input.

• Gunter Malle suggested to make the information about representations of minimal degree ac-
cessible, see Section 6.3.

AtlasRep — A GAP 4 Package 16

• Andries Brouwer suggested to add a tutorial (see Chapter 2), Klaus Lux suggested several im-
provements of this chapter.

• The development of this GAP package has been supported by the SFB-TRR 195 “Symbolic
Tools in Mathematics and their Applications” (from 2017 until 2022).

https://www.computeralgebra.de/sfb/
https://www.computeralgebra.de/sfb/

Chapter 2

Tutorial for the AtlasRep Package

This chapter gives an overview of the basic functionality provided by the AtlasRep package. The
main concepts and interface functions are presented in the first three sections, and Section 2.4 shows
a few small examples.

Let us first fix the setup for the examples shown in the package manual.

1. First of all, we load the AtlasRep package. Some of the examples require also the GAP pack-
ages CTblLib and TomLib, so we load also these packages.

Example
gap> LoadPackage("AtlasRep", false);

true

gap> LoadPackage("CTblLib", false);

true

gap> LoadPackage("TomLib", false);

true

2. Depending on the terminal capabilities, the output of DisplayAtlasInfo (3.5.1) may contain
non-ASCII characters, which are not supported by the LATEX and HTML versions of GAPDoc
documents. The examples in this manual are used for tests of the package’s functionality, thus
we set the user preference DisplayFunction (see Section 4.2.11) to the value "Print" in
order to produce output consisting only of ASCII characters, which is assumed to work in any
terminal.

Example
gap> origpref:= UserPreference("AtlasRep", "DisplayFunction");;

gap> SetUserPreference("AtlasRep", "DisplayFunction", "Print");

3. The GAP output for the examples may look differently if data extensions have been loaded. In
order to ignore these extensions in the examples, we unload them.

Example
gap> priv:= Difference(

> List(AtlasOfGroupRepresentationsInfo.notified, x -> x.ID),

> ["core", "internal"]);;

gap> Perform(priv, AtlasOfGroupRepresentationsForgetData);

4. If the info level of InfoAtlasRep (7.1.1) is larger than zero then additional output appears on
the screen. In order to avoid this output, we set the level to zero.

17

AtlasRep — A GAP 4 Package 18

Example
gap> globallevel:= InfoLevel(InfoAtlasRep);;

gap> SetInfoLevel(InfoAtlasRep, 0);

2.1 Accessing a Specific Group in AtlasRep

An important database to which the AtlasRep package gives access is the ATLAS of Group Repre-
sentations [WWT+]. It contains generators and related data for several groups, mainly for extensions
of simple groups (see Section 2.1.1) and for their maximal subgroups (see Section 2.1.2).

In general, these data are not part of the package. They are downloaded as soon as they are needed
for the first time, see Section 4.2.1.

2.1.1 Accessing a Group in AtlasRep via its Name

Each group that occurs in this database is specified by a name, which is a string similar to the name
used in the ATLAS of Finite Groups [CCN+85]. For those groups whose character tables are contained
in the GAP Character Table Library [Bre22], the names are equal to the Identifier (Reference:
Identifier for character tables) values of these character tables. Examples of such names are "M24"
for the Mathieu group M24, "2.A6" for the double cover of the alternating group A6, and "2.A6.2_1"

for the double cover of the symmetric group S6. The names that actually occur are listed in the
first column of the overview table that is printed by the function DisplayAtlasInfo (3.5.1), called
without arguments, see below. The other columns of the table describe the data that are available in
the database.

For example, DisplayAtlasInfo (3.5.1) may print the following lines. Omissions are indicated
with “...”.

Example
gap> DisplayAtlasInfo();

group | # | maxes | cl | cyc | out | fnd | chk | prs

-------------------------+----+-------+----+-----+-----+-----+-----+----

...

2.A5 | 26 | 3 | | | | | + | +

2.A5.2 | 11 | 4 | | | | | + | +

2.A6 | 18 | 5 | | | | | |

2.A6.2_1 | 3 | 6 | | | | | |

2.A7 | 24 | 2 | | | | | |

2.A7.2 | 7 | | | | | | |

...

M22 | 58 | 8 | + | + | | + | + | +

M22.2 | 46 | 7 | + | + | | + | + | +

M23 | 66 | 7 | + | + | | + | + | +

M24 | 62 | 9 | + | + | | + | + | +

McL | 46 | 12 | + | + | | + | + | +

McL.2 | 27 | 10 | | + | | + | + | +

O7(3) | 28 | | | | | | |

O7(3).2 | 3 | | | | | | |

...

Suz | 30 | 17 | | + | 2 | + | + |

...

AtlasRep — A GAP 4 Package 19

Called with a group name as the only argument, the function AtlasGroup (3.5.8) returns a group
isomorphic to the group with the given name, or fail. If permutation generators are available in the
database then a permutation group (of smallest available degree) is returned, otherwise a matrix group.

Example
gap> g:= AtlasGroup("M24");

Group([(1,4)(2,7)(3,17)(5,13)(6,9)(8,15)(10,19)(11,18)(12,21)(14,16)

(20,24)(22,23), (1,4,6)(2,21,14)(3,9,15)(5,18,10)(13,17,16)

(19,24,23)])

gap> IsPermGroup(g); NrMovedPoints(g); Size(g);

true

24

244823040

gap> AtlasGroup("J5");

fail

2.1.2 Accessing a Maximal Subgroup of a Group in AtlasRep

Many maximal subgroups of extensions of simple groups can be constructed using the function
AtlasSubgroup (3.5.9). Given the name of the extension of the simple group and the number of
the conjugacy class of maximal subgroups, this function returns a representative from this class.

Example
gap> g:= AtlasSubgroup("M24", 1);

Group([(2,10)(3,12)(4,14)(6,9)(8,16)(15,18)(20,22)(21,24), (1,7,2,9)

(3,22,10,23)(4,19,8,12)(5,14)(6,18)(13,16,17,24)])

gap> IsPermGroup(g); NrMovedPoints(g); Size(g);

true

23

10200960

gap> AtlasSubgroup("M24", 100);

fail

The classes of maximal subgroups are ordered w. r. t. decreasing subgroup order. So the first class
contains maximal subgroups of smallest index.

Note that groups obtained by AtlasSubgroup (3.5.9) may be not very suitable for computa-
tions in the sense that much nicer representations exist. For example, the sporadic simple O’Nan
group O′N contains a maximal subgroup S isomorphic with the Janko group J1; the smallest per-
mutation representation of O′N has degree 122760, and restricting this representation to S yields a
representation of J1 of that degree. However, J1 has a faithful permutation representation of de-
gree 266, which admits much more efficient computations. If you are just interested in J1 and
not in its embedding into O′N then one possibility to get a “nicer” faithful representation is to
call SmallerDegreePermutationRepresentation (Reference: SmallerDegreePermutationRep-
resentation). In the abovementioned example, this works quite well; note that in general, we cannot
expect that we get a representation of smallest degree in this way.

Example
gap> s:= AtlasSubgroup("ON", 3);

<permutation group of size 175560 with 2 generators>

gap> NrMovedPoints(s); Size(s);

122760

175560

gap> hom:= SmallerDegreePermutationRepresentation(s);;

AtlasRep — A GAP 4 Package 20

gap> NrMovedPoints(Image(hom));

1540

In this particular case, one could of course also ask directly for the group J1.
Example

gap> j1:= AtlasGroup("J1");

<permutation group of size 175560 with 2 generators>

gap> NrMovedPoints(j1);

266

If you have a group G, say, and you are really interested in the embedding of a maximal subgroup of
G into G then an easy way to get compatible generators is to create G with AtlasGroup (3.5.8) and
then to call AtlasSubgroup (3.5.9) with first argument the group G.

Example
gap> g:= AtlasGroup("ON");

<permutation group of size 460815505920 with 2 generators>

gap> s:= AtlasSubgroup(g, 3);

<permutation group of size 175560 with 2 generators>

gap> IsSubset(g, s);

true

gap> IsSubset(g, j1);

false

2.2 Accessing Specific Generators in AtlasRep

The function DisplayAtlasInfo (3.5.1), called with an admissible name of a group as the only
argument, lists the ATLAS data available for this group.

Example
gap> DisplayAtlasInfo("A5");

Representations for G = A5: (all refer to std. generators 1)

1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)

2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.)

3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.)

4: G <= GL(4a,2) character 4a

5: G <= GL(4b,2) character 2ab

6: G <= GL(4,3) character 4a

7: G <= GL(6,3) character 3ab

8: G <= GL(2a,4) character 2a

9: G <= GL(2b,4) character 2b

10: G <= GL(3,5) character 3a

11: G <= GL(5,5) character 5a

12: G <= GL(3a,9) character 3a

13: G <= GL(3b,9) character 3b

14: G <= GL(4,Z) character 4a

15: G <= GL(5,Z) character 5a

16: G <= GL(6,Z) character 3ab

17: G <= GL(3a,Field([Sqrt(5)])) character 3a

18: G <= GL(3b,Field([Sqrt(5)])) character 3b

AtlasRep — A GAP 4 Package 21

Programs for G = A5: (all refer to std. generators 1)

- class repres.*

- presentation

- maxes (all 3):

1: A4

2: D10

3: S3

- std. gen. checker:

(check)

(pres)

In order to fetch one of the listed permutation groups or matrix groups, you can call AtlasGroup
(3.5.8) with second argument the function Position (Reference: Position) and third argument the
position in the list.

Example
gap> AtlasGroup("A5", Position, 1);

Group([(1,2)(3,4), (1,3,5)])

Note that this approach may yield a different group after a data extension has been loaded.
Alternatively, you can describe the desired group by conditions, such as the degree in the case of

a permutation group, and the dimension and the base ring in the case of a matrix group.
Example

gap> AtlasGroup("A5", NrMovedPoints, 10);

Group([(2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9)])

gap> AtlasGroup("A5", Dimension, 4, Ring, GF(2));

<matrix group of size 60 with 2 generators>

The same holds for the restriction to maximal subgroups: Use AtlasSubgroup (3.5.9) with the
same arguments as AtlasGroup (3.5.8), except that additionally the number of the class of maximal
subgroups is entered as the last argument. Note that the conditions refer to the group, not to the
subgroup; it may happen that the subgroup moves fewer points than the big group.

Example
gap> AtlasSubgroup("A5", Dimension, 4, Ring, GF(2), 1);

<matrix group of size 12 with 2 generators>

gap> g:= AtlasSubgroup("A5", NrMovedPoints, 10, 3);

Group([(2,4)(3,5)(6,8)(7,10), (1,4)(3,8)(5,7)(6,10)])

gap> Size(g); NrMovedPoints(g);

6

9

2.3 Basic Concepts used in AtlasRep

2.3.1 Groups, Generators, and Representations

Up to now, we have talked only about groups and subgroups. The AtlasRep package provides access
to group generators, and in fact these generators have the property that mapping one set of generators
to another set of generators for the same group defines an isomorphism. These generators are called
standard generators, see Section 3.3.

AtlasRep — A GAP 4 Package 22

So instead of thinking about several generating sets of a group G, say, we can think about one ab-
stract group G, with one fixed set of generators, and mapping these generators to any set of generators
provided by AtlasRep defines a representation of G. This viewpoint had motivated the name “ATLAS
of Group Representations” for the core part of the database.

If you are interested in the generators provided by the database rather than in the groups they
generate, you can use the function OneAtlasGeneratingSetInfo (3.5.6) instead of AtlasGroup
(3.5.8), with the same arguments. This will yield a record that describes the representation in question.
Calling the function AtlasGenerators (3.5.3) with this record will then yield a record with the
additional component generators, which holds the list of generators.

Example
gap> info:= OneAtlasGeneratingSetInfo("A5", NrMovedPoints, 10);

rec(charactername := "1a+4a+5a", constituents := [1, 4, 5],

contents := "core", groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p10B0.m1", "A5G1-p10B0.m2"], 1, 10],

isPrimitive := true, maxnr := 3, p := 10, rankAction := 3,

repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",

standardization := 1, transitivity := 1, type := "perm")

gap> info2:= AtlasGenerators(info);

rec(charactername := "1a+4a+5a", constituents := [1, 4, 5],

contents := "core",

generators := [(2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9)],

groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p10B0.m1", "A5G1-p10B0.m2"], 1, 10],

isPrimitive := true, maxnr := 3, p := 10, rankAction := 3,

repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",

standardization := 1, transitivity := 1, type := "perm")

gap> info2.generators;

[(2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9)]

The record info appears as the value of the attribute AtlasRepInfoRecord (3.5.10) in groups
that are returned by AtlasGroup (3.5.8).

Example
gap> g:= AtlasGroup("A5", NrMovedPoints, 10);;

gap> AtlasRepInfoRecord(g);

rec(charactername := "1a+4a+5a", constituents := [1, 4, 5],

contents := "core", groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p10B0.m1", "A5G1-p10B0.m2"], 1, 10],

isPrimitive := true, maxnr := 3, p := 10, rankAction := 3,

repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",

standardization := 1, transitivity := 1, type := "perm")

2.3.2 Straight Line Programs

For computing certain group elements from standard generators, such as generators of a subgroup
or class representatives, AtlasRep uses straight line programs, see (Reference: Straight Line Pro-
grams). Essentially this means to evaluate words in the generators, which is similar to MappedWord

(Reference: MappedWord) but can be more efficient.
It can be useful to deal with these straight line programs, see AtlasProgram (3.5.4). For example,

an automorphism α , say, of the group G, if available in AtlasRep, is given by a straight line program

AtlasRep — A GAP 4 Package 23

that defines the images of standard generators of G. This way, one can for example compute the image
of a subgroup U of G under α by first applying the straight line program for α to standard generators
of G, and then applying the straight line program for the restriction from G to U .

Example
gap> prginfo:= AtlasProgramInfo("A5", "maxes", 1);

rec(groupname := "A5", identifier := ["A5", "A5G1-max1W1", 1],

size := 12, standardization := 1, subgroupname := "A4",

version := "1")

gap> prg:= AtlasProgram(prginfo.identifier);

rec(groupname := "A5", identifier := ["A5", "A5G1-max1W1", 1],

program := <straight line program>, size := 12,

standardization := 1, subgroupname := "A4", version := "1")

gap> Display(prg.program);

input:

r:= [g1, g2];

program:

r[3]:= r[1]*r[2];

r[4]:= r[2]*r[1];

r[5]:= r[3]*r[3];

r[1]:= r[5]*r[4];

return values:

[r[1], r[2]]

gap> ResultOfStraightLineProgram(prg.program, info2.generators);

[(1,10)(2,3)(4,9)(7,8), (1,2,3)(4,6,7)(5,8,9)]

2.4 Examples of Using the AtlasRep Package

2.4.1 Example: Class Representatives

First we show the computation of class representatives of the Mathieu group M11, in a 2-modular
matrix representation. We start with the ordinary and Brauer character tables of this group.

Example
gap> tbl:= CharacterTable("M11");;

gap> modtbl:= tbl mod 2;;

gap> CharacterDegrees(modtbl);

[[1, 1], [10, 1], [16, 2], [44, 1]]

The output of CharacterDegrees (Reference: CharacterDegrees) means that the 2-modular
irreducibles of M11 have degrees 1, 10, 16, 16, and 44.

Using DisplayAtlasInfo (3.5.1), we find out that matrix generators for the irreducible 10-
dimensional representation are available in the database.

Example
gap> DisplayAtlasInfo("M11", Characteristic, 2);

Representations for G = M11: (all refer to std. generators 1)

6: G <= GL(10,2) character 10a

7: G <= GL(32,2) character 16ab

8: G <= GL(44,2) character 44a

16: G <= GL(16a,4) character 16a

17: G <= GL(16b,4) character 16b

AtlasRep — A GAP 4 Package 24

So we decide to work with this representation. We fetch the generators and compute the list of
class representatives of M11 in the representation. The ordering of class representatives is the same
as that in the character table of the ATLAS of Finite Groups ([CCN+85]), which coincides with the
ordering of columns in the GAP table we have fetched above.

Example
gap> info:= OneAtlasGeneratingSetInfo("M11", Characteristic, 2,

> Dimension, 10);;

gap> gens:= AtlasGenerators(info.identifier);;

gap> ccls:= AtlasProgram("M11", gens.standardization, "classes");

rec(groupname := "M11", identifier := ["M11", "M11G1-cclsW1", 1],

outputs := ["1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A",

"11B"], program := <straight line program>,

standardization := 1, version := "1")

gap> reps:= ResultOfStraightLineProgram(ccls.program, gens.generators);;

If we would need only a few class representatives, we could use the GAP library function
RestrictOutputsOfSLP (Reference: RestrictOutputsOfSLP) to create a straight line program that
computes only specified outputs. Here is an example where only the class representatives of order
eight are computed.

Example
gap> ord8prg:= RestrictOutputsOfSLP(ccls.program,

> Filtered([1 .. 10], i -> ccls.outputs[i][1] = '8'));

<straight line program>

gap> ord8reps:= ResultOfStraightLineProgram(ord8prg, gens.generators);;

gap> List(ord8reps, m -> Position(reps, m));

[7, 8]

Let us check that the class representatives have the right orders.
Example

gap> List(reps, Order) = OrdersClassRepresentatives(tbl);

true

From the class representatives, we can compute the Brauer character we had started with. This
Brauer character is defined on all classes of the 2-modular table. So we first pick only those repre-
sentatives, using the GAP function GetFusionMap (Reference: GetFusionMap); in this situation, it
returns the class fusion from the Brauer table into the ordinary table.

Example
gap> fus:= GetFusionMap(modtbl, tbl);

[1, 3, 5, 9, 10]

gap> modreps:= reps{ fus };;

Then we call the GAP function BrauerCharacterValue (Reference: BrauerCharacterValue),
which computes the Brauer character value from the matrix given.

Example
gap> char:= List(modreps, BrauerCharacterValue);

[10, 1, 0, -1, -1]

gap> Position(Irr(modtbl), char);

2

AtlasRep — A GAP 4 Package 25

2.4.2 Example: Permutation and Matrix Representations

The second example shows the computation of a permutation representation from a matrix representa-
tion. We work with the 10-dimensional representation used above, and consider the action on the 210

vectors of the underlying row space.
Example

gap> grp:= Group(gens.generators);;

gap> v:= GF(2)^10;;

gap> orbs:= Orbits(grp, AsList(v));;

gap> List(orbs, Length);

[1, 396, 55, 330, 66, 165, 11]

We see that there are six nontrivial orbits, and we can compute the permutation actions on these
orbits directly using Action (Reference: Action homomorphisms). However, for larger examples,
one cannot write down all orbits on the row space, so one has to use another strategy if one is interested
in a particular orbit.

Let us assume that we are interested in the orbit of length 11. The point stabilizer is the first
maximal subgroup of M11, thus the restriction of the representation to this subgroup has a nontrivial
fixed point space. This restriction can be computed using the AtlasRep package.

Example
gap> gens:= AtlasGenerators("M11", 6, 1);;

Now computing the fixed point space is standard linear algebra.
Example

gap> id:= IdentityMat(10, GF(2));;

gap> sub1:= Subspace(v, NullspaceMat(gens.generators[1] - id));;

gap> sub2:= Subspace(v, NullspaceMat(gens.generators[2] - id));;

gap> fix:= Intersection(sub1, sub2);

<vector space of dimension 1 over GF(2)>

The final step is of course the computation of the permutation action on the orbit.
Example

gap> orb:= Orbit(grp, Basis(fix)[1]);;

gap> act:= Action(grp, orb);; Print(act, "\n");

Group([(1, 2)(4, 6)(5, 8)(7,10), (1, 3, 5, 9)(2, 4, 7,11)])

Note that this group is not equal to the group obtained by fetching the permutation representation
from the database. This is due to a different numbering of the points, thus the groups are permutation
isomorphic, that is, they are conjugate in the symmetric group on eleven points.

Example
gap> permgrp:= Group(AtlasGenerators("M11", 1).generators);;

gap> Print(permgrp, "\n");

Group([(2,10)(4,11)(5, 7)(8, 9), (1,4,3,8)(2,5,6,9)])

gap> permgrp = act;

false

gap> IsConjugate(SymmetricGroup(11), permgrp, act);

true

AtlasRep — A GAP 4 Package 26

2.4.3 Example: Outer Automorphisms

The straight line programs for applying outer automorphisms to standard generators can of course be
used to define the automorphisms themselves as GAP mappings.

Example
gap> DisplayAtlasInfo("G2(3)", IsStraightLineProgram);

Programs for G = G2(3): (all refer to std. generators 1)

- class repres.

- presentation

- repr. cyc. subg.

- std. gen. checker

- automorphisms:

2

- maxes (all 10):

1: U3(3).2

2: U3(3).2

3: (3^(1+2)+x3^2):2S4

4: (3^(1+2)+x3^2):2S4

5: L3(3).2

6: L3(3).2

7: L2(8).3

8: 2^3.L3(2)

9: L2(13)

10: 2^(1+4)+:3^2.2

gap> prog:= AtlasProgram("G2(3)", "automorphism", "2").program;;

gap> info:= OneAtlasGeneratingSetInfo("G2(3)", Dimension, 7);;

gap> gens:= AtlasGenerators(info).generators;;

gap> imgs:= ResultOfStraightLineProgram(prog, gens);;

If we are not suspicious whether the script really describes an automorphism then we should tell
this to GAP, in order to avoid the expensive checks of the properties of being a homomorphism and
bijective (see Section (Reference: Creating Group Homomorphisms)). This looks as follows.

Example
gap> g:= Group(gens);;

gap> aut:= GroupHomomorphismByImagesNC(g, g, gens, imgs);;

gap> SetIsBijective(aut, true);

If we are suspicious whether the script describes an automorphism then we might have the idea to
check it with GAP, as follows.

Example
gap> aut:= GroupHomomorphismByImages(g, g, gens, imgs);;

gap> IsBijective(aut);

true

(Note that even for a comparatively small group such as G2(3), this was a difficult task for GAP
before version 4.3.)

Often one can form images under an automorphism α , say, without creating the homomorphism
object. This is obvious for the standard generators of the group G themselves, but also for generators
of a maximal subgroup M computed from standard generators of G, provided that the straight line

AtlasRep — A GAP 4 Package 27

programs in question refer to the same standard generators. Note that the generators of M are given
by evaluating words in terms of standard generators of G, and their images under α can be obtained
by evaluating the same words at the images under α of the standard generators of G.

Example
gap> max1:= AtlasProgram("G2(3)", 1).program;;

gap> mgens:= ResultOfStraightLineProgram(max1, gens);;

gap> comp:= CompositionOfStraightLinePrograms(max1, prog);;

gap> mimgs:= ResultOfStraightLineProgram(comp, gens);;

The list mgens is the list of generators of the first maximal subgroup of G2(3), mimgs is the
list of images under the automorphism given by the straight line program prog. Note that applying
the program returned by CompositionOfStraightLinePrograms (Reference: CompositionOfS-
traightLinePrograms) means to apply first prog and then max1. Since we have already constructed
the GAP object representing the automorphism, we can check whether the results are equal.

Example
gap> mimgs = List(mgens, x -> x^aut);

true

However, it should be emphasized that using aut requires a huge machinery of computations be-
hind the scenes, whereas applying the straight line programs prog and max1 involves only elementary
operations with the generators. The latter is feasible also for larger groups, for which constructing the
GAP automorphism might be too hard.

2.4.4 Example: Using Semi-presentations and Black Box Programs

Let us suppose that we want to restrict a representation of the Mathieu group M12 to a non-maximal
subgroup of the type L2(11). The idea is that this subgroup can be found as a maximal subgroup of a
maximal subgroup of the type M11, which is itself maximal in M12. For that, we fetch a representation
of M12 and use a straight line program for restricting it to the first maximal subgroup, which has the
type M11.

Example
gap> info:= OneAtlasGeneratingSetInfo("M12", NrMovedPoints, 12);

rec(charactername := "1a+11a", constituents := [1, 2],

contents := "core", groupname := "M12", id := "a",

identifier := ["M12", ["M12G1-p12aB0.m1", "M12G1-p12aB0.m2"], 1,

12], isPrimitive := true, maxnr := 1, p := 12, rankAction := 2,

repname := "M12G1-p12aB0", repnr := 1, size := 95040,

stabilizer := "M11", standardization := 1, transitivity := 5,

type := "perm")

gap> gensM12:= AtlasGenerators(info.identifier);;

gap> restM11:= AtlasProgram("M12", "maxes", 1);;

gap> gensM11:= ResultOfStraightLineProgram(restM11.program,

> gensM12.generators);

[(3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3)]

Now we cannot simply apply a straight line program for a group to some generators, since they are
not necessarily standard generators of the group. We check this property using a semi-presentation
for M11, see 6.1.7.

AtlasRep — A GAP 4 Package 28

Example
gap> checkM11:= AtlasProgram("M11", "check");

rec(groupname := "M11", identifier := ["M11", "M11G1-check1", 1, 1]

, program := <straight line decision>, standardization := 1,

version := "1")

gap> ResultOfStraightLineDecision(checkM11.program, gensM11);

true

So we are lucky that applying the appropriate program for M11 will give us the required generators
for L2(11).

Example
gap> restL211:= AtlasProgram("M11", "maxes", 2);;

gap> gensL211:= ResultOfStraightLineProgram(restL211.program, gensM11);

[(3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10)]

gap> G:= Group(gensL211);; Size(G); IsSimple(G);

660

true

In this case, we could also use the information that is stored about M11, as follows.
Example

gap> DisplayAtlasInfo("M11", IsStraightLineProgram);

Programs for G = M11: (all refer to std. generators 1)

- presentation

- repr. cyc. subg.

- std. gen. finder

- class repres.:

(direct)

(composed)

- maxes (all 5):

1: A6.2_3

1: A6.2_3 (std. 1)

2: L2(11)

2: L2(11) (std. 1)

3: 3^2:Q8.2

4: S5

4: S5 (std. 1)

5: 2.S4

- standardizations of maxes:

from 1st max., version 1 to A6.2_3, std. 1

from 2nd max., version 1 to L2(11), std. 1

from 4th max., version 1 to A5.2, std. 1

- std. gen. checker:

(check)

(pres)

The entry “std.1” in the line about the maximal subgroup of type L2(11) means that a straight line
program for computing standard generators (in standardization 1) of the subgroup. This program can
be fetched as follows.

AtlasRep — A GAP 4 Package 29

Example
gap> restL211std:= AtlasProgram("M11", "maxes", 2, 1);;

gap> ResultOfStraightLineProgram(restL211std.program, gensM11);

[(3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10)]

We see that we get the same generators for the subgroup as above. (In fact the second approach
first applies the same program as is given by restL211.program, and then applies a program to the
results that does nothing.)

Usually representations are not given in terms of standard generators. For example, let us take the
M11 type group returned by the GAP function MathieuGroup (Reference: MathieuGroup).

Example
gap> G:= MathieuGroup(11);;

gap> gens:= GeneratorsOfGroup(G);

[(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6)]

gap> ResultOfStraightLineDecision(checkM11.program, gens);

false

If we want to compute an L2(11) type subgroup of this group, we can use a black box program for
computing standard generators, and then apply the straight line program for computing the restriction.

Example
gap> find:= AtlasProgram("M11", "find");

rec(groupname := "M11", identifier := ["M11", "M11G1-find1", 1, 1],

program := <black box program>, standardization := 1,

version := "1")

gap> stdgens:= ResultOfBBoxProgram(find.program, Group(gens));;

gap> List(stdgens, Order);

[2, 4]

gap> ResultOfStraightLineDecision(checkM11.program, stdgens);

true

gap> gensL211:= ResultOfStraightLineProgram(restL211.program, stdgens);;

gap> List(gensL211, Order);

[2, 3]

gap> G:= Group(gensL211);; Size(G); IsSimple(G);

660

true

Note that applying the black box program several times may yield different group elements, be-
cause computations of random elements are involved, see ResultOfBBoxProgram (6.2.4). All what
the black box program promises is to construct standard generators, and these are defined only up to
conjugacy in the automorphism group of the group in question.

2.4.5 Example: Using the GAP Library of Tables of Marks

The GAP Library of Tables of Marks (the GAP package TomLib, [NMP18]) provides, for many
almost simple groups, information for constructing representatives of all conjugacy classes of sub-
groups. If this information is compatible with the standard generators of the ATLAS of Group Repre-
sentations then we can use it to restrict any representation from the ATLAS to prescribed subgroups.
This is useful in particular for those subgroups for which the ATLAS of Group Representations itself
does not contain a straight line program.

AtlasRep — A GAP 4 Package 30

Example
gap> tom:= TableOfMarks("A5");

TableOfMarks("A5")

gap> info:= StandardGeneratorsInfo(tom);

[rec(ATLAS := true, description := "|a|=2, |b|=3, |ab|=5",

generators := "a, b",

script := [[1, 2], [2, 3], [1, 1, 2, 1, 5]],

standardization := 1)]

The true value of the component ATLAS indicates that the information stored on tom refers to the
standard generators of type 1 in the ATLAS of Group Representations.

We want to restrict a 4-dimensional integral representation of A5 to a Sylow 2 subgroup of A5, and
use RepresentativeTomByGeneratorsNC (Reference: RepresentativeTomByGeneratorsNC) for
that.

Example
gap> info:= OneAtlasGeneratingSetInfo("A5", Ring, Integers, Dimension, 4);;

gap> stdgens:= AtlasGenerators(info.identifier);

rec(charactername := "4a", constituents := [4], contents := "core",

dim := 4,

generators :=

[

[[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0],

[-1, -1, -1, -1]],

[[0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0],

[1, 0, 0, 0]]], groupname := "A5", id := "",

identifier := ["A5", "A5G1-Zr4B0.g", 1, 4],

repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60,

standardization := 1, type := "matint")

gap> orders:= OrdersTom(tom);

[1, 2, 3, 4, 5, 6, 10, 12, 60]

gap> pos:= Position(orders, 4);

4

gap> sub:= RepresentativeTomByGeneratorsNC(tom, pos, stdgens.generators);

<matrix group of size 4 with 2 generators>

gap> GeneratorsOfGroup(sub);

[[[1, 0, 0, 0], [-1, -1, -1, -1], [0, 0, 0, 1],

[0, 0, 1, 0]],

[[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0],

[-1, -1, -1, -1]]]

2.4.6 Example: Index 770 Subgroups in M22

The sporadic simple Mathieu group M22 contains a unique class of subgroups of index 770 (and order
576). This can be seen for example using GAP’s Library of Tables of Marks.

