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1.1 0.1 Foreword to this version of the Ada Reference
Manual

0.1/1
The International Standard for the programming language Ada is ISO/IEC 8652:1995(E).

0.2/1

The Ada Working Group ISO/IEC JTC 1/SC 22/WG 9 is tasked by ISO with the work item
to interpret and maintain the International Standard and to produce Technical Corrigenda,
as appropriate. The technical work on the International Standard is performed by the Ada
Rapporteur Group (ARG) of WG 9. In September 2000, WG 9 approved and forwarded
Technical Corrigendum 1 to SC 22 for ISO approval, which was granted in February 2001.
Technical Corrigendum 1 was published in June 2001.



0.3/2

In October 2002, WG 9 approved a schedule and guidelines for the preparation of an Amend-
ment to the International Standard. WG 9 approved the scope of the Amendment in June
2004. In April 2006, WG 9 approved and forwarded the Amendment to SC 22 for approval,
which was granted in August 2006. Final ISO/IEC approval is expected by early 2007.

0.4/1

The Technical Corrigendum lists the individual changes that need to be made to the text
of the International Standard to correct errors, omissions or inconsistencies. The correc-
tions specified in Technical Corrigendum 1 are part of the International Standard ISO/IEC
8652:1995(E).

0.5/2
Similarly, Amendment 1 lists the individual changes that need to be made to the text of
the International Standard to add new features as well as correct errors.

0.6/2

When ISO published Technical Corrigendum 1, it did not also publish a document that
merges the changes from the Technical Corrigendum into the text of the International
Standard. It is not known whether ISO will publish a document that merges the changes
from Technical Corrigendum and Amendment 1 into the text of the International Standard.
However, ISO rules require that the project editor for the International Standard be able
to produce such a document on demand.

0.7/2

This version of the Ada Reference Manual is what the project editor would provide to ISO
in response to such a request. It incorporates the changes specified in the Technical Corri-
gendum and Amendment into the text of ISO/IEC 8652:1995(E). It should be understood
that the publication of any ISO document involves changes in general format, boilerplate,
headers, etc., as well as a review by professional editors that may introduce editorial changes
to the text. This version of the Ada Reference Manual is therefore neither an official ISO
document, nor a version guaranteed to be identical to an official ISO document, should
ISO decide to reprint the International Standard incorporating an approved Technical Cor-
rigendum and Amendment. It is nevertheless a best effort to be as close as possible to
the technical content of such an updated document. In the case of a conflict between this
document and Amendment 1 as approved by ISO (or between this document and Techni-
cal Corrigendum 1 in the case of paragraphs not changed by Amendment 1; or between
this document and the original 8652:1995 in the case of paragraphs not changed by either
Amendment 1 or Technical Corrigendum 1), the other documents contain the official text
of the International Standard ISO/IEC 8652:1995(E) and its Amendment.

0.8/2
As it is very inconvenient to have the Reference Manual for Ada specified in three documents,
this consolidated version of the Ada Reference Manual is made available to the public.

1.2 0.2 Foreword

1

ISO (the International Organization for Standardization) and IEC (the International Elec-
trotechnical Commission) form the specialized system for worldwide standardization. Na-
tional bodies that are members of ISO or IEC participate in the development of Interna-



tional Standards through technical committees established by the respective organization
to deal with particular fields of technical activity. ISO and IEC technical committees col-
laborate in fields of mutual interest. Other international organizations, governmental and
non—governmental, in liaison with ISO and IEC, also take part in the work.

2

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/TEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the national bodies casting a vote.

3

International Standard ISO/IEC 8652 was prepared by Joint Technical Committee ISO/IEC
JTC 1, <Information Technology>.

4/2

This consolidated edition updates the second edition (ISO 8652:1995).

5/2

Annexes A to J form an integral part of this International Standard. Annexes K to Q are
for information only.

1.3 0.3 Introduction
1
This is the Ada Reference Manual.

2
Other available Ada documents include:

3/2

e Ada 95 Rationale. This gives an introduction to the new features of Ada incorpo-
rated in the 1995 edition of this Standard, and explains the rationale behind them.
Programmers unfamiliar with Ada 95 should read this first.

3.1/2

e Ada 2005 Rationale. This gives an introduction to the changes and new features in
Ada 2005 (compared with the 1995 edition), and explains the rationale behind them.
Programmers should read this rationale before reading this Standard in depth.

4/1

e <This paragraph was deleted.>
5/2

e The Annotated Ada Reference Manual (AARM). The AARM contains all of the text
in the consolidated Ada Reference Manual, plus various annotations. It is intended
primarily for compiler writers, validation test writers, and others who wish to study
the fine details. The annotations include detailed rationale for individual rules and
explanations of some of the more arcane interactions among the rules.



Design Goals

6/2

Ada was originally designed with three overriding concerns: program reliability and mainte-
nance, programming as a human activity, and efficiency. The 1995 revision to the language
was designed to provide greater flexibility and extensibility, additional control over storage
management and synchronization, and standardized packages oriented toward supporting
important application areas, while at the same time retaining the original emphasis on re-
liability, maintainability, and efficiency. This amended version provides further flexibility
and adds more standardized packages within the framework provided by the 1995 revision.