Example
gap> tom:= TableOfMarks("M22");

TableOfMarks("M22")

gap> subord:= Size(UnderlyingGroup(tom)) / 770;

576

gap> ord:= OrdersTom(tom);;

AtlasRep — A GAP 4 Package 31

gap> tomstabs:= Filtered([1 .. Length(ord)], i -> ord[i] = subord);

[144]

The permutation representation of M22 on the right cosets of such a subgroup S is contained in the
ATLAS of Group Representations.

Example
gap> DisplayAtlasInfo("M22", NrMovedPoints, 770);

Representations for G = M22: (all refer to std. generators 1)

12: G <= Sym(770) rank 9, on cosets of (A4xA4):4 < 2^4:A6

Now we verify the information shown about the point stabilizer and about the maximal overgroups
of S in M22.

Example
gap> maxtom:= MaximalSubgroupsTom(tom);

[[155, 154, 153, 152, 151, 150, 146, 145],

[22, 77, 176, 176, 231, 330, 616, 672]]

gap> List(tomstabs, i -> List(maxtom[1], j -> ContainedTom(tom, i, j)));

[[0, 10, 0, 0, 0, 0, 0, 0]]

We see that the only maximal subgroups of M22 that contain S have index 77 in M22. According to
the ATLAS of Finite Groups, these maximal subgroups have the structure 24 : A6. From that and from
the structure of A6, we conclude that S has the structure 24 : (32 : 4).

Alternatively, we look at the permutation representation of degree 770. We fetch it from the
ATLAS of Group Representations. There is exactly one nontrivial block system for this representation,
with 77 blocks of length 10.

Example
gap> g:= AtlasGroup("M22", NrMovedPoints, 770);

<permutation group of size 443520 with 2 generators>

gap> allbl:= AllBlocks(g);;

gap> List(allbl, Length);

[10]

Furthermore, GAP computes that the point stabilizer S has the structure (A4 ×A4) : 4.
Example

gap> stab:= Stabilizer(g, 1);;

gap> StructureDescription(stab : nice);

"(A4 x A4) : C4"

gap> blocks:= Orbit(g, allbl[1], OnSets);;

gap> act:= Action(g, blocks, OnSets);;

gap> StructureDescription(Stabilizer(act, 1));

"(C2 x C2 x C2 x C2) : A6"

2.4.7 Example: Index 462 Subgroups in M22

The ATLAS of Group Representations contains three degree 462 permutation representations of the
group M22.

AtlasRep — A GAP 4 Package 32

Example
gap> DisplayAtlasInfo("M22", NrMovedPoints, 462);

Representations for G = M22: (all refer to std. generators 1)

7: G <= Sym(462a) rank 5, on cosets of 2^4:A5 < 2^4:A6

8: G <= Sym(462b) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:S5

9: G <= Sym(462c) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:A6

The point stabilizers in these three representations have the structure 24 : A5. Using GAP’s Library
of Tables of Marks, we can show that these stabilizers are exactly the three classes of subgroups of
order 960 in M22. For that, we first verify that the group generators stored in GAP’s table of marks
coincide with the standard generators used by the ATLAS of Group Representations.

Example
gap> tom:= TableOfMarks("M22");

TableOfMarks("M22")

gap> genstom:= GeneratorsOfGroup(UnderlyingGroup(tom));;

gap> checkM22:= AtlasProgram("M22", "check");

rec(groupname := "M22", identifier := ["M22", "M22G1-check1", 1, 1]

, program := <straight line decision>, standardization := 1,

version := "1")

gap> ResultOfStraightLineDecision(checkM22.program, genstom);

true

There are indeed three classes of subgroups of order 960 in M22.
Example

gap> ord:= OrdersTom(tom);;

gap> tomstabs:= Filtered([1 .. Length(ord)], i -> ord[i] = 960);

[147, 148, 149]

Now we compute representatives of these three classes in the three representations 462a, 462b,
and 462c. We see that each of the three classes occurs as a point stabilizer in exactly one of the three
representations.

Example
gap> atlasreps:= AllAtlasGeneratingSetInfos("M22", NrMovedPoints, 462);

[rec(charactername := "1a+21a+55a+154a+231a",

constituents := [1, 2, 5, 7, 9], contents := "core",

groupname := "M22", id := "a",

identifier :=

["M22", ["M22G1-p462aB0.m1", "M22G1-p462aB0.m2"], 1, 462],

isPrimitive := false, p := 462, rankAction := 5,

repname := "M22G1-p462aB0", repnr := 7, size := 443520,

stabilizer := "2^4:A5 < 2^4:A6", standardization := 1,

transitivity := 1, type := "perm"),

rec(charactername := "1a+21a^2+55a+154a+210a",

constituents := [1, [2, 2], 5, 7, 8], contents := "core",

groupname := "M22", id := "b",

identifier :=

["M22", ["M22G1-p462bB0.m1", "M22G1-p462bB0.m2"], 1, 462],

isPrimitive := false, p := 462, rankAction := 8,

repname := "M22G1-p462bB0", repnr := 8, size := 443520,

AtlasRep — A GAP 4 Package 33

stabilizer := "2^4:A5 < L3(4), 2^4:S5", standardization := 1,

transitivity := 1, type := "perm"),

rec(charactername := "1a+21a^2+55a+154a+210a",

constituents := [1, [2, 2], 5, 7, 8], contents := "core",

groupname := "M22", id := "c",

identifier :=

["M22", ["M22G1-p462cB0.m1", "M22G1-p462cB0.m2"], 1, 462],

isPrimitive := false, p := 462, rankAction := 8,

repname := "M22G1-p462cB0", repnr := 9, size := 443520,

stabilizer := "2^4:A5 < L3(4), 2^4:A6", standardization := 1,

transitivity := 1, type := "perm")]

gap> atlasreps:= List(atlasreps, AtlasGroup);;

gap> tomstabreps:= List(atlasreps, G -> List(tomstabs,

> i -> RepresentativeTomByGenerators(tom, i, GeneratorsOfGroup(G))));;

gap> List(tomstabreps, x -> List(x, NrMovedPoints));

[[462, 462, 461], [460, 462, 462], [462, 461, 462]]

More precisely, we see that the point stabilizers in the three representations 462a, 462b, 462c lie
in the subgroup classes 149, 147, 148, respectively, of the table of marks.

The point stabilizers in the representations 462b and 462c are isomorphic, but not isomorphic
with the point stabilizer in 462a.

Example
gap> stabs:= List(atlasreps, G -> Stabilizer(G, 1));;

gap> List(stabs, IdGroup);

[[960, 11358], [960, 11357], [960, 11357]]

gap> List(stabs, PerfectIdentification);

[[960, 2], [960, 1], [960, 1]]

The three representations are imprimitive. The containment of the point stabilizers in maximal
subgroups of M22 can be computed using the table of marks of M22.

Example
gap> maxtom:= MaximalSubgroupsTom(tom);

[[155, 154, 153, 152, 151, 150, 146, 145],

[22, 77, 176, 176, 231, 330, 616, 672]]

gap> List(tomstabs, i -> List(maxtom[1], j -> ContainedTom(tom, i, j)));

[[21, 0, 0, 0, 1, 0, 0, 0], [21, 6, 0, 0, 0, 0, 0, 0],

[0, 6, 0, 0, 0, 0, 0, 0]]

We see:

• The point stabilizers in 462a (subgroups in the class 149 of the table of marks) are contained
only in maximal subgroups in class 154; these groups have the structure 24 : A6.

• The point stabilizers in 462b (subgroups in the class 147) are contained in maximal subgroups
in the classes 155 and 151; these groups have the structures L3(4) and 24 : S5, respectively.

• The point stabilizers in 462c (subgroups in the class 148) are contained in maximal subgroups
in the classes 155 and 154.

We identify the supergroups of the point stabilizers by computing the block systems.

AtlasRep — A GAP 4 Package 34

Example
gap> bl:= List(atlasreps, AllBlocks);;

gap> List(bl, Length);

[1, 3, 2]

gap> List(bl, l -> List(l, Length));

[[6], [21, 21, 2], [21, 6]]

Note that the two block systems with blocks of length 21 for 462b belong to the same supergroups
(of the type L3(4)); each of these subgroups fixes two different subsets of 21 points.

The representation 462a is multiplicity-free, that is, it splits into a sum of pairwise nonisomorphic
irreducible representations. This can be seen from the fact that the rank of this permutation represen-
tation (that is, the number of orbits of the point stabilizer) is five; each permutation representation with
this property is multiplicity-free.

The other two representations have rank eight. We have seen the ranks in the overview that was
shown by DisplayAtlasInfo (3.5.1) in the beginning. Now we compute the ranks from the permu-
tation groups.

Example
gap> List(atlasreps, RankAction);

[5, 8, 8]

In fact the two representations 462b and 462c have the same permutation character. We check this
by computing the possible permutation characters of degree 462 for M22, and decomposing them into
irreducible characters, using the character table from GAP’s Character Table Library.

Example
gap> t:= CharacterTable("M22");;

gap> perms:= PermChars(t, 462);

[Character(CharacterTable("M22"),

[462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0, 0]),

Character(CharacterTable("M22"),

[462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 0, 0])]

gap> MatScalarProducts(t, Irr(t), perms);

[[1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0],

[1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0]]

In particular, we see that the rank eight characters are not multiplicity-free.

Chapter 3

The User Interface of the AtlasRep
Package

The user interface is the part of the GAP interface that allows one to display information about the
current contents of the database and to access individual data (perhaps by downloading them, see
Section 4.2.1). The corresponding functions are described in this chapter. See Section 2.4 for some
small examples how to use the functions of the interface.

Data extensions of the AtlasRep package are regarded as another part of the GAP interface, they
are described in Chapter 5. Finally, the low level part of the interface is described in Chapter 7.

3.1 Accessing vs. Constructing Representations

Note that accessing the data means in particular that it is not the aim of this package to con-
struct representations from known ones. For example, if at least one permutation representa-
tion for a group G is stored but no matrix representation in a positive characteristic p, say, then
OneAtlasGeneratingSetInfo (3.5.6) returns fail when it is asked for a description of an avail-
able set of matrix generators for G in characteristic p, although such a representation can be obtained
by reduction modulo p of an integral matrix representation, which in turn can be constructed from any
permutation representation.

3.2 Group Names Used in the AtlasRep Package

When you access data via the AtlasRep package, you specify the group in question by an admissible
name. Thus it is essential to know these names, which are called the GAP names of the group in the
following.

For a group G, say, whose character table is available in GAP’s Character Table Library (see
[Bre22]), the admissible names of G are the admissible names of this character table. One such
name is the Identifier (Reference: Identifier for character tables) value of the character table,
see (CTblLib: Admissible Names for Character Tables in CTblLib). This name is usually very
similar to the name used in the ATLAS of Finite Groups [CCN+85]. For example, "M22" is a GAP
name of the Mathieu group M22, "12_1.U4(3).2_1" is a GAP name of 121.U4(3).21, the two names
"S5" and "A5.2" are GAP names of the symmetric group S5, and the two names "F3+" and "Fi24'"

are GAP names of the simple Fischer group Fi′24.

35

AtlasRep — A GAP 4 Package 36

When a GAP name is required as an input of a package function, this input is case insensitive. For
example, both "A5" and "a5" are valid arguments of DisplayAtlasInfo (3.5.1).

Internally, for example as part of filenames (see Section 7.6), the package uses names that may
differ from the GAP names; these names are called ATLAS-file names. For example, "A5", "TE62",
and "F24" are ATLAS-file names. Of these, only "A5" is also a GAP name, but the other two are not;
corresponding GAP names are "2E6(2)" and "Fi24'", respectively.

3.3 Standard Generators Used in the AtlasRep Package

For the general definition of standard generators of a group, see [Wil96].
Several different standard generators may be defined for a group, the definitions for each group

that occurs in the ATLAS of Group Representations can be found at
http://atlas.math.rwth-aachen.de/Atlas/v3.
When one specifies the standardization, the i-th set of standard generators is denoted by the number

i. Note that when more than one set of standard generators is defined for a group, one must be careful
to use compatible standardization. For example, the straight line programs, straight line decisions and
black box programs in the database refer to a specific standardization of their inputs. That is, a straight
line program for computing generators of a certain subgroup of a group G is defined only for a specific
set of standard generators of G, and applying the program to matrix or permutation generators of G
but w. r. t. a different standardization may yield unpredictable results. Therefore the results returned
by the functions described in this chapter contain information about the standardizations they refer to.

3.4 Class Names Used in the AtlasRep Package

For each straight line program (see AtlasProgram (3.5.4)) that is used to compute lists of class repre-
sentatives, it is essential to describe the classes in which these elements lie. Therefore, in these cases
the records returned by the function AtlasProgram (3.5.4) contain a component outputs with value
a list of class names.

Currently we define these class names only for simple groups and certain extensions of simple
groups, see Section 3.4.1. The function AtlasClassNames (3.4.2) can be used to compute the list of
class names from the character table in the GAP Library.

3.4.1 Definition of ATLAS Class Names

For the definition of class names of an almost simple group, we assume that the ordinary character
tables of all nontrivial normal subgroups are shown in the ATLAS of Finite Groups [CCN+85].

Each class name is a string consisting of the element order of the class in question followed by
a combination of capital letters, digits, and the characters ' and - (starting with a capital letter). For
example, 1A, 12A1, and 3B' denote the class that contains the identity element, a class of element
order 12, and a class of element order 3, respectively.

1. For the table of a simple group, the class names are the same as returned by the two argument
version of the GAP function ClassNames (Reference: ClassNames), cf. [CCN+85, Chapter 7,
Section 5]: The classes are arranged w. r. t. increasing element order and for each element order
w. r. t. decreasing centralizer order, the conjugacy classes that contain elements of order n are

http://atlas.math.rwth-aachen.de/Atlas/v3

AtlasRep — A GAP 4 Package 37

named nA, nB, nC, . . .; the alphabet used here is potentially infinite, and reads A, B, C, . . ., Z, A1,
B1, . . ., A2, B2,

For example, the classes of the alternating group A5 have the names 1A, 2A, 3A, 5A, and 5B.

2. Next we consider the case of an upward extension G.A of a simple group G by a cyclic group of
order A. The ATLAS defines class names for each element g of G.A only w. r. t. the group G.a,
say, that is generated by G and g; namely, there is a power of g (with the exponent coprime to
the order of g) for which the class has a name of the same form as the class names for simple
groups, and the name of the class of g w. r. t. G.a is then obtained from this name by appending
a suitable number of dashes '. So dashed class names refer exactly to those classes that are not
printed in the ATLAS.

For example, those classes of the symmetric group S5 that do not lie in A5 have the names 2B,
4A, and 6A. The outer classes of the group L2(8).3 have the names 3B, 6A, 9D, and 3B', 6A',
9D'. The outer elements of order 5 in the group Sz(32).5 lie in the classes with names 5B, 5B',
5B�, and 5B�'.

In the group G.A, the class of g may fuse with other classes. The name of the class of g in G.A
is obtained from the names of the involved classes of G.a by concatenating their names after
removing the element order part from all of them except the first one.

For example, the elements of order 9 in the group L2(27).6 are contained in the subgroup
L2(27).3 but not in L2(27). In L2(27).3, they lie in the classes 9A, 9A', 9B, and 9B'; in L2(27).6,
these classes fuse to 9AB and 9A'B'.

3. Now we define class names for general upward extensions G.A of a simple group G. Each
element g of such a group lies in an upward extension G.a by a cyclic group, and the class names
w. r. t. G.a are already defined. The name of the class of g in G.A is obtained by concatenating
the names of the classes in the orbit of G.A on the classes of cyclic upward extensions of G,
after ordering the names lexicographically and removing the element order part from all of
them except the first one. An exception is the situation where dashed and non-dashed class
names appear in an orbit; in this case, the dashed names are omitted.

For example, the classes 21A and 21B of the group U3(5).3 fuse in U3(5).S3 to the class 21AB,
and the class 2B of U3(5).2 fuses with the involution classes 2B', 2B� in the groups U3(5).2′

and U3(5).2′′ to the class 2B of U3(5).S3.

It may happen that some names in the outputs component of a record returned by
AtlasProgram (3.5.4) do not uniquely determine the classes of the corresponding elements.
For example, the (algebraically conjugate) classes 39A and 39B of the group Co1 have not been
distinguished yet. In such cases, the names used contain a minus sign -, and mean “one of
the classes in the range described by the name before and the name after the minus sign”; the
element order part of the name does not appear after the minus sign. So the name 39A-B for the
group Co1 means 39A or 39B, and the name 20A-B�' for the group Sz(32).5 means one of the
classes of element order 20 in this group (these classes lie outside the simple group Sz).

4. For a downward extension m.G.A of an almost simple group G.A by a cyclic group of order m,
let π denote the natural epimorphism from m.G.A onto G.A. Each class name of m.G.A has the
form nX_0, nX_1 etc., where nX is the class name of the image under π , and the indices 0, 1 etc.
are chosen according to the position of the class in the lifting order rows for G, see [CCN+85,
Chapter 7, Section 7, and the example in Section 8]).

AtlasRep — A GAP 4 Package 38

For example, if m = 6 then 1A_1 and 1A_5 denote the classes containing the generators of the
kernel of π , that is, central elements of order 6.

3.4.2 AtlasClassNames

▷ AtlasClassNames(tbl) (function)

Returns: a list of class names.
Let tbl be the ordinary or modular character table of a group G, say, that is almost simple

or a downward extension of an almost simple group and such that tbl is an ATLAS table from
the GAP Character Table Library, according to its InfoText (Reference: InfoText) value. Then
AtlasClassNames returns the list of class names for G, as defined in Section 3.4.1. The ordering of
class names is the same as the ordering of the columns of tbl .

(The function may work also for character tables that are not ATLAS tables, but then clearly the
class names returned are somewhat arbitrary.)

Example
gap> AtlasClassNames(CharacterTable("L3(4).3"));

["1A", "2A", "3A", "4ABC", "5A", "5B", "7A", "7B", "3B", "3B'",

"3C", "3C'", "6B", "6B'", "15A", "15A'", "15B", "15B'", "21A",

"21A'", "21B", "21B'"]

gap> AtlasClassNames(CharacterTable("U3(5).2"));

["1A", "2A", "3A", "4A", "5A", "5B", "5CD", "6A", "7AB", "8AB",

"10A", "2B", "4B", "6D", "8C", "10B", "12B", "20A", "20B"]

gap> AtlasClassNames(CharacterTable("L2(27).6"));

["1A", "2A", "3AB", "7ABC", "13ABC", "13DEF", "14ABC", "2B", "4A",

"26ABC", "26DEF", "28ABC", "28DEF", "3C", "3C'", "6A", "6A'",

"9AB", "9A'B'", "6B", "6B'", "12A", "12A'"]

gap> AtlasClassNames(CharacterTable("L3(4).3.2_2"));

["1A", "2A", "3A", "4ABC", "5AB", "7A", "7B", "3B", "3C", "6B",

"15A", "15B", "21A", "21B", "2C", "4E", "6E", "8D", "14A", "14B"]

gap> AtlasClassNames(CharacterTable("3.A6"));

["1A_0", "1A_1", "1A_2", "2A_0", "2A_1", "2A_2", "3A_0", "3B_0",

"4A_0", "4A_1", "4A_2", "5A_0", "5A_1", "5A_2", "5B_0", "5B_1",

"5B_2"]

gap> AtlasClassNames(CharacterTable("2.A5.2"));

["1A_0", "1A_1", "2A_0", "3A_0", "3A_1", "5AB_0", "5AB_1", "2B_0",

"4A_0", "4A_1", "6A_0", "6A_1"]

3.4.3 AtlasCharacterNames

▷ AtlasCharacterNames(tbl) (function)

Returns: a list of character names.
Let tbl be the ordinary or modular character table of a simple group. AtlasCharacterNames

returns a list of strings, the i-th entry being the name of the i-th irreducible character of tbl ; this name
consists of the degree of this character followed by distinguishing lowercase letters.

Example
gap> AtlasCharacterNames(CharacterTable("A5"));

["1a", "3a", "3b", "4a", "5a"]

AtlasRep — A GAP 4 Package 39

3.5 Accessing Data via AtlasRep

The examples shown in this section refer to the situation that no extensions have been notified, and to
a perhaps outdated table of contents. That is, the current version of the database may contain more
information than is shown here.

3.5.1 DisplayAtlasInfo

▷ DisplayAtlasInfo([listofnames][,] [std][,] ["contents", sources][,] [...])

(function)

▷ DisplayAtlasInfo(gapname[, std][, ...]) (function)

This function lists the information available via the AtlasRep package, for the given input.
There are essentially three ways of calling this function.

• If there is no argument or if the first argument is a list listofnames of strings that are GAP
names of groups, DisplayAtlasInfo shows an overview of the known information.

• If the first argument is a string gapname that is a GAP name of a group, DisplayAtlasInfo
shows an overview of the information that is available for this group.

• If the string "contents" is the only argument then the function shows which parts of the
database are available; these are at least the "core" part, which means the data from the
ATLAS of Group Representations, and the "internal" part, which means the data that
are distributed with the AtlasRep package. Other parts can become available by calls to
AtlasOfGroupRepresentationsNotifyData (5.1.1). Note that the shown numbers of locally
available files depend on what has already been downloaded.

In each case, the information will be printed to the screen or will be fed into a pager, see Sec-
tion 4.2.11. An interactive alternative to DisplayAtlasInfo is the function BrowseAtlasInfo

(BrowseAtlasInfo???), see [BL18].
The following paragraphs describe the structure of the output in the two cases. Examples can be

found in Section 3.5.2.
Called without arguments, DisplayAtlasInfo shows a general overview for all groups. If some

information is available for the group G, say, then one line is shown for G, with the following columns.

group

the GAP name of G (see Section 3.2),

the number of faithful representations stored for G that satisfy the additional conditions given
(see below),

maxes

the number of available straight line programs for computing generators of maximal subgroups
of G,

cl a + sign if at least one program for computing representatives of conjugacy classes of elements
of G is stored,

cyc a + sign if at least one program for computing representatives of classes of maximally cyclic
subgroups of G is stored,

AtlasRep — A GAP 4 Package 40

out descriptions of outer automorphisms of G for which at least one program is stored,

fnd a + sign if at least one program is available for finding standard generators,

chk a + sign if at least one program is available for checking whether a set of generators is a set of
standard generators, and

prs a + sign if at least one program is available that encodes a presentation.

Called with a list listofnames of strings that are GAP names of some groups,
DisplayAtlasInfo prints the overview described above but restricted to the groups in this list.

In addition to or instead of listofnames , the string "contents" and a description sources of the
data may be given about which the overview is formed. See below for admissible values of sources.

Called with a string gapname that is a GAP name of a group, DisplayAtlasInfo prints an
overview of the information that is available for this group. One line is printed for each faithful repre-
sentation, showing the number of this representation (which can be used in calls of AtlasGenerators
(3.5.3)), and a string of one of the following forms; in both cases, id is a (possibly empty) string.

G <= Sym(nid)
denotes a permutation representation of degree n, for example G <= Sym(40a) and G <=

Sym(40b) denote two (nonequivalent) representations of degree 40.

G <= GL(nid,descr)
denotes a matrix representation of dimension n over a coefficient ring described by descr, which
can be a prime power, Z (denoting the ring of integers), a description of an algebraic extension
field, C (denoting an unspecified algebraic extension field), or Z/mZ for an integer m (denoting
the ring of residues mod m); for example, G <= GL(2a,4) and G <= GL(2b,4) denote two
(nonequivalent) representations of dimension 2 over the field with four elements.

After the representations, the programs available for gapname are listed. The following optional
arguments can be used to restrict the overviews.

std must be a positive integer or a list of positive integers; if it is given then only those representa-
tions are considered that refer to the std -th set of standard generators or the i-th set of standard
generators, for i in std (see Section 3.3),

"contents" and sources
for a string or a list of strings sources, restrict the data about which the overview is formed;
if sources is the string "core" then only data from the ATLAS of Group Representations are
considered, if sources is a string that denotes a data extension in the sense of a dirid argument
of AtlasOfGroupRepresentationsNotifyData (5.1.1) then only the data that belong to this
data extension are considered; also a list of such strings may be given, then the union of these
data is considered,

Identifier and id
restrict to representations with id component in the list id (note that this component is itself a
list, entering this list is not admissible), or satisfying the function id,

IsPermGroup and true (or false)
restrict to permutation representations (or to representations that are not permutation represen-
tations),

AtlasRep — A GAP 4 Package 41

NrMovedPoints and n
for a positive integer, a list of positive integers, or a property n, restrict to permutation represen-
tations of degree equal to n, or in the list n, or satisfying the function n,

NrMovedPoints and the string "minimal"

restrict to faithful permutation representations of minimal degree (if this information is avail-
able),

IsTransitive and a boolean value
restrict to transitive or intransitive permutation representations where this information is avail-
able (if the value true or false is given), or to representations for which this information is
not available (if the value fail is given),

IsPrimitive and a boolean value
restrict to primitive or imprimitive permutation representations where this information is avail-
able (if the value true or false is given), or to representations for which this information is
not available (if the value fail is given),

Transitivity and n
for a nonnegative integer, a list of nonnegative integers, or a property n, restrict to permutation
representations for which the information is available that the transitivity is equal to n, or is in
the list n, or satisfies the function n; if n is fail then restrict to all permutation representations
for which this information is not available,

RankAction and n
for a nonnegative integer, a list of nonnegative integers, or a property n, restrict to permutation
representations for which the information is available that the rank is equal to n, or is in the
list n, or satisfies the function n; if n is fail then restrict to all permutation representations for
which this information is not available,

IsMatrixGroup and true (or false)
restrict to matrix representations (or to representations that are not matrix representations),

Characteristic and p
for a prime integer, a list of prime integers, or a property p, restrict to matrix representations over
fields of characteristic equal to p, or in the list p, or satisfying the function p (representations
over residue class rings that are not fields can be addressed by entering fail as the value of p),

Dimension and n
for a positive integer, a list of positive integers, or a property n, restrict to matrix representations
of dimension equal to n, or in the list n, or satisfying the function n,

Characteristic, p, Dimension, and the string "minimal"

for a prime integer p, restrict to faithful matrix representations over fields of characteristic p
that have minimal dimension (if this information is available),

Ring and R
for a ring or a property R, restrict to matrix representations for which the information is available
that the ring spanned by the matrix entries is contained in this ring or satisfies this property (note
that the representation might be defined over a proper subring); if R is fail then restrict to all
matrix representations for which this information is not available,

AtlasRep — A GAP 4 Package 42

Ring, R, Dimension, and the string "minimal"

for a ring R, restrict to faithful matrix representations over this ring that have minimal dimension
(if this information is available),

Character and chi
for a class function or a list of class functions chi, restrict to representations with these char-
acters (note that the underlying characteristic of the class function, see Section (Reference:
UnderlyingCharacteristic), determines the characteristic of the representation),

Character and name
for a string name, restrict to representations for which the character is known to have this name,
according to the information shown by DisplayAtlasInfo; if the characteristic is not specified
then it defaults to zero,

Character and n
for a positive integer n, restrict to representations for which the character is known to be the n-th
irreducible character in GAP’s library character table of the group in question; if the character-
istic is not specified then it defaults to zero,

IsStraightLineProgram and true

restrict to straight line programs, straight line decisions (see Section 6.1), and black box pro-
grams (see Section 6.2), and

IsStraightLineProgram and false

restrict to representations.

Note that the above conditions refer only to the information that is available without accessing
the representations. For example, if it is not stored in the table of contents whether a permuta-
tion representation is primitive then this representation does not match an IsPrimitive condition
in DisplayAtlasInfo.

If “minimality” information is requested and no available representation matches this condition
then either no minimal representation is available or the information about the minimality is miss-
ing. See MinimalRepresentationInfo (6.3.1) for checking whether the minimality information is
available for the group in question. Note that in the cases where the string "minimal" occurs as
an argument, MinimalRepresentationInfo (6.3.1) is called with third argument "lookup"; this is
because the stored information was precomputed just for the groups in the ATLAS of Group Repre-
sentations, so trying to compute non-stored minimality information (using other available databases)
will hardly be successful.

The representations are ordered as follows. Permutation representations come first (ordered ac-
cording to their degrees), followed by matrix representations over finite fields (ordered first according
to the field size and second according to the dimension), matrix representations over the integers,
and then matrix representations over algebraic extension fields (both kinds ordered according to the
dimension), the last representations are matrix representations over residue class rings (ordered first
according to the modulus and second according to the dimension).

The maximal subgroups are ordered according to decreasing group order. For an extension G.p of
a simple group G by an outer automorphism of prime order p, this means that G is the first maximal
subgroup and then come the extensions of the maximal subgroups of G and the novelties; so the n-
th maximal subgroup of G and the n-th maximal subgroup of G.p are in general not related. (This
coincides with the numbering used for the Maxes (CTblLib: Maxes) attribute for character tables.)

AtlasRep — A GAP 4 Package 43

3.5.2 Examples for DisplayAtlasInfo

Here are some examples how DisplayAtlasInfo (3.5.1) can be called, and how its output can be
interpreted.

Example
gap> DisplayAtlasInfo("contents");

- AtlasRepAccessRemoteFiles: false

- AtlasRepDataDirectory: /home/you/gap/pkg/atlasrep/

ID | address, version, files

---------+--

core | http://atlas.math.rwth-aachen.de/Atlas/,

| version 2019-04-08,

| 10586 files locally available.

---------+--

internal | atlasrep/datapkg,

| version 2019-05-06,

| 276 files locally available.

---------+--

mfer | http://www.math.rwth-aachen.de/~mfer/datagens/,

| version 2015-10-06,

| 34 files locally available.

---------+--

ctblocks | ctblocks/atlas/,

| version 2019-04-08,

| 121 files locally available.

Note: The above output does not fit to the rest of the manual examples, since data extensions
except internal have been removed at the beginning of Chapter 2.

The output tells us that two data extensions have been notified in addition to the core data from
the ATLAS of Group Representations and the (local) internal data distributed with the AtlasRep
package. The files of the extension mfer must be downloaded before they can be read (but note that
the access to remote files is disabled), and the files of the extension ctblocks are locally available
in the ctblocks/atlas subdirectory of the GAP package directory. This table (in particular the
numbers of locally available files) depends on your installation of the package and how many files you
have already downloaded.

Example
gap> DisplayAtlasInfo(["M11", "A5"]);

group | # | maxes | cl | cyc | out | fnd | chk | prs

------+----+-------+----+-----+-----+-----+-----+----

M11 | 42 | 5 | + | + | | + | + | +

A5* | 18 | 3 | + | | | | + | +

The above output means that the database provides 42 representations of the Mathieu group M11,
straight line programs for computing generators of representatives of all five classes of maximal sub-
groups, for computing representatives of the conjugacy classes of elements and of generators of max-
imally cyclic subgroups, contains no straight line program for applying outer automorphisms (well, in
fact M11 admits no nontrivial outer automorphism), and contains straight line decisions that check a set

AtlasRep — A GAP 4 Package 44

of generators or a set of group elements for being a set of standard generators. Analogously, 18 repre-
sentations of the alternating group A5 are available, straight line programs for computing generators of
representatives of all three classes of maximal subgroups, and no straight line programs for computing
representatives of the conjugacy classes of elements, of generators of maximally cyclic subgroups,
and no for computing images under outer automorphisms; straight line decisions for checking the
standardization of generators or group elements are available.

Example
gap> DisplayAtlasInfo(["M11", "A5"], NrMovedPoints, 11);

group | # | maxes | cl | cyc | out | fnd | chk | prs

------+---+-------+----+-----+-----+-----+-----+----

M11 | 1 | 5 | + | + | | + | + | +

The given conditions restrict the overview to permutation representations on 11 points. The rows
for all those groups are omitted for which no such representation is available, and the numbers of
those representations are shown that satisfy the given conditions. In the above example, we see that
no representation on 11 points is available for A5, and exactly one such representation is available for
M11.

Example
gap> DisplayAtlasInfo("A5", IsPermGroup, true);

Representations for G = A5: (all refer to std. generators 1)

1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)

2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.)

3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.)

gap> DisplayAtlasInfo("A5", NrMovedPoints, [4 .. 9]);

Representations for G = A5: (all refer to std. generators 1)

1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)

2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.)

The first three representations stored for A5 are (in fact primitive) permutation representations.
Example

gap> DisplayAtlasInfo("A5", Dimension, [1 .. 3]);

Representations for G = A5: (all refer to std. generators 1)

8: G <= GL(2a,4) character 2a

9: G <= GL(2b,4) character 2b

10: G <= GL(3,5) character 3a

12: G <= GL(3a,9) character 3a

13: G <= GL(3b,9) character 3b

17: G <= GL(3a,Field([Sqrt(5)])) character 3a

18: G <= GL(3b,Field([Sqrt(5)])) character 3b

gap> DisplayAtlasInfo("A5", Characteristic, 0);

Representations for G = A5: (all refer to std. generators 1)

14: G <= GL(4,Z) character 4a

15: G <= GL(5,Z) character 5a

16: G <= GL(6,Z) character 3ab

17: G <= GL(3a,Field([Sqrt(5)])) character 3a

18: G <= GL(3b,Field([Sqrt(5)])) character 3b

AtlasRep — A GAP 4 Package 45

The representations with number between 4 and 13 are (in fact irreducible) matrix representations
over various finite fields, those with numbers 14 to 16 are integral matrix representations, and the last
two are matrix representations over the field generated by

√
5 over the rational number field.

Example
gap> DisplayAtlasInfo("A5", Identifier, "a");

Representations for G = A5: (all refer to std. generators 1)

4: G <= GL(4a,2) character 4a

8: G <= GL(2a,4) character 2a

12: G <= GL(3a,9) character 3a

17: G <= GL(3a,Field([Sqrt(5)])) character 3a

Each of the representations with the numbers 4,8,12, and 17 is labeled with the distinguishing
letter a.

Example
gap> DisplayAtlasInfo("A5", NrMovedPoints, IsPrimeInt);

Representations for G = A5: (all refer to std. generators 1)

1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)

gap> DisplayAtlasInfo("A5", Characteristic, IsOddInt);

Representations for G = A5: (all refer to std. generators 1)

6: G <= GL(4,3) character 4a

7: G <= GL(6,3) character 3ab

10: G <= GL(3,5) character 3a

11: G <= GL(5,5) character 5a

12: G <= GL(3a,9) character 3a

13: G <= GL(3b,9) character 3b

gap> DisplayAtlasInfo("A5", Dimension, IsPrimeInt);

Representations for G = A5: (all refer to std. generators 1)

8: G <= GL(2a,4) character 2a

9: G <= GL(2b,4) character 2b

10: G <= GL(3,5) character 3a

11: G <= GL(5,5) character 5a

12: G <= GL(3a,9) character 3a

13: G <= GL(3b,9) character 3b

15: G <= GL(5,Z) character 5a

17: G <= GL(3a,Field([Sqrt(5)])) character 3a

18: G <= GL(3b,Field([Sqrt(5)])) character 3b

gap> DisplayAtlasInfo("A5", Ring, IsFinite and IsPrimeField);

Representations for G = A5: (all refer to std. generators 1)

4: G <= GL(4a,2) character 4a

5: G <= GL(4b,2) character 2ab

6: G <= GL(4,3) character 4a

7: G <= GL(6,3) character 3ab

10: G <= GL(3,5) character 3a

11: G <= GL(5,5) character 5a

The above examples show how the output can be restricted using a property (a unary function that
returns either true or false) that follows NrMovedPoints (Reference: NrMovedPoints for a per-

AtlasRep — A GAP 4 Package 46

mutation), Characteristic (Reference: Characteristic), Dimension (Reference: Dimension), or
Ring (Reference: Ring) in the argument list of DisplayAtlasInfo (3.5.1).

Example
gap> DisplayAtlasInfo("A5", IsStraightLineProgram, true);

Programs for G = A5: (all refer to std. generators 1)

- class repres.*

- presentation

- maxes (all 3):

1: A4

2: D10

3: S3

- std. gen. checker:

(check)

(pres)

Straight line programs are available for computing generators of representatives of the three classes
of maximal subgroups of A5, and a straight line decision for checking whether given generators are
in fact standard generators is available as well as a presentation in terms of standard generators,
see AtlasProgram (3.5.4).

3.5.3 AtlasGenerators

▷ AtlasGenerators(gapname, repnr[, maxnr]) (function)

▷ AtlasGenerators(identifier) (function)

Returns: a record containing generators for a representation, or fail.
In the first form, gapname must be a string denoting a GAP name (see Section 3.2) of a group, and

repnr a positive integer. If at least repnr representations for the group with GAP name gapname

are available then AtlasGenerators, when called with gapname and repnr , returns an immutable
record describing the repnr -th representation; otherwise fail is returned. If a third argument maxnr ,
a positive integer, is given then an immutable record describing the restriction of the repnr -th repre-
sentation to the maxnr -th maximal subgroup is returned.

The result record has at least the following components.

contents

the identifier of the part of the database to which the generators belong, for example "core" or
"internal",

generators

a list of generators for the group,

groupname

the GAP name of the group (see Section 3.2),

identifier

a GAP object (a list of filenames plus additional information) that uniquely determines
the representation, see Section 7.7; the value can be used as identifier argument of
AtlasGenerators.

AtlasRep — A GAP 4 Package 47

repname

a string that is an initial part of the filenames of the generators.

repnr

the number of the representation in the current session, equal to the argument repnr if this is
given.

standardization

the positive integer denoting the underlying standard generators,

type

a string that describes the type of the representation ("perm" for a permutation representation,
"matff" for a matrix representation over a finite field, "matint" for a matrix representation
over the ring of integers, "matalg" for a matrix representation over an algebraic number field).

Additionally, the following describing components may be available if they are known, and de-
pending on the data type of the representation.

size

the group order,

id the distinguishing string as described for DisplayAtlasInfo (3.5.1),

charactername

a string that describes the character of the representation,

constituents

a list of positive integers denoting the positions of the irreducible constituents of the character
of the representation,

p (for permutation representations)
for the number of moved points,

dim (for matrix representations)
the dimension of the matrices,

ring (for matrix representations)
the ring generated by the matrix entries,

transitivity (for permutation representations)
a nonnegative integer, see Transitivity (Reference: Transitivity),

orbits (for intransitive permutation representations)
the sorted list of orbit lengths on the set of moved points,

rankAction (for transitive permutation representations)
the number of orbits of the point stabilizer on the set of moved points, see RankAction

(Reference: RankAction),

stabilizer (for transitive permutation representations)
a string that describes the structure of the point stabilizers,

AtlasRep — A GAP 4 Package 48

isPrimitive (for transitive permutation representations)
true if the point stabilizers are maximal subgroups, and false otherwise,

maxnr (for primitive permutation representations)
the number of the class of maximal subgroups that contains the point stabilizers, w. r. t. the
Maxes (CTblLib: Maxes) list.

It should be noted that the number repnr refers to the number shown by DisplayAtlasInfo

(3.5.1) in the current session; it may be that after the addition of new representations (for example
after loading a package that provides some), repnr refers to another representation.

The alternative form of AtlasGenerators, with only argument identifier , can be used to
fetch the result record with identifier value equal to identifier . The purpose of this variant is to
access the same representation also in different GAP sessions.

Example
gap> gens1:= AtlasGenerators("A5", 1);

rec(charactername := "1a+4a", constituents := [1, 4],

contents := "core", generators := [(1,2)(3,4), (1,3,5)],

groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5],

isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,

repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",

standardization := 1, transitivity := 3, type := "perm")

gap> gens8:= AtlasGenerators("A5", 8);

rec(charactername := "2a", constituents := [2], contents := "core",

dim := 2,

generators := [[[Z(2)^0, 0*Z(2)], [Z(2^2), Z(2)^0]],

[[0*Z(2), Z(2)^0], [Z(2)^0, Z(2)^0]]], groupname := "A5",

id := "a",

identifier := ["A5", ["A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2"], 1,

4], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2),

size := 60, standardization := 1, type := "matff")

gap> gens17:= AtlasGenerators("A5", 17);

rec(charactername := "3a", constituents := [2], contents := "core",

dim := 3,

generators :=

[[[-1, 0, 0], [0, -1, 0], [-E(5)-E(5)^4, -E(5)-E(5)^4, 1]

], [[0, 1, 0], [0, 0, 1], [1, 0, 0]]],

groupname := "A5", id := "a",

identifier := ["A5", "A5G1-Ar3aB0.g", 1, 3],

polynomial := [-1, 1, 1], repname := "A5G1-Ar3aB0", repnr := 17,

ring := NF(5,[1, 4]), size := 60, standardization := 1,

type := "matalg")

Each of the above pairs of elements generates a group isomorphic to A5.
Example

gap> gens1max2:= AtlasGenerators("A5", 1, 2);

rec(charactername := "1a+4a", constituents := [1, 4],

contents := "core", generators := [(1,2)(3,4), (2,3)(4,5)],

groupname := "D10", id := "",

identifier := ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5, 2],

isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,

AtlasRep — A GAP 4 Package 49

repname := "A5G1-p5B0", repnr := 1, size := 10, stabilizer := "A4",

standardization := 1, transitivity := 3, type := "perm")

gap> id:= gens1max2.identifier;;

gap> gens1max2 = AtlasGenerators(id);

true

gap> max2:= Group(gens1max2.generators);;

gap> Size(max2);

10

gap> IdGroup(max2) = IdGroup(DihedralGroup(10));

true

The elements stored in gens1max2.generators describe the restriction of the first representation
of A5 to a group in the second class of maximal subgroups of A5 according to the list in the ATLAS of
Finite Groups [CCN+85]; this subgroup is isomorphic to the dihedral group D10.

3.5.4 AtlasProgram

▷ AtlasProgram(gapname[, std][, "contents", sources][, "version", vers], ...)

(function)

▷ AtlasProgram(identifier) (function)

Returns: a record containing a program, or fail.
In the first form, gapname must be a string denoting a GAP name (see Section 3.2) of a group

G, say. If the database contains a straight line program (see Section (Reference: Straight Line
Programs)) or straight line decision (see Section 6.1) or black box program (see Section 6.2) as
described by the arguments indicated by ... (see below) then AtlasProgram returns an immutable
record containing this program. Otherwise fail is returned.

If the optional argument std is given, only those straight line programs/decisions are considered
that take generators from the std -th set of standard generators of G as input, see Section 3.3.

If the optional arguments "contents" and sources are given then the latter must be either a
string or a list of strings, with the same meaning as described for DisplayAtlasInfo (3.5.1).

If the optional arguments "version" and vers are given then the latter must be either a number
or a list of numbers, and only those straight line programs/decisions are considered whose version
number fits to vers .

The result record has at least the following components.

groupname

the string gapname ,

identifier

a GAP object (a list of filenames plus additional information) that uniquely determines the
program; the value can be used as identifier argument of AtlasProgram (see below),

program

the required straight line program/decision, or black box program,

standardization

the positive integer denoting the underlying standard generators of G,

version

the substring of the filename of the program that denotes the version of the program.

AtlasRep — A GAP 4 Package 50

If the program computes generators of the restriction to a maximal subgroup then also the follow-
ing components are present.

size

the order of the maximal subgroup,

subgroupname

a string denoting a name of the maximal subgroup.

In the first form, the arguments indicated by ... must be as follows.

(the string "maxes" and) a positive integer maxnr
the required program computes generators of the maxnr-th maximal subgroup of the group with
GAP name gapname.

In this case, the result record of AtlasProgram also may contain a component size, whose
value is the order of the maximal subgroup in question.

the string "maxes" and two positive integers maxnr and std2
the required program computes standard generators of the maxnr-th maximal subgroup of the
group with GAP name gapname, w. r. t. the standardization std2.

A prescribed "version" parameter refers to the straight line program for computing the restric-
tion, not to the program for standardizing the result of the restriction.

The meaning of the component size in the result, if present, is the same as in the previous case.

the string "maxstd" and three positive integers maxnr, vers, substd
the required program computes standard generators of the maxnr-th maximal subgroup of the
group with GAP name gapname w. r. t. standardization substd; in this case, the inputs of the
program are not standard generators of the group with GAP name gapname but the outputs of
the straight line program with version vers for computing generators of its maxnr-th maximal
subgroup.

the string "kernel" and a string f actname
the required program computes generators of the kernel of an epimorphism from G to a group
with GAP name f actname.

one of the strings "classes" or "cyclic"
the required program computes representatives of conjugacy classes of elements or representa-
tives of generators of maximally cyclic subgroups of G, respectively.

See [BSWW01] and [SWW00] for the background concerning these straight line programs. In
these cases, the result record of AtlasProgram also contains a component outputs, whose
value is a list of class names of the outputs, as described in Section 3.4.

the string "cyc2ccl" (and the string vers)
the required program computes representatives of conjugacy classes of elements from represen-
tatives of generators of maximally cyclic subgroups of G. Thus the inputs are the outputs of the
program of type "cyclic" whose version is vers.

AtlasRep — A GAP 4 Package 51

the strings "cyc2ccl", vers1, "version", vers2
the required program computes representatives of conjugacy classes of elements from represen-
tatives of generators of maximally cyclic subgroups of G, where the inputs are the outputs of the
program of type "cyclic" whose version is vers1 and the required program itself has version
vers2.

the strings "automorphism" and autname
the required program computes images of standard generators under the outer automorphism of
G that is given by this string.

Note that a value "2" of autname means that the square of the automorphism is an inner auto-
morphism of G (not necessarily the identity mapping) but the automorphism itself is not.

the string "check"

the required result is a straight line decision that takes a list of generators for G and returns
true if these generators are standard generators of G w. r. t. the standardization std , and false

otherwise.

the string "presentation"

the required result is a straight line decision that takes a list of group elements and returns
true if these elements are standard generators of G w. r. t. the standardization std , and false

otherwise.

See StraightLineProgramFromStraightLineDecision (6.1.9) for an example how to de-
rive defining relators for G in terms of the standard generators from such a straight line decision.

the string "find"

the required result is a black box program that takes G and returns a list of standard generators
of G, w. r. t. the standardization std .

the string "restandardize" and an integer std2
the required result is a straight line program that computes standard generators of G w. r. t. the
std2-th set of standard generators of G; in this case, the argument std must be given.

the strings "other" and descr
the required program is described by descr.

The second form of AtlasProgram, with only argument the list identifier , can be used to fetch
the result record with identifier value equal to identifier .

Example
gap> prog:= AtlasProgram("A5", 2);

rec(groupname := "A5", identifier := ["A5", "A5G1-max2W1", 1],

program := <straight line program>, size := 10,

standardization := 1, subgroupname := "D10", version := "1")

gap> StringOfResultOfStraightLineProgram(prog.program, ["a", "b"]);

"[a, bbab]"

gap> gens1:= AtlasGenerators("A5", 1);

rec(charactername := "1a+4a", constituents := [1, 4],

contents := "core", generators := [(1,2)(3,4), (1,3,5)],

groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5],

isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,

AtlasRep — A GAP 4 Package 52

repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",

standardization := 1, transitivity := 3, type := "perm")

gap> maxgens:= ResultOfStraightLineProgram(prog.program,

> gens1.generators);

[(1,2)(3,4), (2,3)(4,5)]

gap> maxgens = gens1max2.generators;

true

The above example shows that for restricting representations given by standard generators to a
maximal subgroup of A5, we can also fetch and apply the appropriate straight line program. Such a
program (see (Reference: Straight Line Programs)) takes standard generators of a group –in this
example A5– as its input, and returns a list of elements in this group –in this example generators of the
D10 subgroup we had met above– which are computed essentially by evaluating structured words in
terms of the standard generators.

Example
gap> prog:= AtlasProgram("J1", "cyclic");

rec(groupname := "J1", identifier := ["J1", "J1G1-cycW1", 1],

outputs := ["6A", "7A", "10B", "11A", "15B", "19A"],

program := <straight line program>, standardization := 1,

version := "1")

gap> gens:= GeneratorsOfGroup(FreeGroup("x", "y"));;

gap> ResultOfStraightLineProgram(prog.program, gens);

[(x*y)^2*((y*x)^2*y^2*x)^2*y^2, x*y, (x*(y*x*y)^2)^2*y,

(x*y*x*(y*x*y)^3*x*y^2)^2*x*y*x*(y*x*y)^2*y, x*y*x*(y*x*y)^2*y,

(x*y)^2*y]

The above example shows how to fetch and use straight line programs for computing generators
of representatives of maximally cyclic subgroups of a given group.

3.5.5 AtlasProgramInfo

▷ AtlasProgramInfo(gapname[, std][, "contents", sources][, "version", vers],

...) (function)

Returns: a record describing a program, or fail.
AtlasProgramInfo takes the same arguments as AtlasProgram (3.5.4), and returns a similar

result. The only difference is that the records returned by AtlasProgramInfo have no components
program and outputs. The idea is that one can use AtlasProgramInfo for testing whether the
program in question is available at all, but without downloading files. The identifier component of
the result of AtlasProgramInfo can then be used to fetch the program with AtlasProgram (3.5.4).

Example
gap> AtlasProgramInfo("J1", "cyclic");

rec(groupname := "J1", identifier := ["J1", "J1G1-cycW1", 1],

standardization := 1, version := "1")

3.5.6 OneAtlasGeneratingSetInfo

▷ OneAtlasGeneratingSetInfo([gapname][,] [std][,] [...]) (function)

Returns: a record describing a representation that satisfies the conditions, or fail.

AtlasRep — A GAP 4 Package 53

Let gapname be a string denoting a GAP name (see Section 3.2) of a group G, say.
If the database contains at least one representation for G with the required properties then
OneAtlasGeneratingSetInfo returns a record r whose components are the same as those of the
records returned by AtlasGenerators (3.5.3), except that the component generators is not con-
tained, and an additional component givenRing is present if Ring is one of the arguments in the
function call.

The information in givenRing can be used later to construct the matrices over the prescribed
ring. Note that this ring may be for example a domain constructed with AlgebraicExtension

(Reference: AlgebraicExtension) instead of a field of cyclotomics or of a finite field constructed
with GF (Reference: GF for field size).

The component identifier of r can be used as input for AtlasGenerators (3.5.3) in order
to fetch the generators. If no representation satisfying the given conditions is available then fail is
returned.

If the argument std is given then it must be a positive integer or a list of positive integers, denoting
the sets of standard generators w. r. t. which the representation shall be given (see Section 3.3).

The argument gapname can be missing (then all available groups are considered), or a list of group
names can be given instead.

Further restrictions can be entered as arguments, with the same meaning as described for
DisplayAtlasInfo (3.5.1). The result of OneAtlasGeneratingSetInfo describes the first gen-
erating set for G that matches the restrictions, in the ordering shown by DisplayAtlasInfo (3.5.1).

Note that even in the case that the user preference AtlasRepAccessRemoteFiles has
the value true (see Section 4.2.1), OneAtlasGeneratingSetInfo does not attempt to trans-
fer remote data files, just the table of contents is evaluated. So this function (as well as
AllAtlasGeneratingSetInfos (3.5.7)) can be used to check for the availability of certain repre-
sentations, and afterwards one can call AtlasGenerators (3.5.3) for those representations one wants
to work with.

In the following example, we try to access information about permutation representations for the
alternating group A5.

Example
gap> info:= OneAtlasGeneratingSetInfo("A5");

rec(charactername := "1a+4a", constituents := [1, 4],

contents := "core", groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5],

isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,

repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",

standardization := 1, transitivity := 3, type := "perm")

gap> gens:= AtlasGenerators(info.identifier);

rec(charactername := "1a+4a", constituents := [1, 4],

contents := "core", generators := [(1,2)(3,4), (1,3,5)],

groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5],

isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,

repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",

standardization := 1, transitivity := 3, type := "perm")

gap> info = OneAtlasGeneratingSetInfo("A5", IsPermGroup, true);

true

gap> info = OneAtlasGeneratingSetInfo("A5", NrMovedPoints, "minimal");

true

gap> info = OneAtlasGeneratingSetInfo("A5", NrMovedPoints, [1 .. 10]);

AtlasRep — A GAP 4 Package 54

true

gap> OneAtlasGeneratingSetInfo("A5", NrMovedPoints, 20);

fail

Note that a permutation representation of degree 20 could be obtained by taking twice the primitive
representation on 10 points; however, the database does not store this imprimitive representation (cf.
Section 3.1).

We continue this example. Next we access matrix representations of A5.
Example

gap> info:= OneAtlasGeneratingSetInfo("A5", IsMatrixGroup, true);

rec(charactername := "4a", constituents := [4], contents := "core",

dim := 4, groupname := "A5", id := "a",

identifier := ["A5", ["A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2"], 1,

2], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2),

size := 60, standardization := 1, type := "matff")

gap> gens:= AtlasGenerators(info.identifier);

rec(charactername := "4a", constituents := [4], contents := "core",

dim := 4,

generators := [<an immutable 4x4 matrix over GF2>,

<an immutable 4x4 matrix over GF2>], groupname := "A5",

id := "a",

identifier := ["A5", ["A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2"], 1,

2], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2),

size := 60, standardization := 1, type := "matff")

gap> info = OneAtlasGeneratingSetInfo("A5", Dimension, 4);

true

gap> info = OneAtlasGeneratingSetInfo("A5", Characteristic, 2);

true

gap> info2:= OneAtlasGeneratingSetInfo("A5", Ring, GF(2));;

gap> info.identifier = info2.identifier;

true

gap> OneAtlasGeneratingSetInfo("A5", Characteristic, [2,5], Dimension, 2);

rec(charactername := "2a", constituents := [2], contents := "core",

dim := 2, groupname := "A5", id := "a",

identifier := ["A5", ["A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2"], 1,

4], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2),

size := 60, standardization := 1, type := "matff")

gap> OneAtlasGeneratingSetInfo("A5", Characteristic, [2,5], Dimension, 1);

fail

gap> info:= OneAtlasGeneratingSetInfo("A5", Characteristic, 0,

> Dimension, 4);

rec(charactername := "4a", constituents := [4], contents := "core",

dim := 4, groupname := "A5", id := "",

identifier := ["A5", "A5G1-Zr4B0.g", 1, 4],

repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60,

standardization := 1, type := "matint")

gap> gens:= AtlasGenerators(info.identifier);

rec(charactername := "4a", constituents := [4], contents := "core",

dim := 4,

generators :=

[

[[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0],

AtlasRep — A GAP 4 Package 55

[-1, -1, -1, -1]],

[[0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0],

[1, 0, 0, 0]]], groupname := "A5", id := "",

identifier := ["A5", "A5G1-Zr4B0.g", 1, 4],

repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60,

standardization := 1, type := "matint")

gap> info = OneAtlasGeneratingSetInfo("A5", Ring, Integers);

true

gap> info2:= OneAtlasGeneratingSetInfo("A5", Ring, CF(37));;

gap> info = info2;

false

gap> Difference(RecNames(info2), RecNames(info));

["givenRing"]

gap> info2.givenRing;

CF(37)

gap> OneAtlasGeneratingSetInfo("A5", Ring, Integers mod 77);

fail

gap> info:= OneAtlasGeneratingSetInfo("A5", Ring, CF(5), Dimension, 3);

rec(charactername := "3a", constituents := [2], contents := "core",

dim := 3, givenRing := CF(5), groupname := "A5", id := "a",

identifier := ["A5", "A5G1-Ar3aB0.g", 1, 3],

polynomial := [-1, 1, 1], repname := "A5G1-Ar3aB0", repnr := 17,

ring := NF(5,[1, 4]), size := 60, standardization := 1,

type := "matalg")

gap> gens:= AtlasGenerators(info);

rec(charactername := "3a", constituents := [2], contents := "core",

dim := 3,

generators :=

[[[-1, 0, 0], [0, -1, 0], [-E(5)-E(5)^4, -E(5)-E(5)^4, 1]

], [[0, 1, 0], [0, 0, 1], [1, 0, 0]]],

givenRing := CF(5), groupname := "A5", id := "a",

identifier := ["A5", "A5G1-Ar3aB0.g", 1, 3],

polynomial := [-1, 1, 1], repname := "A5G1-Ar3aB0", repnr := 17,

ring := NF(5,[1, 4]), size := 60, standardization := 1,

type := "matalg")

gap> gens2:= AtlasGenerators(info.identifier);;

gap> Difference(RecNames(gens), RecNames(gens2));

["givenRing"]

gap> OneAtlasGeneratingSetInfo("A5", Ring, GF(17));

fail

3.5.7 AllAtlasGeneratingSetInfos

▷ AllAtlasGeneratingSetInfos([gapname][,] [std][,] [...]) (function)

Returns: the list of all records describing representations that satisfy the conditions.
AllAtlasGeneratingSetInfos is similar to OneAtlasGeneratingSetInfo (3.5.6). The dif-

ference is that the list of all records describing the available representations with the given properties
is returned instead of just one such component. In particular an empty list is returned if no such
representation is available.

Example
gap> AllAtlasGeneratingSetInfos("A5", IsPermGroup, true);

AtlasRep — A GAP 4 Package 56

[rec(charactername := "1a+4a", constituents := [1, 4],

contents := "core", groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5]

, isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,

repname := "A5G1-p5B0", repnr := 1, size := 60,

stabilizer := "A4", standardization := 1, transitivity := 3,

type := "perm"),

rec(charactername := "1a+5a", constituents := [1, 5],

contents := "core", groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p6B0.m1", "A5G1-p6B0.m2"], 1, 6]

, isPrimitive := true, maxnr := 2, p := 6, rankAction := 2,

repname := "A5G1-p6B0", repnr := 2, size := 60,

stabilizer := "D10", standardization := 1, transitivity := 2,

type := "perm"),

rec(charactername := "1a+4a+5a", constituents := [1, 4, 5],

contents := "core", groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p10B0.m1", "A5G1-p10B0.m2"], 1,

10], isPrimitive := true, maxnr := 3, p := 10,

rankAction := 3, repname := "A5G1-p10B0", repnr := 3,

size := 60, stabilizer := "S3", standardization := 1,

transitivity := 1, type := "perm")]

Note that a matrix representation in any characteristic can be obtained by reducing a permuta-
tion representation or an integral matrix representation; however, the database does not store such a
representation (cf. Section 3.1).

3.5.8 AtlasGroup

▷ AtlasGroup([gapname][,] [std][,] [...]) (function)

▷ AtlasGroup(identifier) (function)

Returns: a group that satisfies the conditions, or fail.
AtlasGroup takes the same arguments as OneAtlasGeneratingSetInfo (3.5.6), and re-

turns the group generated by the generators component of the record that is returned by
OneAtlasGeneratingSetInfo (3.5.6) with these arguments; if OneAtlasGeneratingSetInfo

(3.5.6) returns fail then also AtlasGroup returns fail.
Example

gap> g:= AtlasGroup("A5");

Group([(1,2)(3,4), (1,3,5)])

Alternatively, it is possible to enter exactly one argument, a record identifier as re-
turned by OneAtlasGeneratingSetInfo (3.5.6) or AllAtlasGeneratingSetInfos (3.5.7), or the
identifier component of such a record.

Example
gap> info:= OneAtlasGeneratingSetInfo("A5");

rec(charactername := "1a+4a", constituents := [1, 4],

contents := "core", groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5],

isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,

repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",

standardization := 1, transitivity := 3, type := "perm")

AtlasRep — A GAP 4 Package 57

gap> AtlasGroup(info);

Group([(1,2)(3,4), (1,3,5)])

gap> AtlasGroup(info.identifier);

Group([(1,2)(3,4), (1,3,5)])

In the groups returned by AtlasGroup, the value of the attribute AtlasRepInfoRecord (3.5.10)
is set. This information is used for example by AtlasSubgroup (3.5.9) when this function is called
with second argument a group created by AtlasGroup.

3.5.9 AtlasSubgroup

▷ AtlasSubgroup(gapname[, std][, ...], maxnr) (function)

▷ AtlasSubgroup(identifier, maxnr) (function)

▷ AtlasSubgroup(G, maxnr) (function)

Returns: a group that satisfies the conditions, or fail.
The arguments of AtlasSubgroup, except the last argument maxnr , are the same as for

AtlasGroup (3.5.8). If the database provides a straight line program for restricting representations of
the group with name gapname (given w. r. t. the std -th standard generators) to the maxnr -th maxi-
mal subgroup and if a representation with the required properties is available, in the sense that calling
AtlasGroup (3.5.8) with the same arguments except maxnr yields a group, then AtlasSubgroup

returns the restriction of this representation to the maxnr -th maximal subgroup.
In all other cases, fail is returned.
Note that the conditions refer to the group and not to the subgroup. It may happen that in the

restriction of a permutation representation to a subgroup, fewer points are moved, or that the restriction
of a matrix representation turns out to be defined over a smaller ring. Here is an example.

Example
gap> g:= AtlasSubgroup("A5", NrMovedPoints, 5, 1);

Group([(1,5)(2,3), (1,3,5)])

gap> NrMovedPoints(g);

4

Alternatively, it is possible to enter exactly two arguments, the first being a record identifier

as returned by OneAtlasGeneratingSetInfo (3.5.6) or AllAtlasGeneratingSetInfos (3.5.7), or
the identifier component of such a record, or a group G constructed with AtlasGroup (3.5.8).