7

The need for languages that promote reliability and simplify maintenance is well established.
Hence emphasis was placed on program readability over ease of writing. For example, the
rules of the language require that program variables be explicitly declared and that their
type be specified. Since the type of a variable is invariant, compilers can ensure that
operations on variables are compatible with the properties intended for objects of the type.
Furthermore, error—prone notations have been avoided, and the syntax of the language
avoids the use of encoded forms in favor of more English—like constructs. Finally, the
language offers support for separate compilation of program units in a way that facilitates
program development and maintenance, and which provides the same degree of checking
between units as within a unit.

8

Concern for the human programmer was also stressed during the design. Above all, an
attempt was made to keep to a relatively small number of underlying concepts integrated in
a consistent and systematic way while continuing to avoid the pitfalls of excessive involution.
The design especially aims to provide language constructs that correspond intuitively to the
normal expectations of users.

9

Like many other human activities, the development of programs is becoming ever more
decentralized and distributed. Consequently, the ability to assemble a program from inde-
pendently produced software components continues to be a central idea in the design. The
concepts of packages, of private types, and of generic units are directly related to this idea,
which has ramifications in many other aspects of the language. An allied concern is the
maintenance of programs to match changing requirements; type extension and the hierar-
chical library enable a program to be modified while minimizing disturbance to existing
tested and trusted components.

10

No language can avoid the problem of efficiency. Languages that require over—elaborate
compilers, or that lead to the inefficient use of storage or execution time, force these in-
efficiencies on all machines and on all programs. Every construct of the language was
examined in the light of present implementation techniques. Any proposed construct whose
implementation was unclear or that required excessive machine resources was rejected.

Language Summary

11
An Ada program is composed of one or more program units. Program units may be subpro-
grams (which define executable algorithms), packages (which define collections of entities),



task units (which define concurrent computations), protected units (which define operations
for the coordinated sharing of data between tasks), or generic units (which define parame-
terized forms of packages and subprograms). Each program unit normally consists of two
parts: a specification, containing the information that must be visible to other units, and a
body, containing the implementation details, which need not be visible to other units. Most
program units can be compiled separately.

12

This distinction of the specification and body, and the ability to compile units separately,
allows a program to be designed, written, and tested as a set of largely independent software
components.

13

An Ada program will normally make use of a library of program units of general utility. The
language provides means whereby individual organizations can construct their own libraries.
All libraries are structured in a hierarchical manner; this enables the logical decomposition
of a subsystem into individual components. The text of a separately compiled program unit
must name the library units it requires.

14
<Program Units>

15

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subpro-
grams: procedures and functions. A procedure is the means of invoking a series of actions.
For example, it may read data, update variables, or produce some output. It may have
parameters, to provide a controlled means of passing information between the procedure
and the point of call. A function is the means of invoking the computation of a value. It is
similar to a procedure, but in addition will return a result.

16

A package is the basic unit for defining a collection of logically related entities. For example,
a package can be used to define a set of type declarations and associated operations. Portions
of a package can be hidden from the user, thus allowing access only to the logical properties
expressed by the package specification.

17

Subprogram and package units may be compiled separately and arranged in hierarchies of
parent and child units giving fine control over visibility of the logical properties and their
detailed implementation.

18

A task unit is the basic unit for defining a task whose sequence of actions may be executed
concurrently with those of other tasks. Such tasks may be implemented on multicomputers,
multiprocessors, or with interleaved execution on a single processor. A task unit may define
either a single executing task or a task type permitting the creation of any number of similar
tasks.

19/2

A protected unit is the basic unit for defining protected operations for the coordinated
use of data shared between tasks. Simple mutual exclusion is provided automatically, and
more elaborate sharing protocols can be defined. A protected operation can either be a
subprogram or an entry. A protected entry specifies a Boolean expression (an entry barrier)



that must be True before the body of the entry is executed. A protected unit may define a
single protected object or a protected type permitting the creation of several similar objects.

20
<Declarations and Statements>

21

The body of a program unit generally contains two parts: a declarative part, which defines
the logical entities to be used in the program unit, and a sequence of statements, which
defines the execution of the program unit.

22

The declarative part associates names with declared entities. For example, a name may
denote a type, a constant, a variable, or an exception. A declarative part also introduces
the names and parameters of other nested subprograms, packages, task units, protected
units, and generic units to be used in the program unit.

23

The sequence of statements describes a sequence of actions that are to be performed. The
statements are executed in succession (unless a transfer of control causes execution to con-
tinue from another place).

24

An assignment statement changes the value of a variable. A procedure call invokes execu-
tion of a procedure after associating any actual parameters provided at the call with the
corresponding formal parameters.

25
Case statements and if statements allow the selection of an enclosed sequence of statements
based on the value of an expression or on the value of a condition.