Example
gap> info:= OneAtlasGeneratingSetInfo("A5");

rec(charactername := "1a+4a", constituents := [1, 4],

contents := "core", groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5],

isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,

repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",

standardization := 1, transitivity := 3, type := "perm")

gap> AtlasSubgroup(info, 1);

Group([(1,5)(2,3), (1,3,5)])

gap> AtlasSubgroup(info.identifier, 1);

Group([(1,5)(2,3), (1,3,5)])

gap> AtlasSubgroup(AtlasGroup("A5"), 1);

Group([(1,5)(2,3), (1,3,5)])

AtlasRep — A GAP 4 Package 58

3.5.10 AtlasRepInfoRecord (for a group)

▷ AtlasRepInfoRecord(G) (attribute)

▷ AtlasRepInfoRecord(name) (attribute)

Returns: the record stored in the group G when this was constructed with AtlasGroup (3.5.8),
or a record with information about the group with name name .

For a group G that has been constructed with AtlasGroup (3.5.8), the value of this attribute is
the info record that describes G , in the sense that this record was the first argument of the call to
AtlasGroup (3.5.8), or it is the result of the call to OneAtlasGeneratingSetInfo (3.5.6) with the
conditions that were listed in the call to AtlasGroup (3.5.8).

Example
gap> AtlasRepInfoRecord(AtlasGroup("A5"));

rec(charactername := "1a+4a", constituents := [1, 4],

contents := "core", groupname := "A5", id := "",

identifier := ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5],

isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,

repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",

standardization := 1, transitivity := 3, type := "perm")

For a string name that is a GAP name of a group G, say, AtlasRepInfoRecord returns a record
that contains information about G which is used by DisplayAtlasInfo (3.5.1). The following com-
ponents may be bound in the record.

name

the string name ,

nrMaxes

the number of conjugacy classes of maximal subgroups of G,

size

the order of G,

sizesMaxes

a list which contains at position i, if bound, the order of a subgroup in the i-th class of maximal
subgroups of G,

slpMaxes

a list of length two; the first entry is a list of positions i such that a straight line program for
computing the restriction of representations of G to a subgroup in the i-th class of maximal sub-
groups is available via AtlasRep; the second entry is the corresponding list of standardizations
of the generators of G for which these straight line programs are available,

structureMaxes

a list which contains at position i, if bound, a string that describes the structure of the subgroups
in the i-th class of maximal subgroups of G.

Example
gap> AtlasRepInfoRecord("A5");

rec(name := "A5", nrMaxes := 3, size := 60,

sizesMaxes := [12, 10, 6],

slpMaxes := [[1 .. 3], [[1], [1], [1]]],

AtlasRep — A GAP 4 Package 59

structureMaxes := ["A4", "D10", "S3"])

gap> AtlasRepInfoRecord("J5");

rec()

3.5.11 EvaluatePresentation

▷ EvaluatePresentation(G, gapname[, std]) (operation)

▷ EvaluatePresentation(gens, gapname[, std]) (operation)

Returns: a list of group elements or fail.
The first argument must be either a group G or a list gens of group generators, and gapname must

be a string that is a GAP name (see Section 3.2) of a group H, say. The optional argument std , if
given, must be a positive integer that denotes a standardization of generators of H, the default is 1.

EvaluatePresentation returns fail if no presentation for H w. r. t. the standardization std

is stored in the database, and otherwise returns the list of results of evaluating the relators of a pre-
sentation for H at gens or the GeneratorsOfGroup (Reference: GeneratorsOfGroup) value of G ,
respectively. (An error is signalled if the number of generators is not equal to the number of inputs of
the presentation.)

The result can be used as follows. Let N be the normal closure of the the result in G . The factor
group G/N is an epimorphic image of H. In particular, if all entries of the result have order 1 then
G itself is an epimorphic image of H. Moreover, an epimorphism is given by mapping the std -th
standard generators of H to the N-cosets of the given generators of G .

Example
gap> g:= MathieuGroup(12);;

gap> gens:= GeneratorsOfGroup(g);; # switch to 2 generators

gap> g:= Group(gens[1] * gens[3], gens[2] * gens[3]);;

gap> EvaluatePresentation(g, "J0"); # no pres. for group "J0"

fail

gap> relimgs:= EvaluatePresentation(g, "M11");;

gap> List(relimgs, Order); # wrong group

[3, 1, 5, 4, 10]

gap> relimgs:= EvaluatePresentation(g, "M12");;

gap> List(relimgs, Order); # generators are not standard

[3, 4, 5, 4, 4]

gap> g:= AtlasGroup("M12");;

gap> relimgs:= EvaluatePresentation(g, "M12", 1);;

gap> List(relimgs, Order); # right group, std. generators

[1, 1, 1, 1, 1]

gap> g:= AtlasGroup("2.M12");;

gap> relimgs:= EvaluatePresentation(g, "M12", 1);;

gap> List(relimgs, Order); # std. generators for extension

[1, 2, 1, 1, 2]

gap> Size(NormalClosure(g, SubgroupNC(g, relimgs)));

2

3.5.12 StandardGeneratorsData

▷ StandardGeneratorsData(G, gapname[, std]) (operation)

▷ StandardGeneratorsData(gens, gapname[, std]) (operation)

AtlasRep — A GAP 4 Package 60

Returns: a record that describes standard generators of the group in question, or fail, or the
string "timeout".

The first argument must be either a group G or a list gens of group generators, and gapname must
be a string that is a GAP name (see Section 3.2) of a group H, say. The optional argument std , if
given, must be a positive integer that denotes a standardization of generators of H, the default is 1.

If the global option projective is given then the group elements must be matrices over a finite
field, and the group must be a central extension of the group H by a normal subgroup that consists of
scalar matrices. In this case, all computations will be carried out modulo scalar matrices (in particular,
element orders will be computed using ProjectiveOrder (Reference: ProjectiveOrder)), and the
returned standard generators will belong to H.

StandardGeneratorsData returns

fail

if no black box program for computing standard generators of H w. r. t. the standardization
std is stored in the database, or if the black box program returns fail because a runtime error
occurred or the program has proved that the given group or generators cannot generate a group
isomorphic to H,

"timeout"

if the black box program returns "timeout", typically because some elements of a given order
were not found among a reasonable number of random elements, or

a record containing standard generators
otherwise.

When the result is not a record then either the group is not isomorphic to H (modulo scalars if
applicable), or we were unlucky with choosing random elements.

When a record is returned and G or the group generated by gens , respectively, is isomorphic to H
(or to a central extension of H by a group of scalar matrices if the global option projective is given)
then the result describes the desired standard generators.

If G or the group generated by gens , respectively, is not isomorphic to H then it may still happen
that StandardGeneratorsData returns a record. For a proof that the returned record describes the
desired standard generators, one can use a presentation of H whose generators correspond to the std -
th standard generators, see EvaluatePresentation (3.5.11).

A returned record has the following components.

gapname

the string gapname ,

givengens

the list of group generators from which standard generators were computed, either gens or the
GeneratorsOfGroup (Reference: GeneratorsOfGroup) value of G ,

stdgens

a list of standard generators of the group,

givengenstostdgens

a straight line program that takes givengens as inputs, and returns stdgens,

AtlasRep — A GAP 4 Package 61

std the underlying standardization std .

The first examples show three cases of failure, due to the unavailability of a suitable black box
program or to a wrong choice of gapname . (In the search for standard generators of M11 in the group
M12, one may or may not find an element whose order does not appear in M11; in the first case, the
result is fail, whereas a record is returned in the second case. Both cases occur.)

Example
gap> StandardGeneratorsData(MathieuGroup(11), "J0");

fail

gap> StandardGeneratorsData(MathieuGroup(11), "M12");

"timeout"

gap> repeat

> res:= StandardGeneratorsData(MathieuGroup(12), "M11");

> until res = fail;

The next example shows a computation of standard generators for the Mathieu group M12. Using
a presentation of M12 w. r. t. these standard generators, we prove that the given group is isomorphic to
M12.

Example
gap> gens:= GeneratorsOfGroup(MathieuGroup(12));;

gap> std:= 1;;

gap> res:= StandardGeneratorsData(gens, "M12", std);;

gap> Set(RecNames(res));

["gapname", "givengens", "givengenstostdgens", "std", "stdgens"]

gap> gens = res.givengens;

true

gap> ResultOfStraightLineProgram(res.givengenstostdgens, gens)

> = res.stdgens;

true

gap> evl:= EvaluatePresentation(res.stdgens, "M12", std);;

gap> ForAll(evl, IsOne);

true

The next example shows the use of the global option projective. We take an irreducible matrix
representation of the double cover of the Mathieu group M12 (thus the center is represented by scalar
matrices) and compute standard generators of the factor group M12. Using a presentation of M12
w. r. t. these standard generators, we prove that the given group is modulo scalars isomorphic to M12,
and we get generators for the kernel.

Example
gap> g:= AtlasGroup("2.M12", IsMatrixGroup, Characteristic, IsPosInt);;

gap> gens:= Permuted(GeneratorsOfGroup(g), (1,2));;

gap> res:= StandardGeneratorsData(gens, "M12", std : projective);;

gap> gens = res.givengens;

true

gap> ResultOfStraightLineProgram(res.givengenstostdgens, gens)

> = res.stdgens;

true

gap> evl:= EvaluatePresentation(res.stdgens, "M12", std);;

gap> ForAll(evl, IsOne);

false

gap> ForAll(evl, x -> IsCentral(g, x));

true

AtlasRep — A GAP 4 Package 62

3.6 Browse Applications Provided by AtlasRep

The functions BrowseMinimalDegrees (3.6.1), BrowseBibliographySporadicSimple (3.6.2),
and BrowseAtlasInfo (BrowseAtlasInfo???) (an alternative to DisplayAtlasInfo (3.5.1)) are
available only if the GAP package Browse (see [BL18]) is loaded.

3.6.1 BrowseMinimalDegrees

▷ BrowseMinimalDegrees([gapnames]) (function)

Returns: the list of info records for the clicked representations.
If the GAP package Browse (see [BL18]) is loaded then this function is available. It opens a

browse table whose rows correspond to the groups for which AtlasRep knows some information
about minimal degrees, whose columns correspond to the characteristics that occur, and whose entries
are the known minimal degrees.

Example
gap> if IsBound(BrowseMinimalDegrees) then

> down:= NCurses.keys.DOWN;; DOWN:= NCurses.keys.NPAGE;;

> right:= NCurses.keys.RIGHT;; END:= NCurses.keys.END;;

> enter:= NCurses.keys.ENTER;; nop:= [14, 14, 14];;

> # just scroll in the table

> BrowseData.SetReplay(Concatenation([DOWN, DOWN, DOWN,

> right, right, right], "sedddrrrddd", nop, nop, "Q"));

> BrowseMinimalDegrees();;

> # restrict the table to the groups with minimal ordinary degree 6

> BrowseData.SetReplay(Concatenation("scf6",

> [down, down, right, enter, enter] , nop, nop, "Q"));

> BrowseMinimalDegrees();;

> BrowseData.SetReplay(false);

> fi;

If an argument gapnames is given then it must be a list of GAP names of groups. The browse
table is then restricted to the rows corresponding to these group names and to the columns that are
relevant for these groups. A perhaps interesting example is the subtable with the data concerning
sporadic simple groups and their covering groups, which has been published in [Jan05]. This table
can be shown as follows.

Example
gap> if IsBound(BrowseMinimalDegrees) then

> # just scroll in the table

> BrowseData.SetReplay(Concatenation([DOWN, DOWN, DOWN, END],

> "rrrrrrrrrrrrrr", nop, nop, "Q"));

> BrowseMinimalDegrees(BibliographySporadicSimple.groupNamesJan05);;

> fi;

The browse table does not contain rows for the groups 6.M22, 12.M22, 6.Fi22. Note that in spite
of the title of [Jan05], the entries in Table 1 of this paper are in fact the minimal degrees of faithful
irreducible representations, and in the above three cases, these degrees are larger than the minimal
degrees of faithful representations. The underlying data of the browse table is about the minimal
faithful (but not necessarily irreducible) degrees.

AtlasRep — A GAP 4 Package 63

The return value of BrowseMinimalDegrees is the list of OneAtlasGeneratingSetInfo (3.5.6)
values for those representations that have been “clicked” in visual mode.

The variant without arguments of this function is also available in the menu shown by
BrowseGapData (BrowseGapData???).

3.6.2 BrowseBibliographySporadicSimple

▷ BrowseBibliographySporadicSimple() (function)

Returns: a record as returned by ParseBibXMLExtString (GAPDoc: ParseBibXM-
LextString).

If the GAP package Browse (see [BL18]) is loaded then this function is available. It opens
a browse table whose rows correspond to the entries of the bibliographies in the ATLAS of Finite
Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95].

The function is based on BrowseBibliography (BrowseBibliography???), see the documentation
of this function for details, e.g., about the return value.

The returned record encodes the bibliography entries corresponding to those rows of the table
that are “clicked” in visual mode, in the same format as the return value of ParseBibXMLExtString
(GAPDoc: ParseBibXMLextString), see the manual of the GAP package GAPDoc [LN18] for
details.

BrowseBibliographySporadicSimple can be called also via the menu shown by
BrowseGapData (BrowseGapData???).

Example
gap> if IsBound(BrowseBibliographySporadicSimple) then

> enter:= NCurses.keys.ENTER;; nop:= [14, 14, 14];;

> BrowseData.SetReplay(Concatenation(

> # choose the application

> "/Bibliography of Sporadic Simple Groups", [enter, enter],

> # search in the title column for the Atlas of Finite Groups

> "scr/Atlas of finite groups", [enter,

> # and quit

> nop, nop, nop, nop], "Q"));

> BrowseGapData();;

> BrowseData.SetReplay(false);

> fi;

The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in
the ATLAS of Brauer Characters [JLPW95] are available online in HTML format, see
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl/index.html.

The source data in BibXMLext format, which are used by
BrowseBibliographySporadicSimple, are distributed with the AtlasRep package, in four
files with suffix xml in the package’s bibl directory. Note that each of the two books contains two
bibliographies.

Details about the BibXMLext format, including information how to transform the data into other
formats such as BibTeX, can be found in the GAP package GAPDoc (see [LN18]).

http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl/index.html

Chapter 4

Customizations of the AtlasRep Package

4.1 Installing the AtlasRep Package

To install the package, unpack the archive file in a directory in the pkg directory of your local copy of
GAP 4. This might be the pkg directory of the GAP 4 root directory, see (Reference: Installing a
GAP Package) for details. It is however also possible to keep an additional pkg directory somewhere
else, see Section (Reference: GAP Root Directories). The latter possibility must be chosen if you
do not have write access to the GAP root directory.

If it is likely that you will work offline, it makes sense to install the “starter archive” that can be
downloaded from the package’s homepage.

The package consists entirely of GAP code, no external binaries need to be compiled for the
package itself.

After unpacking the package archive, the write permissions for those directories should be checked
into which users will download files. Every user can customize these paths via a user preference, see
Section 4.2.2, the defaults are the subdirectories data* of the package directory. The recommended
permissions under UNIX for the default directories are set as follows.

Example
you@unix> chmod 1777 atlasrep/data*

you@unix> ls -ld atlasrep/data*

drwxrwxrwt 3 you you 1024 Apr 12 12:34 dataext

drwxrwxrwt 3 you you 1024 Apr 12 12:34 datagens

drwxrwxrwt 3 you you 1024 Apr 12 12:34 datapkg

drwxrwxrwt 3 you you 1024 Apr 12 12:34 dataword

For checking the installation of the package, you should start GAP and call
Example

gap> ReadPackage("atlasrep", "tst/testinst.g");

If the installation is o.k. then the GAP prompt appears without anything else being printed; other-
wise the output lines tell you what should be changed.

PDF, HTML, and text versions of the package manual are available in the doc directory of the
package.

64

AtlasRep — A GAP 4 Package 65

4.2 User Preferences of the AtlasRep Package

This section describes global parameters for which it might make sense to change their defaults, using
GAP’s user preferences (see (Reference: Configuring User preferences)).

• Is access to remote data allowed (see Section 4.2.1)? If yes then also the following parameters
are of interest.

– From where can the data be fetched (see Section 4.2.3)?

– Where are local copies of these data stored (see Section 4.2.2)?

– Shall files be compressed after they have been downloaded (see Section 4.2.4)?

• The following parameters influence reading and writing of local files.

– What shall actually happen when data are requested by the interface functions (see Section
4.2.5)?

– If the value of the user preference FileAccessFunctions contains "direct access to

a local server", what is its path (see Section 4.2.6)?

– Shall ScanMeatAxeFile (7.3.1) focus on small runtime or on small space when reading
MeatAxe text files (see Section 4.2.7)?

– Which kind of headers shall MeatAxeString (7.3.2) create (see Section 4.2.8)?

– Shall MeatAxeString (7.3.2) interpret permutation matrices more as permutations (mode
2) or as matrices (mode 1 or 6) (see Section 4.2.9)?

– Shall the default for CMtxBinaryFFMatOrPerm (7.3.4) be to write binary files of zero-
based or one-based permutations (see Section 4.2.10)?

• Which function is used by DisplayAtlasInfo (3.5.1) for printing to the screen (see Section
4.2.11)?

• How does DisplayAtlasInfo (3.5.1) mark data that do not belong to the core database (see
Section 4.2.12)?

• Shall debug messages be printed when local data files are read (see Section 4.2.13)?

4.2.1 User preference AtlasRepAccessRemoteFiles

The value true (the default) allows the AtlasRep package to fetch data files that are not yet locally
available. If the value is false then only those data files can be used that are available locally.

If you are working offline then you should set the value to false.
Changing the value in a running GAP session does not affect the information shown by

DisplayAtlasInfo (3.5.1), this information depends on the value of the preference at the time when
the AtlasRep package and its data extensions get loaded.

AtlasRep — A GAP 4 Package 66

4.2.2 User preference AtlasRepDataDirectory

The value must be a string that is either empty or the filename of a directory (in the sense of
IsDirectoryPath (Reference: IsDirectoryPath)) that contains the directories in which downloaded
data will be stored.

An empty string means that downloaded data are just kept in the GAP session but not saved to
local files.

The default depends on the user’s permissions for the subdirectories dataext, datagens,
dataword of the AtlasRep directory: If these directories are writable for the user then the instal-
lation path of the AtlasRep package (including a trailing slash symbol) is taken, otherwise the default
is an empty string.

4.2.3 User preference AtlasRepTOCData

The value must be a list of strings of the form "ID|address" where ID is the id of a part of the
database and address is an URL or a file path (as an absolute path or relative to the user’s home
directory, cf. Directory (Reference: Directory)) of a readable JSON format file that contain the
table of contents of this part, see StringOfAtlasTableOfContents (5.1.3).

The default lists four entries: the core database, the data distributed with the AtlasRep package,
and the data that belong to the packages MFER and CTBlocks.

4.2.4 User preference CompressDownloadedMeatAxeFiles

When used with UNIX, GAP can read gzipped files, see (Reference: Saving and Loading a
Workspace). If the package’s user preference CompressDownloadedMeatAxeFiles has the value
true then each MeatAxe format text file that is downloaded from the internet is afterwards com-
pressed with gzip. The default value is false.

Compressing files saves a lot of space if many MeatAxe format files are accessed. (Note that
data files in other formats are very small.) For example, at the time of the release of version 2.0 the
core database contained about 8400 data files in MeatAxe format, which needed about 1400 MB in
uncompressed text format and about 275 MB in compressed text format.

4.2.5 User preference FileAccessFunctions

This preference allows one to customize what actually happens when data are requested by the inter-
face functions: Is it necessary to download some files? If yes then which files are downloaded? If no
then which files are actually read into GAP?

Currently one can choose among the following features.

1. Download/read MeatAxe text files.

2. Prefer downloading/reading MeatAxe binary files.

3. Prefer reading locally available data files.

(Of course files can be downloaded only if the user preference AtlasRepAccessRemoteFiles

has the value true, see Section 4.2.1.)
This feature could be used more generally, see Section 7.2 for technical details and the possibility

to add other features.

AtlasRep — A GAP 4 Package 67

4.2.6 User preference AtlasRepLocalServerPath

If the data of the core database are available locally (for example because one has access to a local
mirror of the data) then one may prefer reading these files instead of downloading data. In order to
achieve this, one can set the user preference AtlasRepLocalServerPath and add "direct access

to a local server" to the user preference FileAccessFunctions, see Section 4.2.5.
The value must be a string that is the filename of a directory (in the sense of IsDirectoryPath

(Reference: IsDirectoryPath)) that contains the data of the ATLAS of Group Representations, in the
same directory tree structure as on the ATLAS server.

4.2.7 User preference HowToReadMeatAxeTextFiles

The value "fast" means that ScanMeatAxeFile (7.3.1) reads text files via StringFile (GAPDoc:
StringFile). Otherwise each file containing a matrix over a finite field is read line by line via ReadLine
(Reference: ReadLine), and the GAP matrix is constructed line by line, in a compressed represen-
tation (see (Reference: Row Vectors over Finite Fields) and (Reference: Matrices over Finite
Fields)); this makes it possible to read large matrices in a reasonable amount of space.

The StringFile (GAPDoc: StringFile) approach is faster but needs more intermediate space
when text files containing matrices over finite fields are read. For example, a 4370 by 4370 matrix
over the field with two elements (as occurs for an irreducible representation of the Baby Monster)
requires less than 3 MB space in GAP but the corresponding MeatAxe format text file is more than
19 MB large. This means that when one reads the file with the fast variant, GAP will temporarily
grow by more than this value.

Note that this parameter has an effect only when ScanMeatAxeFile (7.3.1) is used. It has no
effect for example if MeatAxe binary files are read, cf. FFMatOrPermCMtxBinary (7.3.5).

4.2.8 User preference WriteHeaderFormatOfMeatAxeFiles

This user preference determines the format of the header lines of MeatAxe format strings created
by MeatAxeString (7.3.2), see the C-MeatAxe manual [Rin] for details. The following values are
supported.

"numeric"

means that the header line of the returned string consists of four integers (in the case of a matrix
these are mode, row number, column number and field size),

"numeric (fixed)"

means that the header line of the returned string consists of four integers as in the case
"numeric", but additionally each integer is right aligned in a substring of length (at least)
six,

"textual"

means that the header line of the returned string consists of assignments such as matrix

field=2.

4.2.9 User preference WriteMeatAxeFilesOfMode2

The value true means that the function MeatAxeString (7.3.2) will encode permutation matrices
via mode 2 descriptions, that is, the first entry in the header line is 2, and the following lines contain

AtlasRep — A GAP 4 Package 68

the positions of the nonzero entries. If the value is false (the default) then MeatAxeString (7.3.2)
encodes permutation matrices via mode 1 or mode 6 descriptions, that is, the lines contain the matrix
entries.

4.2.10 User preference BaseOfMeatAxePermutation

The value 0 means that the function CMtxBinaryFFMatOrPerm (7.3.4) writes zero-based permuta-
tions, that is, permutations acting on the points from 0 to the degree minus one; this is achieved by
shifting down all images of the GAP permutation by one. The value 1 (the default) means that the
permutation stored in the binary file acts on the points from 1 to the degree.

Up to version 2.3 of the C-MeatAxe, permutations in binary files were always one-based. Zero-
based permutations were introduced in version 2.4.

4.2.11 User preference DisplayFunction

The way how DisplayAtlasInfo (3.5.1) shows the requested overview is controlled by the package
AtlasRep’s user preference DisplayFunction. The value must be a string that evaluates to a GAP
function. The default value is "Print" (see Print (Reference: Print)), other useful values are
"PrintFormattedString" (see PrintFormattedString (GAPDoc: PrintFormattedString)) and
"AGR.Pager"; the latter means that Pager (Reference: Pager) is called with the formatted option,
which is necessary for switching off GAP’s automatic line breaking.

4.2.12 User preference AtlasRepMarkNonCoreData

The value is a string (the default is a star ’*’) that is used in DisplayAtlasInfo (3.5.1) to mark data
that do not belong to the core database, see Section 5.2.

4.2.13 User preference DebugFileLoading

If the value is true then debug messages are printed before and after data files get loaded. The default
value is false.

4.2.14 User preference AtlasRepJsonFilesAddresses

The value, if set, must be a list of length two, the first entry being an URL describing a directory that
contains Json format files of the available matrix representations in characteristic zero, and the second
being a directory path where these files shall be stored locally. If the value is set (this is the default)
then the functions of the package use the Json format files instead of the GAP format files.

4.3 Web Contents for the AtlasRep Package

The home page of the AtlasRep package provides

• package archives,

• introductory package information,

• the current table of contents of core data in the file atlasprm.json of the package,
cf. StringOfAtlasTableOfContents (5.1.3),

https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep
https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/atlasprm.json

AtlasRep — A GAP 4 Package 69

• the list of changes of remote core data files,

• a starter archive containing many small representations and programs, and

• an overview of the core data in a similar format as the information shown by the function
DisplayAtlasInfo (3.5.1) of the package; more details can be found on the home page of the
ATLAS of Group Representations.

4.4 Extending the ATLAS Database

Users who have computed new representations that might be interesting for inclusion into the ATLAS
of Group representations can send the data in question to R.A.Wilson@qmul.ac.uk.

It is also possible to make additional representations and programs accessible for the GAP inter-
face, and to use these “private” data in the same way as the core data. See Chapter 5 for details.

https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/htm/data/changes.htm
https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/atlasrepdata.tar.gz
https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/htm/data
http://atlas.math.rwth-aachen.de/Atlas/v3
http://atlas.math.rwth-aachen.de/Atlas/v3
mailto://R.A.Wilson@qmul.ac.uk

Chapter 5

Extensions of the AtlasRep Package

It may be interesting to use the functions of the GAP interface also for representations or programs
that are not part of the ATLAS of Group Representations. This chapter describes how to achieve this.

The main idea is that users can notify collections of “private” data files, which may consist of

1. new faithful representations and programs for groups that are declared already in the core part
of the database that belongs to the “official” ATLAS of Group Representations (see Section 5.1),

2. the declaration of groups that are not declared in the ATLAS of Group Representations, and
representations and programs for them (see Section 5.2), and

3. the definition of new kinds of representations and programs (see Section 7.5).

A test example of a local extension is given in Section 5.3. Another such example is the small
collection of data that is distributed together with the package, in its datapkg directory; its contents
can be listed by calling DisplayAtlasInfo("contents", "internal").

Examples of extensions by files that can be downloaded from the internet can be found in the
GAP packages MFER [BHM09] and CTBlocks [Bre14]. These extensions are automatically notified
as soon as AtlasRep is available, via the default value of the user preference AtlasRepTOCData, see
Section 4.2.3; their contents can be listed by calling DisplayAtlasInfo("contents", "mfer")

and DisplayAtlasInfo("contents", "ctblocks"), respectively.
Several of the sanity checks for the core part of the AtlasRep data make sense also for data

extensions, see Section 7.9 for more information.

5.1 Notify Additional Data

After the AtlasRep package has been loaded into the GAP session, one can extend the data which the
interface can access by own representations and programs. The following two variants are supported.

• The additional data files are locally available in some directory. Information about the declara-
tion of new groups or about additional information such as the character names of representa-
tions can be provided in an optional JSON format file named toc.json in this directory.

• The data files can be downloaded from the internet. Both the list of available data and additional
information as in the above case are given by either a local JSON format file or the URL of a
JSON format file. This variant requires the user preference AtlasRepAccessRemoteFiles

(see Section 4.2.1) to have the value true.

70

AtlasRep — A GAP 4 Package 71

In both cases, AtlasOfGroupRepresentationsNotifyData (5.1.1) can be used to make the
private data available to the interface.

5.1.1 AtlasOfGroupRepresentationsNotifyData

▷ AtlasOfGroupRepresentationsNotifyData(dir, id[, test]) (function)

▷ AtlasOfGroupRepresentationsNotifyData(filename[, id][, test]) (function)

▷ AtlasOfGroupRepresentationsNotifyData(url[, id][, test]) (function)

Returns: true if the overview of the additional data can be evaluated and if the names of the
data files in the extension are compatible with the data files that had been available before the call,
otherwise false.

The following variants are supported for notifying additional data.

Contents of a local directory
The first argument dir must be either a local directory (see (Reference: Directories)) or a
string denoting the path of a local directory, such that the GAP object describing this directory
can be obtained by calling Directory (Reference: Directory) with the argument dir ; in
the latter case, dir can be an absolute path or a path relative to the user’s home directory
(starting with a tilde character ~) or a path relative to the directory where GAP was started. The
files contained in this directory or in its subdirectories (only one level deep) are considered. If
the directory contains a JSON document in a file with the name toc.json then this file gets
evaluated; its purpose is to provide additional information about the data files.

Calling AtlasOfGroupRepresentationsNotifyData means to evaluate the contents of the
directory and (if available) of the file toc.json.

Accessing data means to read the locally available data files.

The argument id must be a string. It will be used in the identifier components of the records
that are returned by interface functions (see Section 3.5) for data contained in the directory dir .
(Note that the directory name may be different in different GAP sessions or for different users
who want to access the same data, whereas the identifier components shall be independent
of such differences.)

An example of a local extension is the contents of the datapkg directory of the AtlasRep
package. This extension gets notified automatically when AtlasRep gets loaded. For restricting
data collections to this extension, one can use the identifier "internal".

Local file describing the contents of a local or remote directory
The first argument filename must be the name of a local file whose content is a JSON doc-
ument that lists the available data, additional information about these data, and an URL from
where the data can be downloaded. The data format of this file is defined by the JSON schema
file doc/atlasreptoc_schema.json of the AtlasRep package.

Calling AtlasOfGroupRepresentationsNotifyData means to evaluate the contents of the
file filename , without trying to access the remote data. The id is then either given implicitly
by the ID component of the JSON document or can be given as the second argument.

Downloaded data files are stored in the subdirectory dataext/id of the directory that is given
by the user preference AtlasRepDataDirectory, see Section 4.2.2.

Accessing data means to download remote files if necessary but to prefer files that are already
locally available.

AtlasRep — A GAP 4 Package 72

An example of such an extension is the set of permutation representations provided by the
MFER package [BHM09]; due to the file sizes, these representations are not distributed together
with the MFER package. For restricting data collections to this extension, one can use the
identifier "mfer".

Another example is given by some of the data that belong to the CTBlocks package [Bre14].
These data are also distributed with that package, and notifying the extension in the situation
that the CTBlocks package is available will make its local data available, via the component
LocalDirectory of the JSON document ctblocks.json; notifying the extension in the situ-
ation that the CTBlocks package is not available will make the remote files available, via the
component DataURL of this JSON document. For restricting data collections to this extension,
one can use the identifier "ctblocks".

URL of a file
(This variant works only if the IO package [Neu14] is available.)

The first argument url must be the URL of a JSON document as in the previous case.

Calling AtlasOfGroupRepresentationsNotifyData in online mode (that is, the user pref-
erence AtlasRepAccessRemoteFiles has the value true) means to download this file and to
evaluate it; the id is then given implicitly by the ID component of the JSON document, and
the contents of the document gets stored in a file with name dataext/id/toc.json, relative
to the directory given by the value of the user preference AtlasRepDataDirectory. Also
downloaded files for this extension will be stored in the directory dataext/id .

Calling AtlasOfGroupRepresentationsNotifyData in offline mode requires that the argu-
ment id is explicitly given. In this case, it is checked whether the dataext subdirectory con-
tains a subdirectory with name id ; if not then false is returned, if yes then the contents of this
local directory gets notified via the first form described above.

Accessing data in online mode means the same as in the case of a remote directory. Accessing
data in offline mode means the same as in the case of a local directory.

Examples of such extension are again the data from the packages CTBlocks and MFER de-
scribed above, but in the situation that these packages are not loaded, and that just the web
URLs of their JSON documents are entered which describe the contents.

In all three cases, if the optional argument test is given then it must be either true or false.
In the true case, consistency checks are switched on during the notification. The default for test is
false.

The notification of an extension may happen as a side-effect when a GAP package gets loaded
that provides the data in question. Besides that, one may collect the notifications of data extensions in
one’s gaprc file (see Section (Reference: The gap.ini and gaprc files)).

5.1.2 AtlasOfGroupRepresentationsForgetData

▷ AtlasOfGroupRepresentationsForgetData(dirid) (function)

If dirid is the identifier of a database extension that has been
notified with AtlasOfGroupRepresentationsNotifyData (5.1.1) then
AtlasOfGroupRepresentationsForgetData undoes the notification; this means that from
then on, the data of this extension cannot be accessed anymore in the current session.

AtlasRep — A GAP 4 Package 73

5.1.3 StringOfAtlasTableOfContents

▷ StringOfAtlasTableOfContents(inforec) (function)

For a record inforec with at least the component ID, with value "core" or the identifier of a data
extension (see AtlasOfGroupRepresentationsNotifyData (5.1.1)), this function returns a string
that describes the part of AtlasRep data belonging to inforec.ID.

Printed to a file, the returned string can be used as the table of contents of this part of the data.
For that purpose, also the following components of inforec must be bound (all strings). Version,
SelfURL (the internet address of the table of contents file itself). At least one of the following two
components must be bound. DataURL is the internet address of the directory from where the data in
question can be downloaded. LocalDirectory is a path relative to GAP’s pkg directory where the
data may be stored locally (depending on whether some GAP package is installed). If the component
DataURL is bound then the returned string contains the information about the data files; this is not
necessary if the data are only locally available. If both DataURL and LocalDirectory are bound then
locally available data will be prefered at runtime.

Alternatively, inforec can also be the ID string; in this case, the values of those of the supported
components mentioned above that are defined in an available JSON file for this ID are automatically
inserted. (If there is no such file yet then entering the ID string as inforec does not make sense.)

For an example how to use the function, see Section 5.3.

5.2 The Effect of Extensions on the User Interface

First suppose that only new groups or new data for known groups or for new groups are added.
In this case, DisplayAtlasInfo (3.5.1) lists the additional representations and programs in the

same way as other data known to AtlasRep, except that parts outside the core database are marked
with the string that is the value of the user preference AtlasRepMarkNonCoreData, see Section
4.2.12. The ordering of representations listed by DisplayAtlasInfo (3.5.1) (and referred to by
AtlasGenerators (3.5.3)) will in general change whenever extensions get notified. For the other
interface functions described in Chapter 3, the only difference is that also the additional data can be
accessed.

If also new data types are introduced in an extension (see Section 7.5) then additional columns or
rows can appear in the output of DisplayAtlasInfo (3.5.1), and new inputs can become meaningful
for all interface functions.

5.3 An Example of Extending the AtlasRep Data

This section shows an extension by a few locally available files.
We set the info level of InfoAtlasRep (7.1.1) to 1 in this section.

Example
gap> locallevel:= InfoLevel(InfoAtlasRep);;

gap> SetInfoLevel(InfoAtlasRep, 1);

Let us assume that the local directory privdir contains data for the cyclic group C4 of order 4 and
for the alternating group A5 on 5 points, respectively. Note that it is obvious what the term “standard
generators” means for the group C4.

Further let us assume that privdir contains the following files.

AtlasRep — A GAP 4 Package 74

C4G1-p4B0.m1

a faithful permutation representation of C4 on 4 points,

C4G1-max1W1

the straight line program that returns the square of its unique input,

C4G1-a2W1

the straight line program that raises its unique input to the third power,

C4G1-XtestW1

the straight line program that returns the square of its unique input,

A5G1-p60B0.m1 and A5G1-p60B0.m2

standard generators for A5 in its regular permutation representation.

The directory and the files can be created as follows.
Example

gap> prv:= DirectoryTemporary("privdir");;

gap> FileString(Filename(prv, "C4G1-p4B0.m1"),

> MeatAxeString([(1,2,3,4)], 4));;

gap> FileString(Filename(prv, "C4G1-max1W1"),

> "inp 1\npwr 2 1 2\noup 1 2\n");;

gap> FileString(Filename(prv, "C4G1-XtestW1"),

> "inp 1\npwr 2 1 2\noup 1 2\n");;

gap> FileString(Filename(prv, "C4G1-a2W1"),

> "inp 1\npwr 3 1 2\noup 1 2\n");;

gap> FileString(Filename(prv, "C4G1-Ar1aB0.g"),

> "return rec(generators:= [[[E(4)]]]);\n");;

gap> points:= Elements(AlternatingGroup(5));;

gap> FileString(Filename(prv, "A5G1-p60B0.m1"),

> MeatAxeString([Permutation((1,2)(3,4), points, OnRight)], 60));;

gap> FileString(Filename(prv, "A5G1-p60B0.m2"),

> MeatAxeString([Permutation((1,3,5), points, OnRight)], 60));;

(We could also introduce intermediate directories C4 and A5, say, each with the data for one group
only.)

The core part of the AtlasRep data does not contain information about C4, so we first notify this
group, in the file privdir/toc.json. Besides the name of the group, we store the following infor-
mation: the group order, the number of (classes of) maximal subgroups, their orders, their structures,
and describing data about the three representations. The group A5 is already known with name A5 in
the core part of the AtlasRep data, so it need not and cannot be notified again.

Example
gap> FileString(Filename(prv, "toc.json"), Concatenation(["{\n",

> "\"ID\":\"priv\",\n",

> "\"Data\":[\n",

> "[\"GNAN\",[\"C4\",\"C4\"]],\n",

> "[\"GRS\",[\"C4\",4]],\n",

> "[\"MXN\",[\"C4\",1]],\n",

> "[\"MXO\",[\"C4\",[2]]],\n",

> "[\"MXS\",[\"C4\",[\"C2\"]]],\n",

> "[\"RNG\",[\"C4G1-Ar1aB0\",\"CF(4)\",",

AtlasRep — A GAP 4 Package 75

> "[\"QuadraticField\",-1],[1,0,1]]],\n",

> "[\"API\",[\"C4G1-p4B0\",[1,4,\"imprim\",\"1 < C2\"]]],\n",

> "[\"API\",[\"A5G1-p60B0\",[1,60,\"imprim\",\"1 < S3\"]]]\n",

> "]\n",

> "}\n"]));;

Then we notify the extension.
Example

gap> AtlasOfGroupRepresentationsNotifyData(prv, "priv", true);

true

Now we can use the interface functions for accessing the additional data.
Example

gap> DisplayAtlasInfo(["C4"]);

group | # | maxes | cl | cyc | out | fnd | chk | prs

------+---+-------+----+-----+-----+-----+-----+----

C4* | 2 | 1 | | | 2 | | |

gap> DisplayAtlasInfo("C4");

Representations for G = C4: (all refer to std. generators 1)

1: G <= Sym(4)* rank 4, on cosets of 1 < C2

2: G <= GL(1a,CF(4))*

Programs for G = C4: (all refer to std. generators 1)

- automorphisms*:

2*

- maxes (all 1):

1*: C2

- other scripts*:

"test"*

gap> DisplayAtlasInfo("C4", IsPermGroup, true);

Representations for G = C4: (all refer to std. generators 1)

1: G <= Sym(4)* rank 4, on cosets of 1 < C2

gap> DisplayAtlasInfo("C4", IsMatrixGroup);

Representations for G = C4: (all refer to std. generators 1)

2: G <= GL(1a,CF(4))*

gap> DisplayAtlasInfo("C4", Dimension, 2);

gap> DisplayAtlasInfo("A5", NrMovedPoints, 60);

Representations for G = A5: (all refer to std. generators 1)

4: G <= Sym(60)* rank 60, on cosets of 1 < S3

gap> info:= OneAtlasGeneratingSetInfo("C4");

rec(contents := "priv", groupname := "C4", id := "",

identifier := ["C4", [["priv", "C4G1-p4B0.m1"]], 1, 4],

isPrimitive := false, p := 4, rankAction := 4,

repname := "C4G1-p4B0", repnr := 1, size := 4,

stabilizer := "1 < C2", standardization := 1, transitivity := 1,

type := "perm")

AtlasRep — A GAP 4 Package 76

gap> AtlasGenerators(info.identifier);

rec(contents := "priv", generators := [(1,2,3,4)],

groupname := "C4", id := "",

identifier := ["C4", [["priv", "C4G1-p4B0.m1"]], 1, 4],

isPrimitive := false, p := 4, rankAction := 4,

repname := "C4G1-p4B0", repnr := 1, size := 4,

stabilizer := "1 < C2", standardization := 1, transitivity := 1,

type := "perm")

gap> AtlasProgram("C4", 1);

rec(groupname := "C4",

identifier := ["C4", [["priv", "C4G1-max1W1"]], 1],

program := <straight line program>, size := 2, standardization := 1,

subgroupname := "C2", version := "1")

gap> AtlasProgram("C4", "maxes", 1);

rec(groupname := "C4",

identifier := ["C4", [["priv", "C4G1-max1W1"]], 1],

program := <straight line program>, size := 2, standardization := 1,

subgroupname := "C2", version := "1")

gap> AtlasProgram("C4", "maxes", 2);

fail

gap> AtlasGenerators("C4", 1);

rec(contents := "priv", generators := [(1,2,3,4)],

groupname := "C4", id := "",

identifier := ["C4", [["priv", "C4G1-p4B0.m1"]], 1, 4],

isPrimitive := false, p := 4, rankAction := 4,

repname := "C4G1-p4B0", repnr := 1, size := 4,

stabilizer := "1 < C2", standardization := 1, transitivity := 1,

type := "perm")

gap> AtlasGenerators("C4", 2);

rec(contents := "priv", dim := 1, generators := [[[E(4)]]],

groupname := "C4", id := "a",

identifier := ["C4", [["priv", "C4G1-Ar1aB0.g"]], 1, 1],

polynomial := [1, 0, 1], repname := "C4G1-Ar1aB0", repnr := 2,

ring := GaussianRationals, size := 4, standardization := 1,

type := "matalg")

gap> AtlasGenerators("C4", 3);

fail

gap> AtlasProgram("C4", "other", "test");

rec(groupname := "C4",

identifier := ["C4", [["priv", "C4G1-XtestW1"]], 1],

program := <straight line program>, standardization := 1,

version := "1")

We can restrict the data shown by DisplayAtlasInfo (3.5.1) to our extension, as follows.
Example

gap> DisplayAtlasInfo("contents", "priv");

group | # | maxes | cl | cyc | out | fnd | chk | prs

------+---+-------+----+-----+-----+-----+-----+----

A5* | 1 | | | | | | |

C4* | 2 | 1 | | | 2 | | |

For checking the data in the extension, we apply the relevant sanity checks (see Section 7.9).

AtlasRep — A GAP 4 Package 77

Example
gap> AGR.Test.Words("priv");

true

gap> AGR.Test.FileHeaders("priv");

true

gap> AGR.Test.Files("priv");

true

gap> AGR.Test.BinaryFormat("priv");

true

gap> AGR.Test.Primitivity("priv" : TryToExtendData);

true

gap> AGR.Test.Characters("priv" : TryToExtendData);

#I AGR.Test.Character:

#I add new info

["CHAR",["A5","A5G1-p60B0",

0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5"]],

#I AGR.Test.Character:

#I add new info

["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]],

true

We did not store the character information in the file privdir/toc.json, and GAP was able
to identify the characters of the two permutation representations. (The identification of the character
for the matrix representation fails because we cannot distinguish between the two Galois conjugate
faithful characters.)

If we store the character information as proposed by GAP, this information will for example
become part of the records returned by OneAtlasGeneratingSetInfo (3.5.6). (Note that we have
to enter "priv" as the last argument of AGR.CHAR when we call the function interactively, in order to
assign the information to the right context.)

Example
gap> AGR.CHAR("A5","A5G1-p60B0",

> 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5", "priv");

gap> AGR.CHAR("C4","C4G1-p4B0",0,[1,2,3,4],"1abcd", "priv");

gap> AGR.Test.Characters("priv");

true

gap> OneAtlasGeneratingSetInfo("C4");

rec(charactername := "1abcd", constituents := [1, 2, 3, 4],

contents := "priv", groupname := "C4", id := "",

identifier := ["C4", [["priv", "C4G1-p4B0.m1"]], 1, 4],

isPrimitive := false, p := 4, rankAction := 4,

repname := "C4G1-p4B0", repnr := 1, size := 4,

stabilizer := "1 < C2", standardization := 1, transitivity := 1,

type := "perm")

A string that describes the JSON format overview of the data extension can be created with
StringOfAtlasTableOfContents (5.1.3).

Example
gap> Print(StringOfAtlasTableOfContents("priv"));

{

"ID":"priv",

AtlasRep — A GAP 4 Package 78

"Data":[

["GNAN",["C4","C4"]],

["GRS",["C4",4]],

["MXN",["C4",1]],

["MXO",["C4",[2]]],

["MXS",["C4",["C2"]]],

["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]],

["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]],

["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]],

["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\

a^4+5a^5"]],

["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]]

]

}

If we prescribe a "DataURL" component that starts with "http" then also the "TOC" lines are
listed, in order to enable remote access to the data.

Example
gap> Print(StringOfAtlasTableOfContents(

> rec(ID:= "priv", DataURL:= "http://someurl")));

{

"ID":"priv",

"DataURL":"http://someurl",

"Data":[

["GNAN",["C4","C4"]],

["GRS",["C4",4]],

["MXN",["C4",1]],

["MXO",["C4",[2]]],

["MXS",["C4",["C2"]]],

["TOC",["perm","A5G1-p60B0.m",[118815263,24584221]]],

["TOC",["matalg","C4G1-Ar1aB0.g",[49815028]]],

["TOC",["otherscripts","C4G1-XtestW1",[-27672877]]],

["TOC",["out","C4G1-a2W1",[126435524]]],

["TOC",["maxes","C4G1-max1W1",[-27672877]]],

["TOC",["perm","C4G1-p4B0.m",[102601978]]],

["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]],

["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]],

["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]],

AtlasRep — A GAP 4 Package 79

["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\

a^4+5a^5"]],

["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]]

]

}

Finally, we “uninstall” our extension, and reset the info level that had been set to 1 in the beginning.
(Also the group name C4 is removed this way, which is an advantage of using a toc.json file over
calling AGR.GNAN directly.),

Example
gap> AtlasOfGroupRepresentationsForgetData("priv");

gap> SetInfoLevel(InfoAtlasRep, locallevel);

We need not care about removing the temporary directory and the files in it. GAP will try to
remove directories created with DirectoryTemporary (Reference: DirectoryTemporary) at the
end of the GAP session.

Chapter 6

New GAP Objects and Utility Functions
provided by the AtlasRep Package

This chapter describes GAP objects and functions that are provided by the AtlasRep package but that
might be of general interest.

The new objects are straight line decisions (see Section 6.1) and black box programs (see Sec-
tion 6.2).

The new functions are concerned with representations of minimal degree, see Section 6.3, and a
JSON interface, see Section 6.4.

6.1 Straight Line Decisions

Straight line decisions are similar to straight line programs (see Section (Reference: Straight Line
Programs)) but return true or false. A straight line decision checks whether its inputs have some
property. An important example is to check whether a given list of group generators is in fact a list of
standard generators (cf. Section3.3) for this group.

A straight line decision in GAP is represented by an object in the filter
IsStraightLineDecision (6.1.1) that stores a list of “lines” each of which has one of the
following three forms.

1. a nonempty dense list l of integers,

2. a pair [l, i] where l is a list of form 1. and i is a positive integer,

3. a list ["Order", i,n] where i and n are positive integers.

The first two forms have the same meaning as for straight line programs (see Section (Reference:
Straight Line Programs)), the last form means a check whether the element stored at the i-th label
has the order n.

For the meaning of the list of lines, see ResultOfStraightLineDecision (6.1.6).
Straight line decisions can be constructed using StraightLineDecision (6.1.5), defin-

ing attributes for straight line decisions are NrInputsOfStraightLineDecision (6.1.3)
and LinesOfStraightLineDecision (6.1.2), an operation for straight line decisions is
ResultOfStraightLineDecision (6.1.6).

80

AtlasRep — A GAP 4 Package 81

Special methods applicable to straight line decisions are installed for the operations Display

(Reference: Display), IsInternallyConsistent (Reference: IsInternallyConsistent), PrintObj
(Reference: PrintObj), and ViewObj (Reference: ViewObj).

For a straight line decision prog , the default Display (Reference: Display) method prints the
interpretation of prog as a sequence of assignments of associative words and of order checks; a record
with components gensnames (with value a list of strings) and listname (a string) may be entered as
second argument of Display (Reference: Display), in this case these names are used, the default for
gensnames is [g1, g2, . . .], the default for listname is r.

6.1.1 IsStraightLineDecision

▷ IsStraightLineDecision(obj) (category)

Each straight line decision in GAP lies in the filter IsStraightLineDecision.

6.1.2 LinesOfStraightLineDecision

▷ LinesOfStraightLineDecision(prog) (operation)

Returns: the list of lines that define the straight line decision.
This defining attribute for the straight line decision prog (see IsStraightLineDecision (6.1.1))

corresponds to LinesOfStraightLineProgram (Reference: LinesOfStraightLineProgram) for
straight line programs.

Example
gap> dec:= StraightLineDecision([[[1, 1, 2, 1], 3],

> ["Order", 1, 2], ["Order", 2, 3], ["Order", 3, 5]]);

<straight line decision>

gap> LinesOfStraightLineDecision(dec);

[[[1, 1, 2, 1], 3], ["Order", 1, 2], ["Order", 2, 3],

["Order", 3, 5]]

6.1.3 NrInputsOfStraightLineDecision

▷ NrInputsOfStraightLineDecision(prog) (operation)

Returns: the number of inputs required for the straight line decision.
This defining attribute corresponds to NrInputsOfStraightLineProgram (Reference: NrIn-

putsOfStraightLineProgram).
Example

gap> NrInputsOfStraightLineDecision(dec);

2

6.1.4 ScanStraightLineDecision

▷ ScanStraightLineDecision(string) (function)

Returns: a record containing the straight line decision, or fail.
Let string be a string that encodes a straight line decision in the sense that it consists of the lines

listed for ScanStraightLineProgram (7.4.1), except that oup lines are not allowed, and instead lines
of the following form may occur.

AtlasRep — A GAP 4 Package 82

chor a b
means that it is checked whether the order of the element at label a is b.

ScanStraightLineDecision returns a record containing as the value of its component program
the corresponding GAP straight line decision (see IsStraightLineDecision (6.1.1)) if the input
string satisfies the syntax rules stated above, and returns fail otherwise. In the latter case, information
about the first corrupted line of the program is printed if the info level of InfoCMeatAxe (7.1.2) is at
least 1.

Example
gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";;

gap> prg:= ScanStraightLineDecision(str);

rec(program := <straight line decision>)

gap> prg:= prg.program;;

gap> Display(prg);

input:

r:= [g1, g2];

program:

if Order(r[1]) <> 2 then return false; fi;

if Order(r[2]) <> 3 then return false; fi;

r[3]:= r[1]*r[2];

if Order(r[3]) <> 5 then return false; fi;

return value:

true

6.1.5 StraightLineDecision

▷ StraightLineDecision(lines[, nrgens]) (function)

▷ StraightLineDecisionNC(lines[, nrgens]) (function)

Returns: the straight line decision given by the list of lines.
Let lines be a list of lists that defines a unique straight line decision

(see IsStraightLineDecision (6.1.1)); in this case StraightLineDecision returns this
program, otherwise an error is signalled. The optional argument nrgens specifies the number of
input generators of the program; if a list of integers (a line of form 1. in the definition above) occurs in
lines then this number is not determined by lines and therefore must be specified by the argument
nrgens ; if not then StraightLineDecision returns fail.

StraightLineDecisionNC does the same as StraightLineDecision, except that the internal
consistency of the program is not checked.

6.1.6 ResultOfStraightLineDecision

▷ ResultOfStraightLineDecision(prog, gens[, orderfunc]) (operation)

Returns: true if all checks succeed, otherwise false.
ResultOfStraightLineDecision evaluates the straight line decision

(see IsStraightLineDecision (6.1.1)) prog at the group elements in the list gens .
The function for computing the order of a group element can be given as the optional argument

orderfunc . For example, this may be a function that gives up at a certain limit if one has to be aware
of extremely huge orders in failure cases.

The result of a straight line decision with lines p1, p2, . . . , pk when applied to gens is defined as
follows.

AtlasRep — A GAP 4 Package 83

(a) First a list r of intermediate values is initialized with a shallow copy of gens .

(b) For i ≤ k, before the i-th step, let r be of length n. If pi is the external representation of an
associative word in the first n generators then the image of this word under the homomorphism
that is given by mapping r to these first n generators is added to r. If pi is a pair [l, j], for a list
l, then the same element is computed, but instead of being added to r, it replaces the j-th entry
of r. If pi is a triple ["Order", i,n] then it is checked whether the order of r[i] is n; if not then
false is returned immediately.

(c) If all k lines have been processed and no order check has failed then true is returned.

Here are some examples.
Example

gap> dec:= StraightLineDecision([], 1);

<straight line decision>

gap> ResultOfStraightLineDecision(dec, [()]);

true

The above straight line decision dec returns true –for any input of the right length.
Example

gap> dec:= StraightLineDecision([[[1, 1, 2, 1], 3],

> ["Order", 1, 2], ["Order", 2, 3], ["Order", 3, 5]]);

<straight line decision>

gap> LinesOfStraightLineDecision(dec);

[[[1, 1, 2, 1], 3], ["Order", 1, 2], ["Order", 2, 3],

["Order", 3, 5]]

gap> ResultOfStraightLineDecision(dec, [(), ()]);

false

gap> ResultOfStraightLineDecision(dec, [(1,2)(3,4), (1,4,5)]);

true

The above straight line decision admits two inputs; it tests whether the orders of the inputs are 2
and 3, and the order of their product is 5.

6.1.7 Semi-Presentations and Presentations

We can associate a finitely presented group F/R to each straight line decision dec , say, as follows. The
free generators of the free group F are in bijection with the inputs, and the defining relators generating
R as a normal subgroup of F are given by those words wk for which dec contains a check whether the
order of w equals k.

So if dec returns true for the input list [g1,g2, . . . ,gn] then mapping the free generators of F to
the inputs defines an epimorphism Φ from F to the group G, say, that is generated by these inputs,
such that R is contained in the kernel of Φ.

(Note that “satisfying dec” is a stronger property than “satisfying a presentation”. For example,
⟨x | x2 = x3 = 1⟩ is a presentation for the trivial group, but the straight line decision that checks whether
the order of x is both 2 and 3 clearly always returns false.)

AtlasRep supports the following two kinds of straight line decisions.

AtlasRep — A GAP 4 Package 84

• A presentation is a straight line decision dec that is defined for a set of standard generators of
a group G and that returns true if and only if the list of inputs is in fact a sequence of such
standard generators for G. In other words, the relators derived from the order checks in the
way described above are defining relators for G, and moreover these relators are words in terms
of standard generators. (In particular the kernel of the map Φ equals R whenever dec returns
true.)

• A semi-presentation is a straight line decision dec that is defined for a set of standard gener-
ators of a group G and that returns true for a list of inputs that is known to generate a group
isomorphic with G if and only if these inputs form in fact a sequence of standard generators for
G. In other words, the relators derived from the order checks in the way described above are
not necessarily defining relators for G, but if we assume that the gi generate G then they are
standard generators. (In particular, F/R may be a larger group than G but in this case Φ maps
the free generators of F to standard generators of G.)

More about semi-presentations can be found in [NW05].

Available presentations and semi-presentations are listed by DisplayAtlasInfo (3.5.1), they can
be accessed via AtlasProgram (3.5.4). (Clearly each presentation is also a semi-presentation. So a
semi-presentation for some standard generators of a group is regarded as available whenever a presen-
tation for these standard generators and this group is available.)

Note that different groups can have the same semi-presentation. We illustrate this with an example
that is mentioned in [NW05]. The groups L2(7) ∼= L3(2) and L2(8) are generated by elements of the
orders 2 and 3 such that their product has order 7, and no further conditions are necessary to define
standard generators.

Example
gap> check:= AtlasProgram("L2(8)", "check");

rec(groupname := "L2(8)",

identifier := ["L2(8)", "L28G1-check1", 1, 1],

program := <straight line decision>, standardization := 1,

version := "1")

gap> gens:= AtlasGenerators("L2(8)", 1);

rec(charactername := "1a+8a", constituents := [1, 6],

contents := "core",

generators := [(1,2)(3,4)(6,7)(8,9), (1,3,2)(4,5,6)(7,8,9)],

groupname := "L2(8)", id := "",

identifier := ["L2(8)", ["L28G1-p9B0.m1", "L28G1-p9B0.m2"], 1, 9

], isPrimitive := true, maxnr := 1, p := 9, rankAction := 2,

repname := "L28G1-p9B0", repnr := 1, size := 504,

stabilizer := "2^3:7", standardization := 1, transitivity := 3,

type := "perm")

gap> ResultOfStraightLineDecision(check.program, gens.generators);

true

gap> gens:= AtlasGenerators("L3(2)", 1);

rec(contents := "core", generators := [(2,4)(3,5), (1,2,3)(5,6,7)],

groupname := "L3(2)", id := "a",

identifier := ["L3(2)", ["L27G1-p7aB0.m1", "L27G1-p7aB0.m2"], 1,

7], isPrimitive := true, maxnr := 1, p := 7, rankAction := 2,

repname := "L27G1-p7aB0", repnr := 1, size := 168,

stabilizer := "S4", standardization := 1, transitivity := 2,

type := "perm")

AtlasRep — A GAP 4 Package 85

gap> ResultOfStraightLineDecision(check.program, gens.generators);

true

6.1.8 AsStraightLineDecision

▷ AsStraightLineDecision(bbox) (attribute)

Returns: an equivalent straight line decision for the given black box program, or fail.
For a black box program (see IsBBoxProgram (6.2.1)) bbox , AsStraightLineDecision returns

a straight line decision (see IsStraightLineDecision (6.1.1)) with the same output as bbox , in the
sense of AsBBoxProgram (6.2.5), if such a straight line decision exists, and fail otherwise.

Example
gap> lines:= [["Order", 1, 2], ["Order", 2, 3],

> [[1, 1, 2, 1], 3], ["Order", 3, 5]];;

gap> dec:= StraightLineDecision(lines, 2);

<straight line decision>

gap> bboxdec:= AsBBoxProgram(dec);

<black box program>

gap> asdec:= AsStraightLineDecision(bboxdec);

<straight line decision>

gap> LinesOfStraightLineDecision(asdec);

[["Order", 1, 2], ["Order", 2, 3], [[1, 1, 2, 1], 3],

["Order", 3, 5]]

6.1.9 StraightLineProgramFromStraightLineDecision

▷ StraightLineProgramFromStraightLineDecision(dec) (operation)

Returns: the straight line program associated to the given straight line decision.
For a straight line decision dec (see IsStraightLineDecision (6.1.1),

StraightLineProgramFromStraightLineDecision returns the straight line program (see
IsStraightLineProgram (Reference: IsStraightLineProgram) obtained by replacing each line
of type 3. (i.e, each order check) by an assignment of the power in question to a new slot, and by
declaring the list of these elements as the return value.

This means that the return value describes exactly the defining relators of the presentation that is
associated to the straight line decision, see 6.1.7.

For example, one can use the return value for printing the relators with
StringOfResultOfStraightLineProgram (Reference: StringOfResultOfStraightLinePro-
gram), or for explicitly constructing the relators as words in terms of free generators, by applying
ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) to the program
and to these generators.

Example
gap> dec:= StraightLineDecision([[[1, 1, 2, 1], 3],

> ["Order", 1, 2], ["Order", 2, 3], ["Order", 3, 5]]);

<straight line decision>

gap> prog:= StraightLineProgramFromStraightLineDecision(dec);

<straight line program>

gap> Display(prog);

input:

r:= [g1, g2];

AtlasRep — A GAP 4 Package 86

program:

r[3]:= r[1]*r[2];

r[4]:= r[1]^2;

r[5]:= r[2]^3;

r[6]:= r[3]^5;

return values:

[r[4], r[5], r[6]]

gap> StringOfResultOfStraightLineProgram(prog, ["a", "b"]);

"[a^2, b^3, (ab)^5]"

gap> gens:= GeneratorsOfGroup(FreeGroup("a", "b"));

[a, b]

gap> ResultOfStraightLineProgram(prog, gens);

[a^2, b^3, (a*b)^5]

6.2 Black Box Programs

Black box programs formalize the idea that one takes some group elements, forms arithmetic expres-
sions in terms of them, tests properties of these expressions, executes conditional statements (including
jumps inside the program) depending on the results of these tests, and eventually returns some result.

A specification of the language can be found in [Nic06], see also
http://atlas.math.rwth-aachen.de/Atlas/info/blackbox.html.
The inputs of a black box program may be explicit group elements, and the program may also

ask for random elements from a given group. The program steps form products, inverses, conjugates,
commutators, etc. of known elements, tests concern essentially the orders of elements, and the result
is a list of group elements or true or false or fail.

Examples that can be modeled by black box programs are

straight line programs,
which require a fixed number of input elements and form arithmetic expressions of elements
but do not use random elements, tests, conditional statements and jumps; the return value is
always a list of elements; these programs are described in Section (Reference: Straight Line
Programs).

straight line decisions,
which differ from straight line programs only in the sense that also order tests are admissible,
and that the return value is true if all these tests are satisfied, and false as soon as the first
such test fails; they are described in Section 6.1.

scripts for finding standard generators,
which take a group and a function to generate a random element in this group but no explicit
input elements, admit all control structures, and return either a list of standard generators or
fail; see ResultOfBBoxProgram (6.2.4) for examples.