26

The loop statement provides the basic iterative mechanism in the language. A loop state-
ment specifies that a sequence of statements is to be executed repeatedly as directed by an
iteration scheme, or until an exit statement is encountered.

27
A block statement comprises a sequence of statements preceded by the declaration of local
entities used by the statements.

28

Certain statements are associated with concurrent execution. A delay statement delays
the execution of a task for a specified duration or until a specified time. An entry call
statement is written as a procedure call statement; it requests an operation on a task or on
a protected object, blocking the caller until the operation can be performed. A called task
may accept an entry call by executing a corresponding accept statement, which specifies the
actions then to be performed as part of the rendezvous with the calling task. An entry call
on a protected object is processed when the corresponding entry barrier evaluates to true,
whereupon the body of the entry is executed. The requeue statement permits the provision
of a service as a number of related activities with preference control. One form of the select
statement allows a selective wait for one of several alternative rendezvous. Other forms of
the select statement allow conditional or timed entry calls and the asynchronous transfer
of control in response to some triggering event.



29

Execution of a program unit may encounter error situations in which normal program exe-
cution cannot continue. For example, an arithmetic computation may exceed the maximum
allowed value of a number, or an attempt may be made to access an array component by
using an incorrect index value. To deal with such error situations, the statements of a
program unit can be textually followed by exception handlers that specify the actions to
be taken when the error situation arises. Exceptions can be raised explicitly by a raise
statement.

30
<Data Types>

31

Every object in the language has a type, which characterizes a set of values and a set of
applicable operations. The main classes of types are elementary types (comprising enumer-
ation, numeric, and access types) and composite types (including array and record types).
32/2

An enumeration type defines an ordered set of distinct enumeration literals, for example

a list of states or an alphabet of characters. The enumeration types Boolean, Character,
Wide_Character, and Wide_Wide_Character are predefined.

33

Numeric types provide a means of performing exact or approximate numerical computa-
tions. Exact computations use integer types, which denote sets of consecutive integers.
Approximate computations use either fixed point types, with absolute bounds on the error,
or floating point types, with relative bounds on the error. The numeric types Integer, Float,
and Duration are predefined.

34/2

Composite types allow definitions of structured objects with related components. The
composite types in the language include arrays and records. An array is an object with
indexed components of the same type. A record is an object with named components of
possibly different types. Task and protected types are also forms of composite types. The
array types String, Wide_String, and Wide_Wide_String are predefined.

35

Record, task, and protected types may have special components called discriminants which
parameterize the type. Variant record structures that depend on the values of discriminants
can be defined within a record type.

36

Access types allow the construction of linked data structures. A value of an access type
represents a reference to an object declared as aliased or to an object created by the eval-
uation of an allocator. Several variables of an access type may designate the same object,
and components of one object may designate the same or other objects. Both the elements
in such linked data structures and their relation to other elements can be altered during
program execution. Access types also permit references to subprograms to be stored, passed
as parameters, and ultimately dereferenced as part of an indirect call.

37
Private types permit restricted views of a type. A private type can be defined in a package
so that only the logically necessary properties are made visible to the users of the type.



The full structural details that are externally irrelevant are then only available within the
package and any child units.

38

From any type a new type may be defined by derivation. A type, together with its derivatives
(both direct and indirect) form a derivation class. Class—wide operations may be defined
that accept as a parameter an operand of any type in a derivation class. For record and
private types, the derivatives may be extensions of the parent type. Types that support
these object—oriented capabilities of class—wide operations and type extension must be
tagged, so that the specific type of an operand within a derivation class can be identified
at run time. When an operation of a tagged type is applied to an operand whose specific
type is not known until run time, implicit dispatching is performed based on the tag of the
operand.

38.1/2

Interface types provide abstract models from which other interfaces and types may be
composed and derived. This provides a reliable form of multiple inheritance. Interface types
may also be implemented by task types and protected types thereby enabling concurrent
programming and inheritance to be merged.

39

The concept of a type is further refined by the concept of a subtype, whereby a user can
constrain the set of allowed values of a type. Subtypes can be used to define subranges of
scalar types, arrays with a limited set of index values, and records and private types with
particular discriminant values.

40
<Other Facilities>

41/2

Aspect clauses can be used to specify the mapping between types and features of an un-
derlying machine. For example, the user can specify that objects of a given type must
be represented with a given number of bits, or that the components of a record are to be
represented using a given storage layout. Other features allow the controlled use of low
level, nonportable, or implementation—dependent aspects, including the direct insertion of
machine code.

42/2

The predefined environment of the language provides for input—output and other capa-
bilities by means of standard library packages. Input—output is supported for values of
user—defined as well as of predefined types. Standard means of representing values in
display form are also provided.

42.1/2

The predefined standard library packages provide facilities such as string manipulation,
containers of various kinds (vectors, lists, maps, etc.), mathematical functions, random
number generation, and access to the execution environment.

42.2/2

The specialized annexes define further predefined library packages and facilities with empha-
sis on areas such as real—time scheduling, interrupt handling, distributed systems, numerical
computation, and high—integrity systems.