In the case of general black box programs, currently GAP provides only the possibility to read
an existing program via ScanBBoxProgram (6.2.2), and to run the program using RunBBoxProgram

(6.2.3). It is not our aim to write such programs in GAP.
The special case of the “find” scripts mentioned above is also admissible as an argument of

ResultOfBBoxProgram (6.2.4), which returns either the set of found generators or fail.

http://atlas.math.rwth-aachen.de/Atlas/info/blackbox.html

AtlasRep — A GAP 4 Package 87

Contrary to the general situation, more support is provided for straight line programs and straight
line decisions in GAP, see Section (Reference: Straight Line Programs) for functions that manipu-
late them (compose, restrict etc.).

The functions AsStraightLineProgram (6.2.6) and AsStraightLineDecision (6.1.8) can be
used to transform a general black box program object into a straight line program or a straight line
decision if this is possible.

Conversely, one can create an equivalent general black box program from a straight line program
or from a straight line decision with AsBBoxProgram (6.2.5).

Computing a straight line program related to a given straight line decision is supported in the sense
of StraightLineProgramFromStraightLineDecision (6.1.9).

Note that none of these three kinds of objects is a special case of another: Running a black
box program with RunBBoxProgram (6.2.3) yields a record, running a straight line program with
ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) yields a list of el-
ements, and running a straight line decision with ResultOfStraightLineDecision (6.1.6) yields
true or false.

6.2.1 IsBBoxProgram

▷ IsBBoxProgram(obj) (category)

Each black box program in GAP lies in the filter IsBBoxProgram.

6.2.2 ScanBBoxProgram

▷ ScanBBoxProgram(string) (function)

Returns: a record containing the black box program encoded by the input string, or fail.
For a string string that describes a black box program, e.g., the return value of StringFile

(GAPDoc: StringFile), ScanBBoxProgram computes this black box program. If this is successful
then the return value is a record containing as the value of its component program the corresponding
GAP object that represents the program, otherwise fail is returned.

As the first example, we construct a black box program that tries to find standard generators for
the alternating group A5; these standard generators are any pair of elements of the orders 2 and 3,
respectively, such that their product has order 5.

Example
gap> findstr:= "\

> set V 0\n\

> lbl START1\n\

> rand 1\n\

> ord 1 A\n\

> incr V\n\

> if V gt 100 then timeout\n\

> if A notin 1 2 3 5 then fail\n\

> if A noteq 2 then jmp START1\n\

> lbl START2\n\

> rand 2\n\

> ord 2 B\n\

> incr V\n\

> if V gt 100 then timeout\n\

> if B notin 1 2 3 5 then fail\n\

AtlasRep — A GAP 4 Package 88

> if B noteq 3 then jmp START2\n\

> # The elements 1 and 2 have the orders 2 and 3, respectively.\n\

> set X 0\n\

> lbl CONJ\n\

> incr X\n\

> if X gt 100 then timeout\n\

> rand 3\n\

> cjr 2 3\n\

> mu 1 2 4 # ab\n\

> ord 4 C\n\

> if C notin 2 3 5 then fail\n\

> if C noteq 5 then jmp CONJ\n\

> oup 2 1 2";;

gap> find:= ScanBBoxProgram(findstr);

rec(program := <black box program>)

The second example is a black box program that checks whether its two inputs are standard gen-
erators for A5.

Example
gap> checkstr:= "\

> chor 1 2\n\

> chor 2 3\n\

> mu 1 2 3\n\

> chor 3 5";;

gap> check:= ScanBBoxProgram(checkstr);

rec(program := <black box program>)

6.2.3 RunBBoxProgram

▷ RunBBoxProgram(prog, G, input, options) (function)

Returns: a record describing the result and the statistics of running the black box program prog ,
or fail, or the string "timeout".

For a black box program prog , a group G , a list input of group elements, and a record options ,
RunBBoxProgram applies prog to input , where G is used only to compute random elements.

The return value is fail if a syntax error or an explicit fail statement is reached at runtime,
and the string "timeout" if a timeout statement is reached. (The latter might mean that the random
choices were unlucky.) Otherwise a record with the following components is returned.

gens

a list of group elements, bound if an oup statement was reached,

result

true if a true statement was reached, false if either a false statement or a failed order check
was reached,

The other components serve as statistical information about the numbers of the various operations
(multiply, invert, power, order, random, conjugate, conjugateinplace, commutator), and
the runtime in milliseconds (timetaken).

The following components of options are supported.

AtlasRep — A GAP 4 Package 89

randomfunction

the function called with argument G in order to compute a random element of G (default
PseudoRandom (Reference: PseudoRandom))

orderfunction

the function for computing element orders (default Order (Reference: Order)),

quiet

if true then ignore echo statements (default false),

verbose

if true then print information about the line that is currently processed, and about order checks
(default false),

allowbreaks

if true then call Error (Reference: Error) when a break statement is reached, otherwise
ignore break statements (default true).

As an example, we run the black box programs constructed in the example for ScanBBoxProgram
(6.2.2).

Example
gap> g:= AlternatingGroup(5);;

gap> res:= RunBBoxProgram(find.program, g, [], rec());;

gap> IsBound(res.gens); IsBound(res.result);

true

false

gap> List(res.gens, Order);

[2, 3]

gap> Order(Product(res.gens));

5

gap> res:= RunBBoxProgram(check.program, "dummy", res.gens, rec());;

gap> IsBound(res.gens); IsBound(res.result);

false

true

gap> res.result;

true

gap> othergens:= GeneratorsOfGroup(g);;

gap> res:= RunBBoxProgram(check.program, "dummy", othergens, rec());;

gap> res.result;

false

6.2.4 ResultOfBBoxProgram

▷ ResultOfBBoxProgram(prog, G[, options]) (function)

Returns: a list of group elements or true, false, fail, or the string "timeout".
This function calls RunBBoxProgram (6.2.3) with the black box program prog and second argu-

ment either a group or a list of group elements; if options is not given then the default options of
RunBBoxProgram (6.2.3) are assumed. The return value is fail if this call yields fail, otherwise the
gens component of the result, if bound, or the result component if not.

Note that a group G is used as the second argument in the call of RunBBoxProgram (6.2.3) (the
source for random elements), whereas a list G is used as the third argument (the inputs).

AtlasRep — A GAP 4 Package 90

As an example, we run the black box programs constructed in the example for ScanBBoxProgram
(6.2.2).

Example
gap> g:= AlternatingGroup(5);;

gap> res:= ResultOfBBoxProgram(find.program, g);;

gap> List(res, Order);

[2, 3]

gap> Order(Product(res));

5

gap> res:= ResultOfBBoxProgram(check.program, res);

true

gap> othergens:= GeneratorsOfGroup(g);;

gap> res:= ResultOfBBoxProgram(check.program, othergens);

false

6.2.5 AsBBoxProgram

▷ AsBBoxProgram(slp) (attribute)

Returns: an equivalent black box program for the given straight line program or straight line
decision.

Let slp be a straight line program (see IsStraightLineProgram (Reference: IsStraight-
LineProgram)) or a straight line decision (see IsStraightLineDecision (6.1.1)). Then
AsBBoxProgram returns a black box program bbox (see IsBBoxProgram (6.2.1)) with the
“same” output as slp , in the sense that ResultOfBBoxProgram (6.2.4) yields the same result
for bbox as ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) or
ResultOfStraightLineDecision (6.1.6), respectively, for slp .

Example
gap> f:= FreeGroup("x", "y");; gens:= GeneratorsOfGroup(f);;

gap> slp:= StraightLineProgram([[1,2,2,3], [3,-1]], 2);

<straight line program>

gap> ResultOfStraightLineProgram(slp, gens);

y^-3*x^-2

gap> bboxslp:= AsBBoxProgram(slp);

<black box program>

gap> ResultOfBBoxProgram(bboxslp, gens);

[y^-3*x^-2]

gap> lines:= [["Order", 1, 2], ["Order", 2, 3],

> [[1, 1, 2, 1], 3], ["Order", 3, 5]];;

gap> dec:= StraightLineDecision(lines, 2);

<straight line decision>

gap> ResultOfStraightLineDecision(dec, [(1,2)(3,4), (1,3,5)]);

true

gap> ResultOfStraightLineDecision(dec, [(1,2)(3,4), (1,3,4)]);

false

gap> bboxdec:= AsBBoxProgram(dec);

<black box program>

gap> ResultOfBBoxProgram(bboxdec, [(1,2)(3,4), (1,3,5)]);

true

gap> ResultOfBBoxProgram(bboxdec, [(1,2)(3,4), (1,3,4)]);

false

AtlasRep — A GAP 4 Package 91

6.2.6 AsStraightLineProgram

▷ AsStraightLineProgram(bbox) (attribute)

Returns: an equivalent straight line program for the given black box program, or fail.
For a black box program (see AsBBoxProgram (6.2.5)) bbox , AsStraightLineProgram returns

a straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) with
the same output as bbox if such a straight line program exists, and fail otherwise.

Example
gap> Display(AsStraightLineProgram(bboxslp));

input:

r:= [g1, g2];

program:

r[3]:= r[1]^2;

r[4]:= r[2]^3;

r[5]:= r[3]*r[4];

r[3]:= r[5]^-1;

return values:

[r[3]]

gap> AsStraightLineProgram(bboxdec);

fail

6.3 Representations of Minimal Degree

This section deals with minimal degrees of permutation and matrix representations. We do not provide
an algorithm that computes these degrees for an arbitrary group, we only provide some tools for
evaluating known databases, mainly concerning “bicyclic extensions” (see [CCN+85, Section 6.5]) of
simple groups, in order to derive the minimal degrees, see Section 6.3.4.

In the AtlasRep package, this information can be used for prescribing “minimal-
ity conditions” in DisplayAtlasInfo (3.5.1), OneAtlasGeneratingSetInfo (3.5.6), and
AllAtlasGeneratingSetInfos (3.5.7). An overview of the stored minimal degrees can be shown
with BrowseMinimalDegrees (3.6.1).

6.3.1 MinimalRepresentationInfo

▷ MinimalRepresentationInfo(grpname, conditions) (function)

Returns: a record with the components value and source, or fail
Let grpname be the GAP name of a group G, say. If the information described by

conditions about minimal representations of this group can be computed or is stored then
MinimalRepresentationInfo returns a record with the components value and source, otherwise
fail is returned.

The following values for conditions are supported.

• If conditions is NrMovedPoints (Reference: NrMovedPoints for a permutation) then
value, if known, is the degree of a minimal faithful (not necessarily transitive) permutation
representation for G.

• If conditions consists of Characteristic (Reference: Characteristic) and a prime integer
p then value, if known, is the dimension of a minimal faithful (not necessarily irreducible)
matrix representation in characteristic p for G.

AtlasRep — A GAP 4 Package 92

• If conditions consists of Size (Reference: Size) and a prime power q then value, if known,
is the dimension of a minimal faithful (not necessarily irreducible) matrix representation over
the field of size q for G.

In all cases, the value of the component source is a list of strings that describe sources of the
information, which can be the ordinary or modular character table of G (see [CCN+85], [JLPW95],
[HL89]), the table of marks of G, or [Jan05]. For an overview of minimal degrees of faithful matrix
representations for sporadic simple groups and their covering groups, see also

http://www.math.rwth-aachen.de/~MOC/mindeg/.
Note that MinimalRepresentationInfo cannot provide any information about minimal repre-

sentations over prescribed fields in characteristic zero.
Information about groups that occur in the AtlasRep package is precomputed in

MinimalRepresentationInfoData (6.3.2), so the packages CTblLib and TomLib are not needed
when MinimalRepresentationInfo is called for these groups. (The only case that is not covered
by this list is that one asks for the minimal degree of matrix representations over a prescribed field in
characteristic coprime to the group order.)

One of the following strings can be given as an additional last argument.

"cache"

means that the function tries to compute (and then store) values that are not stored in
MinimalRepresentationInfoData (6.3.2), but stored values are preferred; this is also the
default.

"lookup"

means that stored values are returned but the function does not attempt to compute values that
are not stored in MinimalRepresentationInfoData (6.3.2).

"recompute"

means that the function always tries to compute the desired value, and checks the result against
stored values.

Example
gap> MinimalRepresentationInfo("A5", NrMovedPoints);

rec(

source := ["computed (alternating group)",

"computed (char. table)", "computed (subgroup tables)",

"computed (subgroup tables, known repres.)",

"computed (table of marks)"], value := 5)

gap> MinimalRepresentationInfo("A5", Characteristic, 2);

rec(source := ["computed (char. table)"], value := 2)

gap> MinimalRepresentationInfo("A5", Size, 2);

rec(source := ["computed (char. table)"], value := 4)

6.3.2 MinimalRepresentationInfoData

▷ MinimalRepresentationInfoData (global variable)

This is a record whose components are GAP names of groups for which information about min-
imal permutation and matrix representations were known in advance or have been computed in the
current GAP session. The value for the group G, say, is a record with the following components.

http://www.math.rwth-aachen.de/~MOC/mindeg/

AtlasRep — A GAP 4 Package 93

NrMovedPoints

a record with the components value (the degree of a smallest faithful permutation representa-
tion of G) and source (a string describing the source of this information).

Characteristic

a record whose components are at most 0 and strings corresponding to prime integers, each
bound to a record with the components value (the degree of a smallest faithful matrix represen-
tation of G in this characteristic) and source (a string describing the source of this information).

CharacteristicAndSize

a record whose components are strings corresponding to prime integers p , each bound to a
record with the components sizes (a list of powers q of p), dimensions (the corresponding list
of minimal dimensions of faithful matrix representations of G over a field of size q), sources
(the corresponding list of strings describing the source of this information), and complete (a
record with the components val (true if the minimal dimension over any finite field in char-
acteristic p can be derived from the values in the record, and false otherwise) and source (a
string describing the source of this information)).

The values are set by SetMinimalRepresentationInfo (6.3.3).

6.3.3 SetMinimalRepresentationInfo

▷ SetMinimalRepresentationInfo(grpname, op, value, source) (function)

Returns: true if the values were successfully set, false if stored values contradict the given
ones.

This function sets an entry in MinimalRepresentationInfoData (6.3.2) for the group G, say,
with GAP name grpname .

Supported values for op are

• "NrMovedPoints" (see NrMovedPoints (Reference: NrMovedPoints for a permutation)),
which means that value is the degree of minimal faithful (not necessarily transitive) permuta-
tion representations of G,

• a list of length two with first entry "Characteristic" (see Characteristic (Reference:
Characteristic)) and second entry char either zero or a prime integer, which means that value
is the dimension of minimal faithful (not necessarily irreducible) matrix representations of G in
characteristic char ,

• a list of length two with first entry "Size" (see Size (Reference: Size)) and second entry a
prime power q , which means that value is the dimension of minimal faithful (not necessarily
irreducible) matrix representations of G over the field with q elements, and

• a list of length three with first entry "Characteristic" (see Characteristic (Reference:
Characteristic)), second entry a prime integer p , and third entry the string "complete", which
means that the information stored for characteristic p is complete in the sense that for any given
power q of p , the minimal faithful degree over the field with q elements equals that for the
largest stored field size of which q is a power.

AtlasRep — A GAP 4 Package 94

In each case, source is a string describing the source of the data; computed values are detected
from the prefix "comp" of source .

If the intended value is already stored and differs from value then an error message is printed.
Example

gap> SetMinimalRepresentationInfo("A5", "NrMovedPoints", 5,

> "computed (alternating group)");

true

gap> SetMinimalRepresentationInfo("A5", ["Characteristic", 0], 3,

> "computed (char. table)");

true

gap> SetMinimalRepresentationInfo("A5", ["Characteristic", 2], 2,

> "computed (char. table)");

true

gap> SetMinimalRepresentationInfo("A5", ["Size", 2], 4,

> "computed (char. table)");

true

gap> SetMinimalRepresentationInfo("A5", ["Size", 4], 2,

> "computed (char. table)");

true

gap> SetMinimalRepresentationInfo("A5", ["Characteristic", 3], 3,

> "computed (char. table)");

true

6.3.4 Criteria Used to Compute Minimality Information

The information about the minimal degree of a faithful matrix representation of G in a given charac-
teristic or over a given field in positive characteristic is derived from the relevant (ordinary or modular)
character table of G, except in a few cases where this table itself is not known but enough information
about the degrees is available in [HL89] and [Jan05].

The following criteria are used for deriving the minimal degree of a faithful permutation represen-
tation of G from the information in the GAP libraries of character tables and of tables of marks.

• If the name of G has the form "An" or "An.2" (denoting alternating and symmetric groups,
respectively) then the minimal degree is n, except if n is smaller than 3 or 2, respectively.

• If the name of G has the form "L2(q)" (denoting projective special linear groups in dimension
two) then the minimal degree is q+1, except if q ∈ {2,3,5,7,9,11}, see [Hup67, Satz II.8.28].

• If the largest maximal subgroup of G is core-free then the index of this subgroup is the minimal
degree. (This is used when the two character tables in question and the class fusion are available
in GAP’s Character Table Library [Bre22]; this happens for many character tables of simple
groups.)

• If G has a unique minimal normal subgroup then each minimal faithful permutation represen-
tation is transitive. (Note that the core of each point stabilizer is either trivial or contains the
unique minimal normal subgroup.)

In this case, the minimal degree can be computed directly from the information in the table of
marks of G if this is available in GAP’s Library of Tables of Marks [NMP18].

Suppose that the largest maximal subgroup of G is not core-free but simple and normal in G,
and that the other maximal subgroups of G are core-free. In this case, we take the minimum of

AtlasRep — A GAP 4 Package 95

the indices of the core-free maximal subgroups and of the product of index and minimal degree
of the normal maximal subgroup. (This suffices since no core-free subgroup of the whole group
can contain a nontrivial normal subgroup of a normal maximal subgroup.)

Let N be the unique minimal normal subgroup of G, and assume that G/N is simple and has
minimal degree n, say. If there is a subgroup U of index n · |N| in G that intersects N trivially
then the minimal degree of G is n · |N|. (This is used for the case that N is central in G and N×U
occurs as a subgroup of G.)

• If we know a subgroup of G whose minimal degree is n, say, and if we know either (a class
fusion from) a core-free subgroup of index n in G or a faithful permutation representation of
degree n for G then n is the minimal degree for G. (This happens often for tables of almost
simple groups.)

6.4 A JSON Interface

We define a mapping between certain GAP objects and JSON (JavaScript Object Notation) texts (see
[JSO14]), as follows.

• The three GAP values true, false, and fail correspond to the JSON texts true, false, and
null, respectively.

• GAP strings correspond to JSON strings; special characters in a GAP string (control characters
ASCII 0 to 31, backslash and double quote) are mapped as defined in JSON’s specification, and
other ASCII characters are kept as they are; if a GAP string contains non-ASCII characters, it is
assumed that it is UTF-8 encoded, and one may choose either to keep non-ASCII characters as
they are, or to create an ASCII only JSON string, using JSON’s syntax for Unicode code points
(“\uXXXX”); in the other direction, JSON strings are assumed to be UTF-8 encoded, and are
mapped to UTF-8 encoded GAP strings, by keeping the non-ASCII characters and converting
substrings of the form \uXXXX accordingly.

• GAP integers (in the sense of IsInt (Reference: IsInt)) are mapped to JSON numbers that
consist of digits and optionally a leading sign character -; in the other direction, JSON numbers
of this form and also JSON numbers that involve no decimal dots and have no negative exponent
(for example "2e3") are mapped to GAP integers.

• GAP rationals (in the sense of IsRat (Reference: IsRat)) which are not integers are repre-
sented by JSON floating point numbers; the JSON representation (and hence the precision) is
given by first applying Float (Reference: Float) and then String (Reference: String).

• GAP floats (in the sense of Chapter (Reference: Floats) in the GAP Reference Manual) are
mapped to JSON floating point numbers; the JSON representation (and hence the precision)
is given by applying String (Reference: String); in the other direction, JSON numbers that
involve a decimal dot or a negative exponent are mapped to GAP floats.

• (Nested and not self-referential) dense GAP lists of objects correspond to JSON arrays such that
the list entries correspond to each other. (Note that JSON does not support non-dense arrays.)

• (Nested and not self-referential) GAP records correspond to JSON objects such that both labels
(which are strings in GAP and JSON) and values correspond to each other.

AtlasRep — A GAP 4 Package 96

The GAP functions AGR.JsonText (6.4.2) and AGR.GapObjectOfJsonText (6.4.3) can be used
to create a JSON text from a suitable GAP object and the GAP object that corresponds to a given
JSON text, respectively.

Note that the composition of the two functions is in general not the identity mapping, because
AGR.JsonText (6.4.2) accepts non-integer rationals, whereas AGR.GapObjectOfJsonText (6.4.3)
does not create such objects.

Note also that the results of AGR.JsonText (6.4.2) do not contain information about dependencies
between common subobjects. This is another reason why applying first AGR.JsonText (6.4.2) and
then AGR.GapObjectOfJsonText (6.4.3) may yield a GAP object with different behaviour.

Applying AGR.JsonText (6.4.2) to a self-referential object such as [~] will raise a “recursion
depth trap” error.

6.4.1 Why JSON?

The aim of this JSON interface is to read and write certain data files with GAP such that these files
become easily accessible independent of GAP. The function AGR.JsonText (6.4.2) is intended just as
a prototype, variants of this function are very likely to appear in other contexts, for example in order
to force certain line formatting or ordering of record components.

It is not the aim of the JSON interface to provide self-contained descriptions of arbitrary GAP
objects, in order to read them into a GAP session. Note that those GAP objects for which a JSON
equivalent exists (and many more) can be easily written to files as they are, and GAP can read them
efficiently. On the other hand, more complicated GAP objects can be written and read via the so-called
pickling, for which a framework is provided by the GAP package IO [Neu14].

Here are a few situations which are handled well by pickling but which cannot be addressed with
a JSON interface.

• Pickling and unpickling take care of common subobjects of the given GAP object.
The following example shows that the applying first AGR.JsonText (6.4.2) and then
AGR.GapObjectOfJsonText (6.4.3) may yield an object which behaves differently.

Example
gap> l:= [[1]];; l[2]:= l[1];; l;

[[1], [1]]

gap> new:= AGR.GapObjectOfJsonText(AGR.JsonText(l)).value;

[[1], [1]]

gap> Add(l[1], 2); l;

[[1, 2], [1, 2]]

gap> Add(new[1], 2); new;

[[1, 2], [1]]

• GAP admits self-referential objects, for example as follows.
Example

gap> l:= [];; l[1]:= l;;

Pickling and unpickling take care of self-referential objects, but AGR.JsonText (6.4.2) does not
support the conversion of such objects.

AtlasRep — A GAP 4 Package 97

6.4.2 AGR.JsonText

▷ AGR.JsonText(obj[, mode]) (function)

Returns: a new mutable string that describes obj as a JSON text, or fail.
If obj is a GAP object for which a corresponding JSON text exists, according to the mapping

described above, then such a JSON text is returned. Otherwise, fail is returned.
If the optional argument mode is given and has the value "ASCII" then the result in an ASCII

string, otherwise the encoding of strings that are involved in obj is kept.
Example

gap> AGR.JsonText([]);

"[]"

gap> AGR.JsonText("");

"\"\""

gap> AGR.JsonText("abc\ndef\cghi");

"\"abc\\ndef\\u0003ghi\""

gap> AGR.JsonText(rec());

"{}"

gap> AGR.JsonText([, 2]);

fail

gap> str:= ['\303', '\266'];; # umlaut o

gap> json:= AGR.JsonText(str);; List(json, IntChar);

[34, 195, 182, 34]

gap> AGR.JsonText(str, "ASCII");

"\"\\u00F6\""

6.4.3 AGR.GapObjectOfJsonText

▷ AGR.GapObjectOfJsonText(string) (function)

Returns: a new mutable record whose value component, if bound, contains a mutable GAP
object that represents the JSON text string .

If string is a string that represents a JSON text then the result is a record with the components
value (the corresponding GAP object in the sense of the above interface) and status (value true).
Otherwise, the result is a record with the components status (value false) and errpos (the position
in string where the string turns out to be not valid JSON).

Example
gap> AGR.GapObjectOfJsonText("{ \"a\": 1 }");

rec(status := true, value := rec(a := 1))

gap> AGR.GapObjectOfJsonText("{ \"a\": x }");

rec(errpos := 8, status := false)

Chapter 7

Technicalities of the AtlasRep Package

This chapter describes those parts of the GAP interface to the ATLAS of Group Representations that
do not belong to the user interface (cf. Chapter 3).

Besides global variables used for administrational purposes (see Section 7.1) and several sanity
checks (see Section 7.9), they can be regarded as the interface between the data actually contained
in the files and the corresponding GAP objects (see Section 7.2, 7.3, 7.4, and 7.5), and the interface
between the remote and the local version of the database (see Section 7.6 and 7.8). The former
interface contains functions to read and write files in MeatAxe format, which may be interesting for
users familiar with MeatAxe standalones (see for example [Rin]). Other low level functions may be
undocumented in the sense that they are not described in this manual. Users interested in them may
look at the actual implementation in the gap directory of the package, but it may happen that this will
be changed in future versions of the package.

7.1 Global Variables Used by the AtlasRep Package

For debugging purposes, AtlasRep functions print information depending on the info level of the info
classes InfoAtlasRep (7.1.1), InfoCMeatAxe (7.1.2), and InfoBBox (7.1.3) (cf. (Reference: Info
Functions)).

The info level of an info class can be changed using SetInfoLevel (Reference: InfoLevel).
For example, the info level of InfoAtlasRep (7.1.1) can be set to the nonnegative integer n using
SetInfoLevel(InfoAtlasRep, n).

7.1.1 InfoAtlasRep

▷ InfoAtlasRep (info class)

If the info level of InfoAtlasRep is at least 1 then information about fail results of AtlasRep
functions is printed. If the info level is at least 2 then also information about calls to external programs
is printed. The default level is 0, no information is printed on this level.

7.1.2 InfoCMeatAxe

▷ InfoCMeatAxe (info class)

98

AtlasRep — A GAP 4 Package 99

If the info level of InfoCMeatAxe is at least 1 then information about fail results of C-MeatAxe
functions (see Section 7.3) is printed. The default level is zero, no information is printed on this level.

7.1.3 InfoBBox

▷ InfoBBox (info class)

If the info level of InfoBBox is at least 1 then information about fail results of functions dealing
with black box programs (see Section 6.2) is printed. The default level is 0, no information is printed
on this level.

7.1.4 AGR

▷ AGR (global variable)

is a record whose components are functions and data that are used by the high level interface
functions. Some of the components are documented, see for example the index of the package manual.

7.1.5 AtlasOfGroupRepresentationsInfo

▷ AtlasOfGroupRepresentationsInfo (global variable)

This is a record that is defined in the file gap/types.g of the package, with the following compo-
nents.

GAPnames

a list of pairs, each containing the GAP name and the ATLAS-file name of a group, see Sec-
tion 3.2,

notified

a list used for administrating extensions of the database (see Chapter 5); the
value is changed by AtlasOfGroupRepresentationsNotifyData (5.1.1) and
AtlasOfGroupRepresentationsForgetData (5.1.2),

characterinfo, permrepinfo, ringinfo
additional information about representations, concerning the afforded characters, the point sta-
bilizers of permutation representations, and the rings of definition of matrix representations; this
information is used by DisplayAtlasInfo (3.5.1),

TableOfContents

a record with at most the components core, internal, local, merged, types, and
the identifiers of database extensions. The value of the component types is set in
AGR.DeclareDataType (7.5.1), and the values of the other components are created by
AtlasOfGroupRepresentationsNotifyData (5.1.1).

accessFunctions

a list of records, each describing how to access the data files, see Sections 4.2.5 and 7.2, and

AtlasRep — A GAP 4 Package 100

7.2 How to Customize the Access to Data files

By default, locally available data files are stored in prescribed directories, and the files are exactly the
text files that have been downloaded from appropriate places in the internet. However, a more flexible
approach may be useful.

First, one may want to use different file formats, for example MeatAxe binary files may be pro-
vided parallel to MeatAxe text files. Second, one may want to use a different directory structure, for
example the same structure as used on some server –this makes sense for example if a local mirror of
a server is available, because then one can read the server files directly, without transferring/copying
them to another directory.

In order to achieve this (and perhaps more), we admit to customize the meaning of the following
three access steps.

Are the required data locally available?
There may be different file formats available, such as text or binary files, and it may happen that
the data are available in one file or are distributed to several files.

How can a file be made locally available?
A different remote file may be fetched, or some postprocessing may be required.

How is the data of a file accessed by GAP?
A different function may be needed to evaluate the file contents.

For creating an overview of the locally available data, the first of these steps must be available in-
dependent of actually accessing the file in question. For updating the local copy of the server data, the
second of the above steps must be available independent of the third one. Therefore, the package pro-
vides the possibility to extend the default behaviour by adding new records to the accessFunctions
component of AtlasOfGroupRepresentationsInfo (7.1.5). The relevant record components are as
follows.

description

This must be a short string that describes for which kinds of files the functions in the current
record are intended, which file formats are supported etc. The value is used as key in the user
preference FileAccessFunctions, see Section 4.2.5.

location(f iles, type)

Let f iles be a list of pairs [dirname, filename], and type be the data type (see
AGR.DeclareDataType (7.5.1)) to which the files belong. This function must return either
the absolute paths where the mechanism implemented by the current record expects the local
version of the given files, or fail if this function does not feel responsible for these files.

The files are regarded as not locally available if all installed location functions return either
fail or paths of nonexisting files, in the sense of IsExistingFile (Reference: IsExisting-
File).

fetch(f ilepath, f ilename,dirname, type)

This function is called if a file is not locally available and if the location function in the current
record has returned a list of paths. The argument type must be the same as for the location

function, and f ilepath and f ilename must be strings (not lists of strings).

AtlasRep — A GAP 4 Package 101

The return value must be true if the function succeeded with making the file locally available
(including postprocessing if applicable), a string with the contents of the data file if the remote
data were directly loaded into the GAP session (if no local caching is possible), and false

otherwise.

contents(f iles, type, f ilepaths)

This function is called when the location function in the current record has returned the path(s)
f ilepath, and if either these are paths of existing files or the fetch function in the current record
has been called for these paths, and the return value was true. The first three arguments must
be the same as for the location function.