43

Finally, the language provides a powerful means of parameterization of program units, called
generic program units. The generic parameters can be types and subprograms (as well as
objects and packages) and so allow general algorithms and data structures to be defined
that are applicable to all types of a given class.

Language Changes

44/2

This amended International Standard updates the edition of 1995 which replaced the first
edition of 1987. In the 1995 edition, the following major language changes were incorpo-
rated:

45/2

e Support for standard 8—bit and 16—bit characters was added. See clauses Section 3.1
[2.1], page 32, Section 4.5.2 [3.5.2], page 93, Section 4.6.3 [3.6.3], page 122, Section 15.1
[A.1], page 556, Section 15.3 [A.3], page 565, and Section 15.4 [A.4], page 584.

46/2

e The type model was extended to include facilities for object—oriented programming
with dynamic polymorphism. See the discussions of classes, derived types, tagged
types, record extensions, and private extensions in clauses Section 4.4 [3.4], page 66,
Section 4.9 [3.9], page 136, and Section 8.3 [7.3], page 283. Additional forms of generic
formal parameters were allowed as described in clauses Section 13.5.1 [12.5.1], page 462,
and Section 13.7 [12.7], page 474.

47/2
e Access types were extended to allow an access value to designate a subprogram or an

object declared by an object declaration as opposed to just an object allocated on a
heap. See clause Section 4.10 [3.10], page 156.

48/2
e Efficient data—oriented synchronization was provided by the introduction of protected
types. See clause Section 10.4 [9.4], page 337.
49/2
e The library structure was extended to allow library units to be organized into a hier-
archy of parent and child units. See clause Section 11.1 [10.1], page 394.
50/2

e Additional support was added for interfacing to other languages. See Chapter 16
[Annex B], page 894.



51/2

e The Specialized Needs Annexes were added to provide
application areas:

52
e Chapter 17 [Annex C], page
"Chapter 17 [Annex C], page
Systems Programming"
53
e Chapter 18 [Annex D], page
"Chapter 18 [Annex D], page
Real-Time Systems"
54
e Chapter 19 [Annex E|, page
"Chapter 19 [Annex EJ], page
Distributed Systems"
55
e Chapter 20 [Annex F], page
"Chapter 20 [Annex F|, page
Information Systems"
56
e Chapter 21 [Annex G|, page
"Chapter 21 [Annex G], page
Numerics"
57
e Chapter 22 [Annex H], page
"Chapter 22 [Annex H], page
High Integrity Systems"
57.1/2

specific support for certain

949,
949,

974,
974,

1034,
1034,

1054,
1054,

1083,
1083,

1153,
1153,

Amendment 1 modifies the 1995 International Standard by making changes and additions
that improve the capability of the language and the reliability of programs written in the
language. In particular the changes were designed to improve the portability of programs,
interfacing to other languages, and both the object—oriented and real—time capabilities.

57.2/2

The following significant changes with respect to the 1995 edition are incorporated:



57.3/2

e Support for program text is extended to cover the entire ISO/IEC 10646:2003 reper-
toire. Execution support now includes the 32—bit character set. See clauses Section 3.1
[2.1], page 32, Section 4.5.2 [3.5.2], page 93, Section 4.6.3 [3.6.3], page 122, Section 15.1
[A.1], page 556, Section 15.3 [A.3], page 565, and Section 15.4 [A.4], page 584.

57.4/2

e The object—oriented model has been improved by the addition of an interface facility
which provides multiple inheritance and additional flexibility for type extensions. See
clauses Section 4.4 [3.4], page 66, Section 4.9 [3.9], page 136, and Section 8.3 [7.3],
page 283. An alternative notation for calling operations more akin to that used in
other languages has also been added. See clause Section 5.1.3 [4.1.3], page 183.

57.5/2

e Access types have been further extended to unify properties such as the ability
to access constants and to exclude null values. See clause Section 4.10 [3.10],
page 156. Anonymous access types are now permitted more freely and anonymous
access—to—subprogram types are introduced. See clauses Section 4.3 [3.3], page 58,
Section 4.6 [3.6], page 114, Section 4.10 [3.10], page 156, and Section 9.5.1 [8.5.1],
page 317.

57.6/2

e The control of structure and visibility has been enhanced to permit mutually dependent
references between units and finer control over access from the private part of a package.
See clauses Section 4.10.1 [3.10.1], page 160, and Section 11.1.2 [10.1.2], page 399. In
addition, limited types have been made more useful by the provision of aggregates,
constants, and constructor functions. See clauses Section 5.3 [4.3], page 190, Section 7.5
[6.5], page 272, and Section 8.5 [7.5], page 292.

57.7/2

e The predefined environment has been extended to include additional time and
calendar operations, improved string handling, a comprehensive container library,
file and directory management, and access to environment variables. See clauses
Section 10.6.1 [9.6.1], page 363, Section 15.4 [A.4], page 584, Section 15.16 [A.16],
page 757, Section 15.17 [A.17], page 775, and Section 15.18 [A.18], page 778.