The return value must be the contents of the file(s), in the sense that the GAP matrix, matrix
list, permutation, permutation list, or program described by the file(s) is returned. This means
that besides reading the file(s) via the appropriate function, interpreting the contents may be
necessary.

In AGR.FileContents (7.6.2), those records in the accessFunctions component of
AtlasOfGroupRepresentationsInfo (7.1.5) are considered –in reversed order– whose
description component occurs in the user preference FileAccessFunctions, see Section
4.2.5.

7.3 Reading and Writing MeatAxe Format Files

7.3.1 ScanMeatAxeFile

▷ ScanMeatAxeFile(filename[, q][, "string"]) (function)

Returns: the matrix or list of permutations stored in the file or encoded by the string.
Let filename be the name of a GAP readable file (see (Reference: Filename)) that contains a

matrix or a permutation or a list of permutations in MeatAxe text format (see the section about the
program zcv in the C-MeatAxe documentation [Rin]), and let q be a prime power. ScanMeatAxeFile
returns the corresponding GAP matrix or list of permutations, respectively.

If the file contains a matrix then the way how it is read by ScanMeatAxeFile depends on the value
of the user preference HowToReadMeatAxeTextFiles, see Section 4.2.7.

If the parameter q is given then the result matrix is represented over the field with q elements, the
default for q is the field size stored in the file.

If the file contains a list of permutations then it is read with StringFile (GAPDoc: StringFile);
the parameter q , if given, is ignored in this case.

If the string "string" is entered as the third argument then the first argument must be a string as
obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference:
InputTextFile)). Also in this case, ScanMeatAxeFile returns the corresponding GAP matrix or list
of permutations, respectively.

7.3.2 MeatAxeString

▷ MeatAxeString(mat, q) (operation)

▷ MeatAxeString(perms, degree) (operation)

▷ MeatAxeString(perm, q, dims) (operation)

AtlasRep — A GAP 4 Package 102

▷ MeatAxeString(intmat) (operation)

Returns: a string encoding the GAP objects given as input in C-MeatAxe text format, see [Rin].
In the first form, for a matrix mat whose entries lie in the finite field with q elements,

MeatAxeString returns a string that encodes mat as a matrix over GF(q).
In the second form, for a nonempty list perms of permutations that move only points up to the

positive integer degree , MeatAxeString returns a string that encodes perms as permutations of
degree degree .

In the third form, for a permutation perm with largest moved point n, say, a prime power q , and
a list dims of length two containing two positive integers larger than or equal to n, MeatAxeString
returns a string that encodes perm as a matrix over GF(q), of dimensions dims , whose first n rows
and columns describe the permutation matrix corresponding to perm , and the remaining rows and
columns are zero.

In the fourth form, for a matrix intmat of integers, MeatAxeString returns a string that encodes
intmat as an integer matrix.

When strings are printed to files using PrintTo (Reference: PrintTo) or AppendTo (Reference:
AppendTo) then line breaks are inserted whenever lines exceed the number of characters given by
the second entry of the list returned by SizeScreen (Reference: SizeScreen), see (Reference:
Operations for Output Streams). This behaviour is not desirable for creating data files. So the
recommended functions for printing the result of MeatAxeString to a file are FileString (GAPDoc:
FileString) and WriteAll (Reference: WriteAll).

Example
gap> mat:= [[1, -1], [0, 1]] * Z(3)^0;;

gap> str:= MeatAxeString(mat, 3);

"1 3 2 2\n12\n01\n"

gap> mat = ScanMeatAxeFile(str, "string");

true

gap> str:= MeatAxeString(mat, 9);

"1 9 2 2\n12\n01\n"

gap> mat = ScanMeatAxeFile(str, "string");

true

gap> perms:= [(1,2,3)(5,6)];;

gap> str:= MeatAxeString(perms, 6);

"12 1 6 1\n2\n3\n1\n4\n6\n5\n"

gap> perms = ScanMeatAxeFile(str, "string");

true

gap> str:= MeatAxeString(perms, 8);

"12 1 8 1\n2\n3\n1\n4\n6\n5\n7\n8\n"

gap> perms = ScanMeatAxeFile(str, "string");

true

Note that the output of MeatAxeString in the case of permutation matrices depends on the user
preference WriteMeatAxeFilesOfMode2.

Example
gap> perm:= (1,2,4);;

gap> str:= MeatAxeString(perm, 3, [5, 6]);

"2 3 5 6\n2\n4\n3\n1\n5\n"

gap> mat:= ScanMeatAxeFile(str, "string");; Print(mat, "\n");

[[0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3)],

[0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3)],

AtlasRep — A GAP 4 Package 103

[0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3)],

[Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3)],

[0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3)]]

gap> pref:= UserPreference("AtlasRep", "WriteMeatAxeFilesOfMode2");;

gap> SetUserPreference("AtlasRep", "WriteMeatAxeFilesOfMode2", true);

gap> MeatAxeString(mat, 3) = str;

true

gap> SetUserPreference("AtlasRep", "WriteMeatAxeFilesOfMode2", false);

gap> MeatAxeString(mat, 3);

"1 3 5 6\n010000\n000100\n001000\n100000\n000010\n"

gap> SetUserPreference("AtlasRep", "WriteMeatAxeFilesOfMode2", pref);

7.3.3 FFList

▷ FFList(F) (function)

Returns: a list of elements in the given finite field.
▷ FFLists (global variable)

FFList is a utility program for the conversion of vectors and matrices from MeatAxe format to
GAP format and vice versa. It is used by ScanMeatAxeFile (7.3.1) and MeatAxeString (7.3.2).

For a finite field F , FFList returns a list l giving the correspondence between the MeatAxe num-
bering and the GAP numbering of the elements in F .

The element of F corresponding to MeatAxe number n is l[n+ 1], and the MeatAxe number of
the field element z is Position(l,z) - 1.

The global variable FFLists is used to store the information about F once it has been computed.
Example

gap> FFList(GF(4));

[0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2]

gap> IsBound(FFLists[4]);

true

The MeatAxe defines the bijection between the elements in the field with q = pd elements and
the set {0,1, . . . ,q− 1} of integers by assigning the field element ∑

d−1
i=0 cizi to the integer ∑

d−1
i=0 ci pi,

where the ci are in the set {0,1, . . . , p− 1} and z is the primitive root of the field with q elements
that corresponds to the residue class of the indeterminate, modulo the ideal spanned by the Conway
polynomial of degree d over the field with p elements.

The finite fields introduced by the StandardFF package [Lüb21] are supported by FFList and
FFLists, in the sense that the bijection defined by StandardIsomorphismGF (StandardIsomorphis-
mGF???) is applied automatically when F is a field in the filter IsStandardFiniteField (IsStan-
dardFiniteField???).

7.3.4 CMtxBinaryFFMatOrPerm

▷ CMtxBinaryFFMatOrPerm(elm, def, outfile[, base]) (function)

Let the pair (elm ,def) be either of the form (M,q) where M is a matrix over a finite field F , say,
with q ≤ 256 elements, or of the form (π,n) where π is a permutation with largest moved point at
most n. Let outfile be a string. CMtxBinaryFFMatOrPerm writes the C-MeatAxe binary format of

AtlasRep — A GAP 4 Package 104

M, viewed as a matrix over F , or of π , viewed as a permutation on the points up to n, to the file with
name outfile .

In the case of a permutation π , the optional argument base prescribes whether the binary file
contains the points from 0 to deg−1 (base= 0, supported by version 2.4 of the C-MeatAxe) or the
points from 1 to deg (base= 1, supported by older versions of the C-MeatAxe). The default for base
is given by the value of the user preference BaseOfMeatAxePermutation, see Section 4.2.10.

(The binary format is described in the C-MeatAxe manual [Rin].)
Example

gap> tmpdir:= DirectoryTemporary();;

gap> mat:= Filename(tmpdir, "mat");;

gap> q:= 4;;

gap> mats:= GeneratorsOfGroup(GL(10,q));;

gap> CMtxBinaryFFMatOrPerm(mats[1], q, Concatenation(mat, "1"));

gap> CMtxBinaryFFMatOrPerm(mats[2], q, Concatenation(mat, "2"));

gap> prm:= Filename(tmpdir, "prm");;

gap> n:= 200;;

gap> perms:= GeneratorsOfGroup(SymmetricGroup(n));;

gap> CMtxBinaryFFMatOrPerm(perms[1], n, Concatenation(prm, "1"));

gap> CMtxBinaryFFMatOrPerm(perms[2], n, Concatenation(prm, "2"));

gap> CMtxBinaryFFMatOrPerm(perms[1], n, Concatenation(prm, "1a"), 0);

gap> CMtxBinaryFFMatOrPerm(perms[2], n, Concatenation(prm, "2b"), 1);

7.3.5 FFMatOrPermCMtxBinary

▷ FFMatOrPermCMtxBinary(fname) (function)

Returns: the matrix or permutation stored in the file.
Let fname be the name of a file that contains the C-MeatAxe binary format of a matrix over

a finite field or of a permutation, as is described in [Rin]. FFMatOrPermCMtxBinary returns the
corresponding GAP matrix or permutation.

Example
gap> FFMatOrPermCMtxBinary(Concatenation(mat, "1")) = mats[1];

true

gap> FFMatOrPermCMtxBinary(Concatenation(mat, "2")) = mats[2];

true

gap> FFMatOrPermCMtxBinary(Concatenation(prm, "1")) = perms[1];

true

gap> FFMatOrPermCMtxBinary(Concatenation(prm, "2")) = perms[2];

true

gap> FFMatOrPermCMtxBinary(Concatenation(prm, "1a")) = perms[1];

true

gap> FFMatOrPermCMtxBinary(Concatenation(prm, "2b")) = perms[2];

true

7.4 Reading and Writing ATLAS Straight Line Programs

7.4.1 ScanStraightLineProgram

▷ ScanStraightLineProgram(filename[, "string"]) (function)

Returns: a record containing the straight line program, or fail.

AtlasRep — A GAP 4 Package 105

Let filename be the name of a file that contains a straight line program in the sense that it consists
only of lines in the following form.

#anything
lines starting with a hash sign # are ignored,

echo anything
lines starting with echo are ignored for the program component of the result record (see below),
they are used to set up the bijection between the labels used in the program and conjugacy class
names in the case that the program computes dedicated class representatives,

inp n
means that there are n inputs, referred to via the labels 1, 2, . . ., n,

inp k a1 a2 ... ak
means that the next k inputs are referred to via the labels a1, a2, ..., ak,

cjr a b
means that a is replaced by b^(-1) * a * b,

cj a b c
means that c is defined as b^(-1) * a * b,

com a b c
means that c is defined as a^(-1) * b^(-1) * a * b,

iv a b
means that b is defined as a^(-1),

mu a b c
means that c is defined as a * b,

pwr a b c
means that c is defined as b^a,

cp a b
means that b is defined as a copy of a,

oup l
means that there are l outputs, stored in the labels 1, 2, . . ., l, and

oup l b1 b2 ... bl
means that the next l outputs are stored in the labels b1, b2, ... bl.

Each of the labels a, b, c can be any nonempty sequence of digits and alphabet characters, except
that the first argument of pwr must denote an integer.

If the inp or oup statements are missing then the input or output, respectively, is assumed to be
given by the labels 1 and 2. There can be multiple inp lines at the beginning of the program and
multiple oup lines at the end of the program. Only the first inp or oup line may omit the names of the
elements. For example, an empty file filename or an empty string string represent a straight line
program with two inputs that are returned as outputs.

AtlasRep — A GAP 4 Package 106

No command except cjr may overwrite its own input. For example, the line mu a b a is not
legal. (This is not checked.)

ScanStraightLineProgram returns a record containing as the value of its component program
the corresponding GAP straight line program (see IsStraightLineProgram (Reference: Is-
StraightLineProgram)) if the input string satisfies the syntax rules stated above, and returns fail

otherwise. In the latter case, information about the first corrupted line of the program is printed if the
info level of InfoCMeatAxe (7.1.2) is at least 1.

If the string "string" is entered as the second argument then the first argument must be a string as
obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference:
InputTextFile)). Also in this case, ScanStraightLineProgram returns either a record with the
corresponding GAP straight line program or fail.

If the input describes a straight line program that computes certain class representatives of the
group in question then the result record also contains the component outputs. Its value is a list of
strings, the entry at position i denoting the name of the class in which the i output of the straight line
program lies; see Section 3.4 for the definition of the class names that occur.

Such straight line programs must end with a sequence of output specifications of the following
form.

Example
echo "Classes 1A 2A 3A 5A 5B"

oup 5 3 1 2 4 5

This example means that the list of outputs of the program contains elements of the classes 1A, 2A,
3A, 5A, and 5B (in this order), and that inside the program, these elements are referred to by the five
names 3, 1, 2, 4, and 5.

7.4.2 AtlasStringOfProgram

▷ AtlasStringOfProgram(prog[, outputnames]) (function)

▷ AtlasStringOfProgram(prog, "mtx") (function)

Returns: a string encoding the straight line program/decision in the format used in ATLAS files.
For a straight line program or straight line decision prog (see IsStraightLineProgram

(Reference: IsStraightLineProgram) and IsStraightLineDecision (6.1.1)), this function returns
a string describing the input format of an equivalent straight line program or straight line decision
as used in the data files, that is, the lines are of the form described in ScanStraightLineProgram

(7.4.1).
A list of strings that is given as the optional second argument outputnames is interpreted as the

class names corresponding to the outputs; this argument has the effect that appropriate echo statements
appear in the result string.

If the string "mtx" is given as the second argument then the result has the format used in the C-
MeatAxe (see [Rin]) rather than the format described for ScanStraightLineProgram (7.4.1). (Note
that the C-MeatAxe format does not make sense if the argument outputnames is given, and that this
format does not support inp and oup statements.)

The argument prog must not be a black box program (see IsBBoxProgram (6.2.1)).
Example

gap> str:= "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2 1 2";;

gap> prg:= ScanStraightLineProgram(str, "string");

rec(program := <straight line program>)

AtlasRep — A GAP 4 Package 107

gap> prg:= prg.program;;

gap> Display(prg);

input:

r:= [g1, g2];

program:

r[3]:= r[1]*r[2];

r[2]:= r[3]*r[1];

r[1]:= r[2]^-1;

return values:

[r[1], r[2]]

gap> StringOfResultOfStraightLineProgram(prg, ["a", "b"]);

"[(aba)^-1, aba]"

gap> AtlasStringOfProgram(prg);

"inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2\n"

gap> prg:= StraightLineProgram("(a^2b^3)^-1", ["a", "b"]);

<straight line program>

gap> Print(AtlasStringOfProgram(prg));

inp 2

pwr 2 1 4

pwr 3 2 5

mu 4 5 3

iv 3 4

oup 1 4

gap> prg:= StraightLineProgram([[2,3], [[3,1,1,4], [1,2,3,1]]], 2);

<straight line program>

gap> Print(AtlasStringOfProgram(prg));

inp 2

pwr 3 2 3

pwr 4 1 5

mu 3 5 4

pwr 2 1 6

mu 6 3 5

oup 2 4 5

gap> Print(AtlasStringOfProgram(prg, "mtx"));

inputs are expected in 1 2

zsm pwr3 2 3

zsm pwr4 1 5

zmu 3 5 4

zsm pwr2 1 6

zmu 6 3 5

echo "outputs are in 4 5"

gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";;

gap> prg:= ScanStraightLineDecision(str);;

gap> AtlasStringOfProgram(prg.program);

"inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5\n"

7.5 Data Types Used in the AtlasRep Package

Each representation or program that is administrated by the AtlasRep package belongs to a unique
data type. Informally, examples of data types are “permutation representation”, “matrix representation
over the integers”, or “straight line program for computing class representatives”.

AtlasRep — A GAP 4 Package 108

The idea is that for each data type, there can be

• a column of its own in the output produced by DisplayAtlasInfo (3.5.1) when called without
arguments or with only argument a list of group names,

• a line format of its own for the output produced by DisplayAtlasInfo (3.5.1) when called
with first argument a group name,

• an input format of its own for AtlasProgram (3.5.4),

• an input format of its own for OneAtlasGeneratingSetInfo (3.5.6), and

• specific tests for the data of this data type; these functions are used by the global tests described
in Section 7.9.

Formally, a data type is defined by a record whose components are used by the interface functions.
The details are described in the following.

7.5.1 AGR.DeclareDataType

▷ AGR.DeclareDataType(kind, name, record) (function)

Let kind be one of the strings "rep" or "prg", and record be a record. If kind is "rep" then
AGR.DeclareDataType declares a new data type of representations, if kind is "prg" then it declares
a new data type of programs. The string name is the name of the type, for example "perm", "matff",
or "classes". AtlasRep stores the data for each group internally in a record whose component name
holds the list of the data about the type with this name.

Mandatory components of record are

FilenameFormat

This defines the format of the filenames containing data of the type in question. The value must
be a list that can be used as the second argument of AGR.ParseFilenameFormat (7.6.1), such
that only filenames of the type in question match. (It is not checked whether this “detection
function” matches exactly one type, so declaring a new type needs care.)

AddFileInfo

This defines the information stored in the table of contents for the data of the type. The value
must be a function that takes three arguments (the current list of data for the type and the
given group, a list returned by AGR.ParseFilenameFormat (7.6.1) for the given type, and a
filename). This function adds the necessary parts of the data entry to the list, and returns true
if the data belongs to the type, otherwise false is returned; note that the latter case occurs if
the filename matches the format description but additional conditions on the parts of the name
are not satisfied (for example integer parts may be required to be positive or prime powers).

ReadAndInterpretDefault

This is the function that does the work for the default contents value of the accessFunctions
component of AtlasOfGroupRepresentationsInfo (7.1.5), see Section 7.2. This function
must take a path and return the GAP object given by this file.

AtlasRep — A GAP 4 Package 109

AddDescribingComponents (for rep only)
This function takes two arguments, a record (that will be returned by AtlasGenerators (3.5.3),
OneAtlasGeneratingSetInfo (3.5.6), or AllAtlasGeneratingSetInfos (3.5.7)) and the
type record record . It sets the components p, dim, id, and ring that are promised for return
values of the abovementioned three functions.

DisplayGroup (for rep only)
This defines the format of the lines printed by DisplayAtlasInfo (3.5.1) for a given group.
The value must be a function that takes a list as returned by the function given in the component
AddFileInfo, and returns the string to be printed for the representation in question.

Optional components of record are

DisplayOverviewInfo

This is used to introduce a new column in the output of DisplayAtlasInfo (3.5.1) when this is
called without arguments or with a list of group names as its only argument. The value must be
a list of length three, containing at its first position a string used as the header of the column, at
its second position one of the strings "r" or "l", denoting right or left aligned column entries,
and at its third position a function that takes two arguments (a list of tables of contents of the
AtlasRep package and a group name), and returns a list of length two, containing the string
to be printed as the column value and true or false, depending on whether private data is
involved or not. (The default is fail, indicating that no new column shall be printed.)

DisplayPRG (for prg only)
This is used in DisplayAtlasInfo (3.5.1) for ATLAS programs. The value must be a function
that takes four arguments (a list of tables of contents to examine, a list containing the GAP
name and the ATLAS name of the given group, a list of integers or true for the required stan-
dardization, and a list of all available standardizations), and returns the list of lines (strings) to
be printed as the information about the available programs of the current type and for the given
group. (The default is to return an empty list.)

AccessGroupCondition (for rep only)
This is used in DisplayAtlasInfo (3.5.1) and OneAtlasGeneratingSetInfo (3.5.6).
The value must be a function that takes two arguments (a list as returned by
OneAtlasGeneratingSetInfo (3.5.6), and a list of conditions), and returns true or false,
depending on whether the first argument satisfies the conditions. (The default value is
ReturnFalse (Reference: ReturnFalse).)

The function must support conditions such as [IsPermGroup, true] and [

NrMovedPoints, [5, 6]], in general a list of functions followed by a prescribed
value, a list of prescribed values, another (unary) function, or the string "minimal". For an
overview of the interesting functions, see DisplayAtlasInfo (3.5.1).

AccessPRG (for prg only)
This is used in AtlasProgram (3.5.4). The value must be a function that takes four argu-
ments (the current table of contents, the group name, an integer or a list of integers or true
for the required standardization, and a list of conditions given by the optional arguments of
AtlasProgram (3.5.4)), and returns either fail or a list that together with the group name
forms the identifier of a program that matches the conditions. (The default value is ReturnFail
(Reference: ReturnFail).)

AtlasRep — A GAP 4 Package 110

AtlasProgram (for prg only)
This is used in AtlasProgram (3.5.4) to create the result value from the identifier. (The default
value is AtlasProgramDefault, which works whenever the second entry of the identifier is the
filename; this is not the case for example if the program is the composition of several programs.)

AtlasProgramInfo (for prg only)
This is used in AtlasProgramInfo (3.5.5) to create the result value from the identifier. (The
default value is AtlasProgramDefault.)

TOCEntryString

This is used in StringOfAtlasTableOfContents (5.1.3). The value must be a func-
tion that takes two or three arguments (the name name of the type, a list as returned by
AGR.ParseFilenameFormat (7.6.1), and optionally a string that indicates the “remote” for-
mat) and returns a string that describes the appropriate data format. (The default value is
TOCEntryStringDefault.)

PostprocessFileInfo

This is used in the construction of a table of contents for testing or rearranging the data of the
current table of contents. The value must be a function that takes two arguments, the table of
contents record and the record in it that belongs to one fixed group. (The default function does
nothing.)

SortTOCEntries

This is used in the construction of a table of contents for sorting the entries after they have been
added and after the value of the component PostprocessFileInfo has been called. The value
must be a function that takes a list as returned by AGR.ParseFilenameFormat (7.6.1), and
returns the sorting key. (There is no default value, which means that no sorting is needed.)

TestFileHeaders (for rep only)
This is used in the function AGR.Test.FileHeaders. The value must be a function that takes
the same four arguments as AGR.FileContents (7.6.2), except that the third argument is a
list as returned by AGR.ParseFilenameFormat (7.6.1). (The default value is ReturnTrue

(Reference: ReturnTrue).)

TestFiles (for rep only)
This is used in the function AGR.Test.Files. The format of the value and the default are the
same as for the component TestFileHeaders.

TestWords (for prg only)
This is used in the function AGR.Test.Words. The value must be a function that takes five
arguments where the first four are the same arguments as for AGR.FileContents (7.6.2), except
that the fifth argument is true or false, indicating verbose mode or not.

7.6 Filenames Used in the AtlasRep Package

AtlasRep expects that the filename of each data file describes the contents of the file. This section
lists the definitions of the supported structures of filenames.

Each filename consists of two parts, separated by a minus sign -. The first part is always of the
form groupnameGi, where the integer i denotes the i-th set of standard generators for the group G, say,

AtlasRep — A GAP 4 Package 111

with ATLAS-file name groupname (see 3.2). The translations of the name groupname to the name(s)
used within GAP is given by the component GAPnames of AtlasOfGroupRepresentationsInfo
(7.1.5).

The names of files that contain straight line programs or straight line decisions have one of the
following forms. In each of these cases, the suffix Wn means that n is the version number of the
program.

groupnameGi-cycWn
In this case, the file contains a straight line program that returns a list of representatives of
generators of maximally cyclic subgroups of G. An example is Co1G1-cycW1.

groupnameGi-cclsWn
In this case, the file contains a straight line program that returns a list of conjugacy class repre-
sentatives of G. An example is RuG1-cclsW1.

groupnameGicycWn-cclsWm
In this case, the file contains a straight line program that takes the return value of the program
in the file groupnameGi-cycWn (see above), and returns a list of conjugacy class representatives
of G. An example is M11G1cycW1-cclsW1.

groupnameGi-maxkWn
In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set
of standard generators, and returns a list of generators (in general not standard generators) for a
subgroup U in the k-th class of maximal subgroups of G. An example is J1G1-max7W1.

groupnameGimaxkWn-subgroupnameG jWm
In this case, the file contains a straight line program that takes the return value of the pro-
gram in the file groupnameGi-maxkWn (see above), which are generators for a group U , say;
subgroupname is a name for U , and the return value is a list of standard generators for U ,
w. r. t. the j-th set of standard generators. (Of course this implies that the groups in the k-th
class of maximal subgroups of G are isomorphic to the group with name subgroupname.) An
example is J1G1max1W1-L211G1W1; the first class of maximal subgroups of the Janko group
J1 consists of groups isomorphic to the linear group L2(11), for which standard generators are
defined.

groupnameGi-aoutnameWn
In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th
set of standard generators, and returns the list of their images under the outer automorphism α

of G given by the name outname; if this name is empty then α is the unique nontrivial outer
automorphism of G; if it is a positive integer k then α is a generator of the unique cyclic order
k subgroup of the outer automorphism group of G; if it is of the form 2_1 or 2a, 4_2 or 4b, 3_3
or 3c . . . then α generates the cyclic group of automorphisms induced on G by G.21, G.42, G.33
. . .; finally, if it is of the form kpd, with k one of the above forms and d an integer then d denotes
the number of dashes appended to the automorphism described by k; if d = 1 then d can be
omitted. Examples are A5G1-aW1, L34G1-a2_1W1, U43G1-a2_3pW1, and O8p3G1-a2_2p5W1;
these file names describe the outer order 2 automorphism of A5 (induced by the action of S5)
and the order 2 automorphisms of L3(4), U4(3), and O+

8 (3) induced by the actions of L3(4).21,
U4(3).2′2, and O+

8 (3).2
′′′′′
2 , respectively.

AtlasRep — A GAP 4 Package 112

groupnameGi-ker f actgroupnameWn
In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set
of standard generators, and returns generators of the kernel of an epimorphism that maps G to a
group with ATLAS-file name f actgroupname. An example is 2A5G1-kerA5W1.

groupnameGi-G jWn
In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th
set of standard generators, and returns standard generators of G w. r. t. the j-th set of standard
generators. An example is L35G1-G2W1.

groupnameGi-checkn
In this case, the file contains a straight line decision that takes generators of G, and returns true
if these generators are standard generators w. r. t. the i-th standardization, and false otherwise.

groupnameGi-Pn
In this case, the file contains a straight line decision that takes some group elements, and returns
true if these elements are standard generators for G, w. r. t. the i-th standardization, and false

otherwise.

groupnameGi-findn
In this case, the file contains a black box program that takes a group, and returns (if it is suc-
cessful) a set of standard generators for G, w. r. t. the i-th standardization.

groupnameGi-XdescrWn
In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th
set of standard generators, and whose return value corresponds to descr. This format is used
only in private extensions (see Chapter 5), such a script can be accessed with descr as the third
argument of AtlasProgram (3.5.4).

The names of files that contain group generators have one of the following forms. In
each of these cases, id is a (possibly empty) string that starts with a lowercase alphabet letter
(see IsLowerAlphaChar (Reference: IsLowerAlphaChar)), and m is a nonnegative integer, mean-
ing that the generators are written w. r. t. the m-th basis (the meaning is defined by the ATLAS devel-
opers).

groupnameGi-fqrdimidBm.mnr
a file in MeatAxe text file format containing the nr-th generator of a matrix representation over
the field with q elements, of dimension dim. An example is S5G1-f2r4aB0.m1.

groupnameGi-pnidBm.mnr
a file in MeatAxe text file format containing the nr-th generator of a permutation representation
on n points. An example is M11G1-p11B0.m1.

groupnameGi-ArdimidBm.g

a GAP readable file containing all generators of a matrix representation of dimension dim over
an algebraic number field not specified further. An example is A5G1-Ar3aB0.g.

groupnameGi-ZrdimidBm.g
a GAP readable file containing all generators of a matrix representation over the integers, of
dimension dim. An example is A5G1-Zr4B0.g.

AtlasRep — A GAP 4 Package 113

groupnameGi-HrdimidBm.g

a GAP readable file containing all generators of a matrix representation over a quaternion alge-
bra over an algebraic number field, of dimension dim. An example is 2A6G1-Hr2aB0.g.

groupnameGi-ZnrdimidBm.g

a GAP readable file containing all generators of a matrix representation of dimension dim over
the ring of integers mod n. An example is 2A8G1-Z4r4aB0.g.

7.6.1 AGR.ParseFilenameFormat

▷ AGR.ParseFilenameFormat(string, format) (function)

Returns: a list of strings and integers if string matches format , and fail otherwise.
Let string be a filename, and format be a list [[c1,c2, . . . ,cn], [f1, f2, . . . , fn]] such that each entry

ci is a list of strings and of functions that take a character as their argument and return true or false,
and such that each entry fi is a function for parsing a filename, such as the currently undocumented
functions ParseForwards and ParseBackwards.

AGR.ParseFilenameFormat returns a list of strings and integers such that the concatenation of
their String (Reference: String) values yields string if string matches format , and fail oth-
erwise. Matching is defined as follows. Splitting string at each minus character (-) yields m parts
s1,s2, . . . ,sm. The string string matches format if si matches the conditions in ci, for 1 ≤ i ≤ n, in
the sense that applying fi to si and ci yields a non-fail result.

Example
gap> format:= [[[IsChar, "G", IsDigitChar],

> ["p", IsDigitChar, AGR.IsLowerAlphaOrDigitChar,

> "B", IsDigitChar, ".m", IsDigitChar]],

> [ParseBackwards, ParseForwards]];;

gap> AGR.ParseFilenameFormat("A6G1-p10B0.m1", format);

["A6", "G", 1, "p", 10, "", "B", 0, ".m", 1]

gap> AGR.ParseFilenameFormat("A6G1-p15aB0.m1", format);

["A6", "G", 1, "p", 15, "a", "B", 0, ".m", 1]

gap> AGR.ParseFilenameFormat("A6G1-f2r16B0.m1", format);

fail

7.6.2 AGR.FileContents

▷ AGR.FileContents(files, type) (function)

Returns: the GAP object obtained from reading and interpreting the file(s) given by files .
Let files be a list of pairs of the form [dirname, filename], where dirname and

filename are strings, and let type be a data type (see AGR.DeclareDataType (7.5.1)). Each
dirname must be one of "datagens", "dataword", or the dirid value of a data extension (see
AtlasOfGroupRepresentationsNotifyData (5.1.1)). If the contents of each of the files in ques-
tion is accessible and their data belong to the data type type then AGR.FileContents returns the
contents of the files; otherwise fail is returned.

Note that if some file is already stored in the dirname directory then AGR.FileContents does
not check whether the relevant table of contents actually contains filename .

AtlasRep — A GAP 4 Package 114

7.7 The record component identifier used by the AtlasRep Package

The functions AtlasGenerators (3.5.3), AtlasProgram (3.5.4), AtlasProgramInfo (3.5.5),
OneAtlasGeneratingSetInfo (3.5.6), and AllAtlasGeneratingSetInfos (3.5.7) return records
which have a component identifier. The value of this component describes the record in the sense
that one can reconstruct the whole record from it, and the identifier value can be used as an in-
put for AtlasGenerators (3.5.3), AtlasProgram (3.5.4), AtlasProgramInfo (3.5.5), AtlasGroup
(3.5.8), and AtlasSubgroup (3.5.9).