57.8/2

e Two of the Specialized Needs Annexes have been considerably enhanced:

57.9/2

e The Real-Time Systems Annex
now includes the Ravenscar profile



57.10/2

57.11/2

e The overall reliability of the language has been enhanced by a number of improvements.
These include new syntax which detects accidental overloading, as well as pragmas for
making assertions and giving better control over the suppression of checks. See clauses
Section 7.1 [6.1], page 255, Section 12.4.2 [11.4.2], page 427, and Section 12.5 [11.5],

page 431.

for high—integrity systems, further
dispatching policies such as Round
Robin and Earliest Deadline First,
support for timing events, and support
for control of CPU time utilization. See
clauses Section 18.2 [D.2], page 978,
Section 18.13 [D.13], page 1020,
Section 18.14 [D.14], page 1021, and
Section 18.15 [D.15], page 1031.

The Numerics Annex now includes
support for real and complex vectors
and matrices as previously defined in
ISO/IEC 13813:1997 plus further basic
operations for linear algebra. See clause
Section 21.3 [G.3], page 1119.

Instructions for Comment Submission

58/1

Informal comments on this International Standard may be sent via e—mail to
ada—comment@ada—auth.org. If appropriate, the Project Editor will initiate the defect

correction procedure.

59

Comments should use the following format:

60/2

ltopic <Title summarizing comment>
Ireference Ada 2005 RM<ss.ss(pp)>
from <Author Name yy—mm—dd>
keywords <keywords related to topic>

ldiscussion

<text of discussion>

61

where <ss.ss> is the section, clause or subclause number, <pp> is the paragraph number
where applicable, and <yy—mm-—dd> is the date the comment was sent. The date is op-

tional, as is the !keywords line.



62/1
Please use a descriptive "Subject" in your e—mail message, and limit each message to a
single comment.

63

When correcting typographical errors or making minor wording suggestions, please put the
correction directly as the topic of the comment; use square brackets [ | to indicate text to
be omitted and curly braces { } to indicate text to be added, and provide enough context
to make the nature of the suggestion self—evident or put additional information in the body
of the comment, for example:

64

ltopic [c]{C}haracter

ltopic it[’]s meaning is not defined
65
Formal requests for interpretations and for reporting defects in this International Standard
may be made in accordance with the ISO/IEC JTC 1 Directives and the ISO/IEC JTC 1/SC
22 policy for interpretations. National Bodies may submit a Defect Report to ISO/TEC JTC
1/SC 22 for resolution under the JTC 1 procedures. A response will be provided and, if
appropriate, a Technical Corrigendum will be issued in accordance with the procedures.
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73
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e The title page(s) are different in the International Standard.
7

e This document is formatted for 8.5—by—11—inch paper, whereas the International
Standard is formatted for A4 paper (210—by—297mm); thus, the page breaks are in
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2 1 General

1

Ada is a programming language designed to support the construction of long—lived, highly
reliable software systems. The language includes facilities to define packages of related
types, objects, and operations. The packages may be parameterized and the types may be
extended to support the construction of libraries of reusable, adaptable software compo-
nents. The operations may be implemented as subprograms using conventional sequential
control structures, or as entries that include synchronization of concurrent threads of con-
trol as part of their invocation. The language treats modularity in the physical sense as
well, with a facility to support separate compilation.

2

The language includes a complete facility for the support of real—time, concurrent pro-
gramming. Errors can be signaled as exceptions and handled explicitly. The language also
covers systems programming; this requires precise control over the representation of data
and access to system—dependent properties. Finally, a predefined environment of standard
packages is provided, including facilities for, among others, input—output, string manipu-
lation, numeric elementary functions, and random number generation.

2.1 1.1 Scope

1

This International Standard specifies the form and meaning of programs written in Ada.
Its purpose is to promote the portability of Ada programs to a variety of data processing
systems.

2.1.1 1.1.1 Extent

1
This International Standard specifies:

2

e The form of a program written in Ada;

e The effect of translating and executing such a program,;

e The manner in which program units may be combined to form Ada programs;

e The language—defined library units that a conforming implementation is required to
supply;



e The permissible variations within the standard, and the manner in which they are to
be documented;

e Those violations of the standard that a conforming implementation is required to de-
tect, and the effect of attempting to translate or execute a program containing such
violations;

e Those violations of the standard that a conforming implementation is not required to

detect.
9
This International Standard does not specify:
10

e The means whereby a program written in Ada is transformed into object code exe-
cutable by a processor;

11

e The means whereby translation or execution of programs is invoked and the executing
units are controlled;

12

e The size or speed of the object code, or the relative execution speed of different language
constructs;

13

e The form or contents of any listings produced by implementations; in particular, the
form or contents of error or warning messages;

14

e The effect of unspecified execution.

15

e The size of a program or program unit that will exceed the capacity of a particular
conforming implementation.



2.1.2 1.1.2 Structure

1
This International Standard contains thirteen sections, fourteen annexes, and an index.

2
The <core> of the Ada language consists of:

3

e Sections 1 through 13

e Chapter 15 [Annex A], page 553, "Chapter 15 [Annex A], page 553, Predefined Lan-

guage Environment"

e Chapter 16 [Annex B], page 894, "Chapter 16 [Annex B], page 894, Interface to Other

Languages"

e Chapter 23 [Annex J], page 1166, "Chapter 23 [Annex J], page 1166, Obsolescent

Features"

7

The following <Specialized Needs Annexes> define features that are needed by certain ap-

plication areas:
8

e Chapter 17 [Annex C], page 949, "Chapter 17 [Annex C], page 949, Systems Program-

ming"

e Chapter 18 [Annex D], page 974, "Chapter 18 [Annex D], page 974, Real-Time Sys-

tems"

10

e Chapter 19 [Annex E|, page 1034, "Chapter 19 [Annex EJ|, page 1034, Distributed

Systems"

11

e Chapter 20 [Annex F], page 1054, "Chapter 20 [Annex F], page 1054, Information

Systems"



12

e Chapter 21 [Annex GJ, page 1083, "Chapter 21 [Annex GJ, page 1083, Numerics"
13

e Chapter 22 [Annex H], page 1153, "Chapter 22 [Annex H], page 1153, High Integrity
Systems"

14
The core language and the Specialized Needs Annexes are normative, except that the ma-
terial in each of the items listed below is informative:

15

e Text under a NOTES or Examples heading.
16

e FEach clause or subclause whose title starts with the word "Example" or "Examples".

17
All implementations shall conform to the core language. In addition, an implementation
may conform separately to one or more Specialized Needs Annexes.

18
The following Annexes are informative:

19
e Chapter 24 [Annex K], page 1179, "Chapter 24 [Annex K], page 1179, Language-
Defined Attributes"
20

e Chapter 25 [Annex L], page 1242, "Chapter 25 [Annex L], page 1242, Language-Defined
Pragmas"

21

e Section 26.2 [M.2], page 1250, "Section 26.2 [M.2], page 1250, Implementation-Defined
Characteristics"

22

e Chapter 27 [Annex NJ, page 1283, "Chapter 27 [Annex N], page 1283, Glossary"
23

e Chapter 28 [Annex P], page 1289, "Chapter 28 [Annex P], page 1289, Syntax Summary"



24
Each section is divided into clauses and subclauses that have a common structure. Each
section, clause, and subclause first introduces its subject. After the introductory text, text
is labeled with the following headings:

Syntax

25

Syntax rules (indented).
Name Resolution Rules

26
Compile—time rules that are used in name resolution, including overload resolution.
Legality Rules

27
Rules that are enforced at compile time. A construct is <legal> if it obeys all of the Legality
Rules.

Static Semantics

28
A definition of the compile—time effect of each construct.
Post-Compilation Rules

29
Rules that are enforced before running a partition. A partition is legal if its compilation
units are legal and it obeys all of the Post—Compilation Rules.

Dynamic Semantics

30
A definition of the run—time effect of each construct.
Bounded (Run-Time) Errors

31
Situations that result in bounded (run—time) errors (see Section 2.1.5 [1.1.5], page 28).
Erroneous Ezrecution

32
Situations that result in erroneous execution (see Section 2.1.5 [1.1.5], page 28).
Implementation Requirements

33
Additional requirements for conforming implementations.
Documentation Requirements

34

Documentation requirements for conforming implementations.
Metrics

35

Metrics that are specified for the time/space properties of the execution of certain language
constructs.
Implementation Permissions

36
Additional permissions given to the implementer.



Implementation Advice

37

Optional advice given to the implementer. The word "should" is used to indicate that the
advice is a recommendation, not a requirement. It is implementation defined whether or
not a given recommendation is obeyed.

NOTES
38
1 Notes emphasize consequences of the rules described in the
(sub)clause or elsewhere. This material is informative.
Ezxamples
39

Examples illustrate the possible forms of the constructs described. This material is infor-
mative.

2.1.3 1.1.3 Conformity of an Implementation with the Standard

Implementation Requirements

1
A conforming implementation shall:

2

e Translate and correctly execute legal programs written in Ada, provided that they are
not so large as to exceed the capacity of the implementation;

e Identify all programs or program units that are so large as to exceed the capacity of
the implementation (or raise an appropriate exception at run time);

e Identify all programs or program units that contain errors whose detection is required
by this International Standard;

e Supply all language—defined library units required by this International Standard;

e Contain no variations except those explicitly permitted by this International Stan-
dard, or those that are impossible or impractical to avoid given the implementation’s
execution environment;

e Specify all such variations in the manner prescribed by this International Standard.



8
The <external effect> of the execution of an Ada program is defined in terms of its interac-
tions with its external environment. The following are defined as <external interactions>:

9

e Any interaction with an external file (see Section 15.7 [A.7], page 680);
10

e The execution of certain code_statements (see Section 14.8 [13.8], page 518); which
code_statements cause external interactions is implementation defined.