The identifier component has the following format.

• For records describing representations, it is a list of the form [gapname, files, std, info

].

• For records describing straight line programs and straight line decisions, it is a list of the form
[gapname, files, std].

Here gapname is the GAP name of the group in question, files defines the data files, std is
the standardization of its generators, and info is some information that depends on the type of the
representation, for example the number of moved points in the case of a permutation representation.

The files entry has one of the following formats:

• a string, in the case that exactly one file is needed that does not belong to a private extension; an
example of such an identifier value is ["J1", "J1G1-cycW1", 1]

• a list whose entries are strings (which refer to files from the core part of the database) and
pairs of the form [tocid, file] (which refer to files from the extension given by tocid);
examples of identifier values are ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"

], 1, 5], ["2.M12", [["mfer", "2M12G1-cclsW1"]], 1], ["2.M12", [

"M12G1-max1W1", ["internal", "2M12G1-kerM12W1"]], 1], ["2.M12", [[

"mfer", "2M12G1-p24bB0.m1"], ["mfer", "2M12G1-p24bB0.m2"]], 1, 24].

Up to version 1.5 of the AtlasRep package, a different identifier format was used for files
from extensions of the database. Namely, the first entry of the list was a pair [tocid, groupname

], and the second entry was either a string or a list of strings. Note that with that old format, it was not
possible to describe a combination of several files from different sources (core part and extension, or
different extensions). The function AtlasRepIdentifier (7.7.1) can be used to convert between the
two formats.

7.7.1 AtlasRepIdentifier

▷ AtlasRepIdentifier(oldid) (function)

▷ AtlasRepIdentifier(id, "old") (function)

This function converts between the “old format” (the one used up to version 1.5.1 of the package)
and the “new format” (the one used since version 2.0) of the identifier component of the records
returned by AtlasRep functions. Note that the two formats differ only for identifier components
that describe data from non-core parts of the database.

If the only argument is a list oldid that is an identifier in old format then the function re-
turns the corresponding identifier in new format. If there are two arguments, a list id that is

AtlasRep — A GAP 4 Package 115

an identifier in new format and the string "old" , then the function returns the corresponding
identifier in old format if this is possible, and fail otherwise.

Example
gap> id:= ["A5", ["A5G1-p5B0.m1", "A5G1-p5B0.m2"], 1, 5];;

gap> AtlasRepIdentifier(id) = id;

true

gap> id:= ["L2(8)", "L28G1-check1", 1, 1];;

gap> AtlasRepIdentifier(id) = id;

true

gap> oldid:= [["priv", "C4"], ["C4G1-p4B0.m1"], 1, 4];;

gap> newid:= AtlasRepIdentifier(oldid);

["C4", [["priv", "C4G1-p4B0.m1"]], 1, 4]

gap> oldid = AtlasRepIdentifier(newid, "old");

true

gap> oldid:= [["priv", "C4"], "C4G1-max1W1", 1];;

gap> newid:= AtlasRepIdentifier(oldid);

["C4", [["priv", "C4G1-max1W1"]], 1]

gap> oldid = AtlasRepIdentifier(newid, "old");

true

gap> oldid:= [["priv", "C4"], "C4G1-Ar1aB0.g", 1, 1];;

gap> newid:= AtlasRepIdentifier(oldid);

["C4", [["priv", "C4G1-Ar1aB0.g"]], 1, 1]

gap> oldid = AtlasRepIdentifier(newid, "old");

true

gap> oldid:= [["priv", "C4"], "C4G1-XtestW1", 1];;

gap> newid:= AtlasRepIdentifier(oldid);

["C4", [["priv", "C4G1-XtestW1"]], 1]

gap> oldid = AtlasRepIdentifier(newid, "old");

true

gap> oldid:= [["mfer", "2.M12"],

> ["2M12G1-p264aB0.m1", "2M12G1-p264aB0.m2"], 1, 264];;

gap> newid:= AtlasRepIdentifier(oldid);

["2.M12",

[["mfer", "2M12G1-p264aB0.m1"], ["mfer", "2M12G1-p264aB0.m2"]]

, 1, 264]

gap> oldid = AtlasRepIdentifier(newid, "old");

true

7.8 The Tables of Contents of the AtlasRep Package

The list of AtlasRep data is stored in several tables of contents, which are given essentially by JSON
documents, one for the core data and one for each data extension in the sense of Chapter 5. The only
exception are data extensions by locally available files in a given directory, where the contents of this
directory itself describes the data in question. One can create such a JSON document for the contents
of a given local data directory with the function StringOfAtlasTableOfContents (5.1.3).

Here are the administrational functions that are called when a data extension gets notified with
AtlasOfGroupRepresentationsNotifyData (5.1.1). In each case, gapname and atlasname denote
the GAP and ATLAS name of the group in question (see Section 3.2), and dirid denotes the identifier
of the data extension.

The following functions define group names, available representations, and straight line programs.

AtlasRep — A GAP 4 Package 116

AGR.GNAN(gapname,atlasname[,dirid])

Called with two strings gapname (the GAP name of the group) and atlasname
(the ATLAS name of the group), AGR.GNAN stores the information in the list
AtlasOfGroupRepresentationsInfo.GAPnames, which defines the name mapping between
the ATLAS names and GAP names of the groups.

An example of a valid call is AGR.GNAN("A5.2","S5").

AGR.TOC(typename, f ilename,crc[,dirid])

AGR.TOC notifies an entry to the TableOfContents.(dirid) component of
AtlasOfGroupRepresentationsInfo (7.1.5). The string typename must be the name
of the data type to which the entry belongs, the string f ilename must be the prefix of the data
file(s), and crc must be a list that contains the checksums of the data files, which are either
integers (see CrcFile (Reference: CrcFile)) or strings (see HexSHA256). In particular, the
number of files that are described by the entry equals the length of crc.

The optional argument dirid is equal to the argument with the same name in the corresponding
call of AtlasOfGroupRepresentationsNotifyData (5.1.1). If no dirid argument is given
then the current value of AGR.DIRID is taken as the default; this value is set automatically before
a toc.json file gets evaluated by AtlasOfGroupRepresentationsNotifyData (5.1.1), and
is reset afterwards. If AGR.DIRID is not bound and dirid is not given then this function has no
effect.

An example of a valid call is AGR.TOC("perm","alt/A5/mtx/S5G1-p5B0.m",

[-3581724,115937465]).

The following functions add data about the groups and their standard generators. The function
calls must be executed after the corresponding AGR.GNAN calls.

AGR.GRS(gapname,size[,dirid])

The integer size is stored as the order of the group with GAP name gapname, in
AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.GRS("A5.2",120).

AGR.MXN(gapname,nrMaxes[,dirid])

The integer nrMaxes is stored as the number of classes of maximal subgroups of the group with
GAP name gapname, in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.MXN("A5.2",4).

AGR.MXO(gapname,sizesMaxes[,dirid])

The list sizesMaxes of subgroup orders of the classes of maximal subgroups of the group
with GAP name gapname (not necessarily dense, in non-increasing order) is stored in
AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.MXO("A5.2",[60,24,20,12]).

AGR.MXS(gapname,structureMaxes[,dirid])

Called with the string The list structureMaxes of strings describing the structures of the max-
imal subgroups of the group with GAP name gapname (not necessarily dense), is stored in
AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.MXS("A5.2",["A5","S4","5:4","S3x2"]).

AtlasRep — A GAP 4 Package 117

AGR.STDCOMP(gapname, f actorCompatibility[,dirid])

The list f actorCompatibility (with entries the standardization of the group with GAP
name gapname , the GAP name of a factor group, the standardization of this fac-
tor group, and true or false, indicating whether mapping the standard genera-
tors for gapname to those of f actgapname defines an epimorphism) is stored in
AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.STDCOMP("2.A5.2",[1,"A5.2",1,true]).

The following functions add data about representations or straight line programs that are already
known. The function calls must be executed after the corresponding AGR.TOC calls.

AGR.RNG(repname,descr[,dirid])

Called with two strings repname (denoting the name of a file containing the generators of a
matrix representation over a ring that is not determined by the filename) and descr (describing
this ring R, say), AGR.RNG adds the triple [repname,descr,R] to the list stored in the ringinfo

component of AtlasOfGroupRepresentationsInfo (7.1.5).

An example of a valid call is AGR.RNG("A5G1-Ar3aB0","Field([Sqrt(5)])").

AGR.TOCEXT(atlasname,std,maxnr, f iles[,dirid])

Called with atlasname, the positive integers std (the standardization) and maxnr (the number
of the class of maximal subgroups), and the list f iles (of filenames of straight line programs
for computing generators of the maxnr-th maximal subgroup, using a straight line program
for a factor group plus perhaps some straight line program for computing kernel generators),
AGR.TOCEXT stores the information in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.TOCEXT("2A5",1,3,["A5G1-max3W1"]).

AGR.API(repname, in f o[,dirid])

Called with the string repname (denoting the name of a permutation representation) and the
list in f o (describing the point stabilizer of this representation), AGR.API binds the component
repname of the record AtlasOfGroupRepresentationsInfo.permrepinfo to a record that
describes the contents of in f o.

in f o has the following entries.

• At position 1, the transitivity is stored.

• If the transitivity is zero then in f o has length two, and the second entry is the list of orbit
lengths.

• If the transitivity is positive then in f o has length four or five, and the second entry is the
rank of the action.

• If the transitivity is positive then the third entry is one of the strings "prim", "imprim",
denoting primitivity or not.

• If the transitivity is positive then the fourth entry is either the string "???" or a string
that describes the structure of the point stabilizer. If the third entry is "imprim" then this
description consists of a subgroup part and a maximal subgroup part, separated by " < ".

• If the third entry is "prim" then the fifth entry is either the string "???" or the number of
the class of maximal subgroups that are the point stabilizers.

AtlasRep — A GAP 4 Package 118

An example of a valid call is AGR.API("A5G1-p5B0",[3,2,"prim","A4",1]).

AGR.CHAR(gapname,repname,char, pos[,charname[,dirid]])

Called with the strings gapname and repname (denoting the name of the representa-
tion), the integer char (the characteristic of the representation), and pos (the position
or list of positions of the irreducible constituent(s)), AGR.CHAR stores the information in
AtlasOfGroupRepresentationsInfo.characterinfo.

A string describing the character can be entered as charname.

If dirid is given but no charname is known then one can enter fail as the fifth argument.

An example of a valid call is AGR.CHAR("M11","M11G1-p11B0",0,[1,2],"1a+10a").

7.9 Sanity Checks for the AtlasRep Package

The file tst/testall.g of the package contains Test (Reference: Test) statements for check-
ing whether the AtlasRep functions behave as documented. One can run these tests by calling
ReadPackage("AtlasRep", "tst/testall.g"). The examples in the package manual form
a part of the tests, they are collected in the file tst/docxpl.tst of the package.

The remainder of this section deals with consistency checks of the data. The tests described in
Section 7.9.1 can be used for data from any extension of the database (see Chapter 5), Section 7.9.2
lists tests which apply only to the core part of the database.

All these tests apply only to locally available files (see Section 7.8), no files are downloaded during
the tests. Thus the required space and time for running these tests depend on the amount of locally
available data.

Some of the tests compute and verify additional data, such as information about point stabilizers of
permutation representations. In these cases, output lines starting with #E are error messages that point
to inconsistencies, whereas output lines starting with #I inform about data that have been computed
and were not yet stored, or about stored data that were not verified. These tests are experimental in
the sense that they involve several heuristics. Depending on the data to which they are applied, it may
happen that the tests run out of space or do not finish in acceptable time. Please inform the package
maintainer if you run into such problems.

7.9.1 Sanity Checks for a Table of Contents

The following tests can be used to check the data that belong to a given part of the database (core data
or extension). Each of these tests is given by a function with optional argument tocid, the identifying
string that had been entered as the second argument of AtlasOfGroupRepresentationsNotifyData
(5.1.1). The contents of the core part can be checked by entering "core", which is also the default for
tocid. The function returns false if an error occurs, otherwise true. Currently the following tests
of this kind are available. (For some of them, the global option TryToExtendData can be entered in
order to try the computation of not yet stored data.)

AGR.Test.GroupOrders()

checks whether the group orders stored in the GAPnames component of
AtlasOfGroupRepresentationsInfo (7.1.5) coincide with the group orders computed
from an ATLAS permutation representation of degree up to AGR.Test.MaxTestDegree, from
the available character table or table of marks with the given name, or from the structure of the

AtlasRep — A GAP 4 Package 119

name, in the sense that splitting the name at the first dot (.) or colon (:) and applying the same
criteria to derive the group order from the two parts may yield enough information.

AGR.Test.Words([tocid])

processes the straight line programs that belong to tocid, using the function stored in the
TestWords component of the data type in question.

The straight line programs for the cases listed in AGR.Test.HardCases.TestWords are omit-
ted.

AGR.Test.ClassScripts([tocid])

checks whether the straight line programs that belong to tocid and that compute representatives
of certain conjugacy classes are consistent with information stored on the GAP character table
of the group in question, in the sense that the given class names really occur in the character
table and that the element orders and centralizer orders for the classes are correct.

AGR.Test.CycToCcls([tocid][:TryToExtendData])

checks whether all straight line programs that belong to tocid and that compute class represen-
tatives from representatives of cyclic subgroups possess a corresponding straight line program
(anywhere in the database) for computing representatives of cyclic subgroups.

AGR.Test.FileHeaders([tocid])

checks whether the MeatAxe text files that belong to tocid have a header line that is consistent
with the filename, and whether the contents of all GAP format data files that belong to tocid is
consistent with the filename.

AGR.Test.Files([tocid])

checks whether the MeatAxe text files that belong to tocid can be read with ScanMeatAxeFile

(7.3.1) such that the result is not fail. The function does not check whether the first
line of a MeatAxe text file is consistent with the filename, since this can be tested with
AGR.Test.FileHeaders.

AGR.Test.BinaryFormat([tocid])

checks whether all MeatAxe text files that belong to tocid satisfy that applying first
CMtxBinaryFFMatOrPerm (7.3.4) and then FFMatOrPermCMtxBinary (7.3.5) yields the same
object.

AGR.Test.Primitivity([tocid][:TryToExtendData])

checks the stored primitivity information for the permutation representations that belong to
tocid. That is, the number of orbits, in case of a transitive action the transitivity, the rank, the
information about the point stabilizers are computed if possible, and compared with the stored
information.

AGR.Test.Characters([tocid][:TryToExtendData])

checks the character information (that belongs to tocid) for the matrix and permutation repre-
sentations.

AGR.Test.StdCompatibility([tocid][:TryToExtendData])

checks whether the information about the compatibility of standard generators
of a group and its factor groups that is stored in the GAPnames component of

AtlasRep — A GAP 4 Package 120

AtlasOfGroupRepresentationsInfo (7.1.5) and belongs to tocid coincides with com-
puted values.

The following criterion is used for computing the value for a group G. Use the GAP Character
Table Library to determine factor groups F of G for which standard generators are defined and
moreover a presentation in terms of these standard generators is known. Evaluate the relators
of the presentation in the standard generators of G, and let N be the normal closure of these
elements in G. Then mapping the standard generators of F to the N-cosets of the standard
generators of G is an epimorphism. If |G/N| = |F | holds then G/N and F are isomorphic,
and the standard generators of G and F are compatible in the sense that mapping the standard
generators of G to their N-cosets yields standard generators of F .

AGR.Test.KernelGenerators([tocid][:TryToExtendData])

checks whether the straight line programs (that belong to tocid) for computing generators of
kernels of natural epimorphisms between ATLAS groups compute generators of normal sub-
groups of the right group orders. If it is known that the given standard generators of the given
group are compatible with some standard generators of the factor group in question (see the
section about AGR.Test.StdCompatibility) then it is also checked whether evaluating the
straight line program at these standard generators of the factor group yields only the identity.

Note that the verification of normal subgroups of matrix groups may be very time and space
consuming if the package recog [NSA+18] is not available.

The function also tries to find words for computing kernel generators of those epimorphisms
for which no straight line programs are stored; the candidates are given by stored factor fusions
between the character tables from the GAP Character Table Library.

AGR.Test.MaxesOrders([tocid])

checks whether the orders of maximal subgroups stored in the component GAPnames of
AtlasOfGroupRepresentationsInfo (7.1.5) coincide with the orders computed from the re-
striction of an ATLAS permutation representation of degree up to AGR.Test.MaxTestDegree

(using a straight line program that belongs to tocid), from the character table, or the table of
marks with the given name, or from the information about maximal subgroups of the factor
group modulo a normal subgroup that is contained in the Frattini subgroup.

AGR.Test.MaxesStructure()

checks whether the names of maximal subgroups stored in the component GAPnames of
AtlasOfGroupRepresentationsInfo (7.1.5) coincide with the names computed from the
GAP character table with the given name.

AGR.Test.MaxesStandardization([tocid])

checks whether the straight line programs (that belong to tocid) for standardizing the generators
of maximal subgroups are correct: If a semi-presentation is available for the maximal subgroup
and the standardization in question then it is used, otherwise an explicit isomorphism is tried.

AGR.Test.CompatibleMaxes([tocid][:TryToExtendData])

checks whether the information about deriving straight line programs for restricting to sub-
groups from straight line programs that belong to a factor group coincide with computed values.

The following criterion is used for computing the value for a group G. If F is a factor
group of G such that the standard generators of G and F are compatible (see the test func-
tion AGR.Test.StdCompatibility) and if there are a presentation for F and a permutation

AtlasRep — A GAP 4 Package 121

representation of G then it is checked whether the "maxes" type straight line programs for F
can be used to compute generators for the maximal subgroups of G; if not then generators of
the kernel of the natural epimorphism from G to F , must be added.

7.9.2 Other Sanity Checks

The tests described in this section are intended for checking data that do not belong to a particular
part of the AtlasRep database. Therefore all locally available data are used in these tests. Each of the
tests is given by a function without arguments that returns false if a contradiction was found during
the test, and true otherwise. Additionally, certain messages are printed when contradictions between
stored and computed data are found, when stored data cannot be verified computationally, or when
the computations yield improvements of the stored data. Currently the following tests of this kind are
available.

AGR.Test.Standardization()

checks whether all generating sets corresponding to the same set of standard generators have
the same element orders; for the case that straight line programs for computing certain class
representatives are available, also the orders of these representatives are checked w. r. t. all
generating sets.

AGR.Test.StdTomLib()

checks whether the standard generators are compatible with those that occur in the TomLib
package.

AGR.Test.MinimalDegrees()

checks that the (permutation and matrix) representations available in the database do not have
smaller degree than the minimum claimed in Section 6.3.

Finally, we reset the user preference and the info level which had been set at the beginning of
Chapter 2.

Example
gap> SetUserPreference("AtlasRep", "DisplayFunction", origpref);

gap> SetInfoLevel(InfoAtlasRep, globallevel);

References

[BGH+22] T. Breuer, S. Gutsche, M. Horn, A. Hulpke, S. Kohl, F. Lübeck, and C. Wensley. utils,
utility functions in gap, Version 0.77. https://gap-packages.github.io/utils,
Aug 2022. GAP package. 6

[BHM09] T. Breuer, I. Höhler, and J. Müller. MFER, multiplicity-free endomorphism rings of per-
mutation modules of the sporadic simple groups and their cyclic and bicyclic extensions,
Version 1.0.0. https://www.math.rwth-aachen.de/~MFER, Jul 2009. GAP package.
70, 72

[BL18] T. Breuer and F. Lübeck. Browse, ncurses interface and browsing applications, Version
1.8.9. https://www.math.rwth-aachen.de/~Browse, Jun 2018. GAP package. 12,
13, 39, 62, 63

[BN95] T. Breuer and S. P. Norton. Improvements to the Atlas, page 297–327. Volume 11 of
London Mathematical Society Monographs. New Series [JLPW95], 1995. Appendix 2
by T. Breuer and S. Norton, Oxford Science Publications. 6

[Bre14] T. Breuer. CTBlocks, Blocks of Character Tables, Version 0.9.3.
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks, Feb 2014.
GAP package. 70, 72

[Bre22] T. Breuer. The GAP Character Table Library, Version 1.3.3.
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib, Mar 2022.
GAP package. 14, 18, 35, 94

[BSWW01] J. N. Bray, I. A. I. Suleiman, P. G. Walsh, and R. A. Wilson. Generating maximal sub-
groups of sporadic simple groups. Comm. Algebra, 29(3):1325–1337, 2001. 5, 50

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite
groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary
characters for simple groups, With computational assistance from J. G. Thackray. 6, 12,
18, 24, 35, 36, 37, 49, 63, 91, 92

[CP96] J. J. Cannon and C. Playoust. An introduction to algebraic programming in Magma.
http://www.math.usyd.edu.au:8000/u/magma, 1996. 6

[GAP19] GAP – Groups, Algorithms, and Programming, Version 4.10.2.
http://www.gap-system.org, Jun 2019. 6

[HL89] G. Hiss and K. Lux. Brauer trees of sporadic groups. Oxford Science Publications. The
Clarendon Press, Oxford University Press, New York, 1989. 92, 94

122

https://gap-packages.github.io/utils
https://www.math.rwth-aachen.de/~MFER
https://www.math.rwth-aachen.de/~Browse
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib
http://www.math.usyd.edu.au:8000/u/magma
http://www.gap-system.org

AtlasRep — A GAP 4 Package 123

[Hup67] B. Huppert. Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften,
Band 134. Springer-Verlag, Berlin, 1967. 94

[Jan05] C. Jansen. The minimal degrees of faithful representations of the sporadic simple groups
and their covering groups. LMS J. Comput. Math., 8:122–144 (electronic), 2005. 62, 92,
94

[JLPW95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer characters, volume 11
of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford
University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton, Oxford
Science Publications. 12, 63, 92, 122

[JSO14] The javascript object notation (json) data interchange format.
http://www.rfc-editor.org/info/rfc7159, Mar 2014. 95

[LN18] F. Lübeck and M. Neunhöffer. GAPDoc, a Meta Package for GAP Documentation,
Version 1.6.2. https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc, Oct
2018. GAP package. 14, 15, 63

[Lüb21] F. Lübeck. StandardFF, a GAP package for constructing finite fields.
https://github.com/frankluebeck/StandardFF/, 2021. GAP package. 103

[Neu14] M. Neunhöffer. IO, bindings for low level C library IO, Version 4.3.1.
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/

Gap/io.html, Apr 2014. GAP package. 13, 15, 72, 96

[Nic06] S. J. Nickerson. An Atlas of Characteristic Zero Representations. Phd thesis, School of
Mathematics, University of Birmingham, 2006. 5, 86

[NMP18] L. Naughton, T. Merkwitz, and G. Pfeiffer. TomLib, the GAP library of tables of marks,
Version 1.2.7. http://schmidt.nuigalway.ie/tomlib, Oct 2018. GAP package.
29, 94

[NSA+18] M. Neunhöffer, Á. Seress, N. Ankaralioglu, P. Brooksbank, F. Celler, S. Howe,
M. Law, S. Linton, G. Malle, A. Niemeyer, E. O’Brien, C. M. Roney-Dougal,
and M. Horn. recog, a collection of group recognition methods, Version 1.3.1.
https://gap-packages.github.io/recog, Sep 2018. GAP package. 120

[NW05] S. J. Nickerson and R. A. Wilson. Semi-presentations for the sporadic simple groups.
Experiment. Math., 14(3):359–371, 2005. 84

[Rin] M. Ringe. The C MeatAxe, Version 2.4. https://www.math.rwth-aachen.de/~MTX.
6, 67, 98, 101, 102, 104, 106

[SWW00] I. A. I. Suleiman, P. G. Walsh, and R. A. Wilson. Conjugacy classes in sporadic simple
groups. Comm. Algebra, 28(7):3209–3222, 2000. 5, 50

[Wil96] R. A. Wilson. Standard generators for sporadic simple groups. J. Algebra,
184(2):505–515, 1996. 5, 36

[WWT+] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. A. Parker, S. P. Norton, S. Nick-
erson, S. Linton, J. Bray, and R. Abbott. ATLAS of Finite Group Representations.
http://atlas.math.rwth-aachen.de/Atlas/v3. 5, 6, 18

http://www.rfc-editor.org/info/rfc7159
https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
https://github.com/frankluebeck/StandardFF/
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
http://schmidt.nuigalway.ie/tomlib
https://gap-packages.github.io/recog
https://www.math.rwth-aachen.de/~MTX
http://atlas.math.rwth-aachen.de/Atlas/v3

Index

AGR, 99
AGR.DeclareDataType, 108
AGR.FileContents, 113
AGR.GapObjectOfJsonText, 97
AGR.JsonText, 97
AGR.ParseFilenameFormat, 113
AllAtlasGeneratingSetInfos, 55
AsBBoxProgram, 90
AsStraightLineDecision, 85
AsStraightLineProgram, 91
AtlasCharacterNames, 38
AtlasClassNames, 38
AtlasGenerators, 46

for an identifier, 46
AtlasGroup

for an identifier record, 56
for various arguments, 56

AtlasOfGroupRepresentationsForgetData,
72

AtlasOfGroupRepresentationsInfo, 99
AtlasOfGroupRepresentationsNotifyData

for a local directory of private data, 71
for a local file describing private data, 71
for a remote file describing private data, 71

AtlasProgram, 49
for an identifier, 49

AtlasProgramInfo, 52
AtlasRep, 1
AtlasRepAccessRemoteFiles, 65
AtlasRepDataDirectory, 66
AtlasRepIdentifier

convert a new type identifier to an old type
one, 114

convert an old type identifier to a new type
one, 114

AtlasRepInfoRecord

for a group, 58
for a string, 58

AtlasRepJsonFilesAddresses, 68
AtlasRepLocalServerPath, 67
AtlasRepMarkNonCoreData, 68
AtlasRepTOCData, 66
AtlasStringOfProgram, 106

for MeatAxe format output, 106
AtlasSubgroup

for a group and a number, 57
for a group name (and various arguments)

and a number, 57
for an identifier record and a number, 57

automorphisms, 51

BaseOfMeatAxePermutation, 68
black box program, 5

for finding standard generators, 51, 112
BrowseBibliographySporadicSimple, 63
BrowseMinimalDegrees, 62

C-MeatAxe, 6
class representatives, 50
CMtxBinaryFFMatOrPerm, 103
compress, 66
CompressDownloadedMeatAxeFiles, 66
cyclic subgroups, 50

DebugFileLoading, 68
DisplayAtlasInfo, 39

for a group name, and optionally further re-
strictions, 39

DisplayFunction, 68

EvaluatePresentation

for a group, a group name (and a number), 59
for a list of generators, a group name (and a

number), 59

FFList, 103
FFLists, 103
FFMatOrPermCMtxBinary, 104

124

AtlasRep — A GAP 4 Package 125

FileAccessFunctions, 66
ftp, 14

gzip, 15, 66

HowToReadMeatAxeTextFiles, 67

InfoAtlasRep, 98
InfoBBox, 99
InfoCMeatAxe, 98
IsBBoxProgram, 87
IsStraightLineDecision, 81

LinesOfStraightLineDecision, 81
local access, 65

Magma, 6
matrix

MeatAxe format, 101
maximal subgroups, 50
maximally cyclic subgroups, 50
MeatAxe, 6
MeatAxeString, 101

for a matrix of integers, 102
for a permutation, q, and dims, 101
for permutations and a degree, 101

MinimalRepresentationInfo, 91
MinimalRepresentationInfoData, 92

NrInputsOfStraightLineDecision, 81

OneAtlasGeneratingSetInfo, 52

perl, 14, 15
permutation

MeatAxe format, 101
presentation, 83, 112

remote access, 65
ResultOfBBoxProgram, 89
ResultOfStraightLineDecision, 82
RunBBoxProgram, 88

ScanBBoxProgram, 87
ScanMeatAxeFile, 101
ScanStraightLineDecision, 81
ScanStraightLineProgram, 104
semi-presentation, 83, 112
SetMinimalRepresentationInfo, 93

StandardGeneratorsData

for a group, a group name (and a number), 59
for a list of generators, a group name (and a

number), 59
straight line decision

encoding a presentation, 51
for checking standard generators, 51

straight line program, 5, 39
for class representatives, 50
for kernels of epimorphisms, 50
for maximal subgroups, 50
for normal subgroups, 50
for outer automorphisms, 51
for representatives of cyclic subgroups, 50
for restandardizing, 51
free format, 51

StraightLineDecision, 82
StraightLineDecisionNC, 82
StraightLineProgramFromStraightLine-

Decision, 85
StringOfAtlasTableOfContents, 73

wget, 13, 14
WriteHeaderFormatOfMeatAxeFiles, 67
WriteMeatAxeFilesOfMode2, 67

zcv, 101

	Introduction to the AtlasRep Package
	The ATLAS of Group Representations
	The GAP Interface to the ATLAS of Group Representations
	What's New in AtlasRep, Compared to Older Versions?
	Acknowledgements

	Tutorial for the AtlasRep Package
	Accessing a Specific Group in AtlasRep
	Accessing Specific Generators in AtlasRep
	Basic Concepts used in AtlasRep
	Examples of Using the AtlasRep Package

	The User Interface of the AtlasRep Package
	Accessing vs. Constructing Representations
	Group Names Used in the AtlasRep Package
	Standard Generators Used in the AtlasRep Package
	Class Names Used in the AtlasRep Package
	Accessing Data via AtlasRep
	Browse Applications Provided by AtlasRep

	Customizations of the AtlasRep Package
	Installing the AtlasRep Package
	User Preferences of the AtlasRep Package
	Web Contents for the AtlasRep Package
	Extending the ATLAS Database

	Extensions of the AtlasRep Package
	Notify Additional Data
	The Effect of Extensions on the User Interface
	An Example of Extending the AtlasRep Data

	New GAP Objects and Utility Functions provided by the AtlasRep Package
	Straight Line Decisions
	Black Box Programs
	Representations of Minimal Degree
	A JSON Interface

	Technicalities of the AtlasRep Package
	Global Variables Used by the AtlasRep Package
	How to Customize the Access to Data files
	Reading and Writing MeatAxe Format Files
	Reading and Writing ATLAS Straight Line Programs
	Data Types Used in the AtlasRep Package
	Filenames Used in the AtlasRep Package
	The record component identifier used by the AtlasRep Package
	The Tables of Contents of the AtlasRep Package
	Sanity Checks for the AtlasRep Package

	References
	Index