11

e Any call on an imported subprogram (see Chapter 16 [Annex B], page 894), including
any parameters passed to it;

12

e Any result returned or exception propagated from a main subprogram (see Section 11.2
[10.2], page 409) or an exported subprogram (see Chapter 16 [Annex B|, page 894) to
an external caller;

13

e Any read or update of an atomic or volatile object (see Section 17.6 [C.6], page 962);
14

e The values of imported and exported objects (see Chapter 16 [Annex B], page 894) at
the time of any other interaction with the external environment.

15

A conforming implementation of this International Standard shall produce for the execution
of a given Ada program a set of interactions with the external environment whose order and
timing are consistent with the definitions and requirements of this International Standard
for the semantics of the given program.

16

An implementation that conforms to this Standard shall support each capability required
by the core language as specified. In addition, an implementation that conforms to this
Standard may conform to one or more Specialized Needs Annexes (or to none). Confor-
mance to a Specialized Needs Annex means that each capability required by the Annex is
provided as specified.

17

An implementation conforming to this International Standard may provide additional at-
tributes, library units, and pragmas. However, it shall not provide any attribute, library
unit, or pragma having the same name as an attribute, library unit, or pragma (respec-
tively) specified in a Specialized Needs Annex unless the provided construct is either as



specified in the Specialized Needs Annex or is more limited in capability than that required
by the Annex. A program that attempts to use an unsupported capability of an Annex
shall either be identified by the implementation before run time or shall raise an exception
at run time.

Documentation Requirements

18

Certain aspects of the semantics are defined to be either <implementation defined> or
<unspecified>. In such cases, the set of possible effects is specified, and the implemen-
tation may choose any effect in the set. Implementations shall document their behavior in
implementation—defined situations, but documentation is not required for unspecified situ-
ations. The implementation—defined characteristics are summarized in Section 26.2 [M.2],
page 1250.

19
The implementation may choose to document implementation—defined behavior either by
documenting what happens in general, or by providing some mechanism for the user to
determine what happens in a particular case.

Implementation Advice

20
If an implementation detects the use of an unsupported Specialized Needs Annex feature
at run time, it should raise Program_Error if feasible.
21
If an implementation wishes to provide implementation—defined extensions to the function-
ality of a language—defined library unit, it should normally do so by adding children to the
library unit.

NOTES

22

2 The above requirements imply that an implementation conform-
ing to this Standard may support some of the capabilities required
by a Specialized Needs Annex without supporting all required capa-
bilities.

2.1.4 1.1.4 Method of Description and Syntax Notation

1

The form of an Ada program is described by means of a context—free syntax together with
context—dependent requirements expressed by narrative rules.

2

The meaning of Ada programs is described by means of narrative rules defining both the
effects of each construct and the composition rules for constructs.

3

The context—free syntax of the language is described using a simple variant of Backus—Naur
Form. In particular:

4



e Lower case words in a sans—serif font, some containing embedded underlines, are used
to denote syntactic categories, for example:

case_statement

e Boldface words are used to denote reserved words, for example:

7

array

e Square brackets enclose optional items. Thus the two following rules are equivalent.

9/2
simple_return_statement ::= return [expression];

simple_return_statement ::= return; | return expression;
10

e Curly brackets enclose a repeated item. The item may appear zero or more times; the
repetitions occur from left to right as with an equivalent left—recursive rule. Thus the
two following rules are equivalent.

11

term ::= factor {multiplying_operator factor}

term ::= factor | term multiplying_operator factor

12

e A vertical line separates alternative items unless it occurs immediately after an opening
curly bracket, in which case it stands for itself:

13

constraint ::= scalar_constraint | composite_constraint

discrete_choice_list ::= discrete_choice {| discrete_choice}
14

e If the name of any syntactic category starts with an italicized part, it is equivalent to
the category name without the italicized part. The italicized part is intended to convey



some semantic information. For example <subtype_>name and <task_>name are both
equivalent to name alone.

14.1/2

The delimiters, compound delimiters, reserved words, and numeric_literals are exclusively
made of the characters whose code position is between 16#20# and 164 7E#, inclusively.
The special characters for which names are defined in this International Standard (see
Section 3.1 [2.1], page 32) belong to the same range. For example, the character E in the
definition of exponent is the character whose name is "LATIN CAPITAL LETTER E", not
"GREEK CAPITAL LETTER EPSILON".

14.2/2

When this International Standard mentions the conversion of some character or sequence
of characters to upper case, it means the character or sequence of characters obtained by
using locale—independent full case folding, as defined by documents referenced in the note
in section 1 of ISO/IEC 10646:2003.

15
A <syntactic category> is a nonterminal in the grammar defined in BNF under "Syntax."
Names of syntactic categories are set in a different font, like_this.

16
A <construct> is a piece of text (explicit or implicit) that is an instance of a syntactic
category defined under "Syntax".

17
A <constituent> of a construct is the construct itself, or any construct appearing within it.

18

Whenever the run—time semantics defines certain actions to happen in an <arbitrary order>,
this means that the implementation shall arrange for these actions to occur in a way that
is equivalent to some sequential order, following the rules that result from that sequential
order. When evaluations are defined to happen in an arbitrary order, with conversion of
the results to some subtypes, or with some run—time checks, the evaluations, conversions,
and checks may be arbitrarily interspersed, so long as each expression is evaluated before
converting or checking its value. Note that the effect of a program can depend on the order
chosen by the implementation. This can happen, for example, if two actual parameters of
a given call have side effects.

NOTES

19
3 The syntax rules describing structured constructs are presented
in a form that corresponds to the recommended paragraphing. For
example, an if_statement is defined as:

20

if_statement ::=
if condition then
sequence_of_statements
{elsif condition then



sequence_of_statements}
[else

sequence_of_statements]
end if;

21

4 The line breaks and indentation in the syntax rules indicate the
recommended line breaks and indentation in the corresponding con-
structs. The preferred places for other line breaks are after semi-
colons.

2.1.5 1.1.5 Classification of Errors

Implementation Requirements

1
The language definition classifies errors into several different categories:

2

e Errors that are required to be detected prior to run time by every Ada implementation;

These errors correspond to any violation of a rule given in this In-
ternational Standard, other than those listed below. In particular,
violation of any rule that uses the terms shall, allowed, permitted,
legal, or illegal belongs to this category. Any program that contains
such an error is not a legal Ada program; on the other hand, the fact
that a program is legal does not mean, <per se>, that the program
is free from other forms of error.

The rules are further classified as either compile time rules, or post
compilation rules, depending on whether a violation has to be de-
tected at the time a compilation unit is submitted to the compiler, or
may be postponed until the time a compilation unit is incorporated
into a partition of a program.

e Errors that are required to be detected at run time by the execution of an Ada program;

The corresponding error situations are associated with the names of
the predefined exceptions. Every Ada compiler is required to gen-
erate code that raises the corresponding exception if such an error
situation arises during program execution. If such an error situation



is certain to arise in every execution of a construct, then an imple-
mentation is allowed (although not required) to report this fact at
compilation time.

e Bounded errors;

The language rules define certain kinds of errors that need not be
detected either prior to or during run time, but if not detected,
the range of possible effects shall be bounded. The errors of this
category are called <bounded errors>. The possible effects of a given
bounded error are specified for each such error, but in any case one
possible effect of a bounded error is the raising of the exception
Program_Error.

e Erroneous execution.

10

In addition to bounded errors, the language rules define certain kinds
of errors as leading to <erroneous execution>. Like bounded errors,
the implementation need not detect such errors either prior to or dur-
ing run time. Unlike bounded errors, there is no language—specified
bound on the possible effect of erroneous execution; the effect is in
general not predictable.

Implementation Permissions

11

An implementation may provide <nonstandard modes> of operation. Typically these modes
would be selected by a pragma or by a command line switch when the compiler is invoked.
When operating in a nonstandard mode, the implementation may reject compilation_units
that do not conform to additional requirements associated with the mode, such as an exces-
sive number of warnings or violation of coding style guidelines. Similarly, in a nonstandard
mode, the implementation may apply special optimizations or alternative algorithms that
are only meaningful for programs that satisfy certain criteria specified by the implementa-
tion. In any case, an implementation shall support a <standard> mode that conforms to the
requirements of this International Standard; in particular, in the standard mode, all legal
compilation_units shall be accepted.

Implementation Advice

12
If an implementation detects a bounded error or erroneous execution, it should raise Pro-
gram_Error.



2.2 1.2 Normative References

1

The following standards contain provisions which, through reference in this text, constitute
provisions of this International Standard. At the time of publication, the editions indicated
were valid. All standards are subject to revision, and parties to agreements based on
this International Standard are encouraged to investigate the possibility of applying the
most recent editions of the standards indicated below. Members of IEC and ISO maintain
registers of currently valid International Standards.

2

ISO/TEC 646:1991, <Information technology —— ISO 7—bit coded character set for infor-
mation interchange>.

3/2

ISO/IEC 1539—1:2004, <Information technology —— Programming languages —— Fortran
—— Part 1: Base language>.

4/2

ISO/IEC 1989:2002, <Information technology —— Programming languages —— COBOL>.
5

ISO/IEC 6429:1992, <Information technology —— Control functions for coded graphic char-
acter sets>.

5.1/2

ISO 8601:2004, <Data elements and interchange formats —— Information interchange ——
Representation of dates and times>.

6

ISO/TEC 8859—1:1987, <Information processing —— 8—bit single—byte coded character sets
—— Part 1: Latin alphabet No. 1>.

7/2

ISO/TEC 9899:1999, <Programming languages —— C>, supplemented by Technical Corri-
gendum 1:2001 and Technical Corrigendum 2:2004.

8/2

ISO/IEC 10646:2003, <Information technology —— Universal Multiple—Octet Coded Char-
acter Set (UCS)>.

9/2

ISO/IEC 14882:2003, <Programming languages —— C++>.

10/2

ISO/IEC TR 19769:2004, <Information technology —— Programming languages, their en-
vironments and system software interfaces —— Extensions for the programming language
C to support new character data types>.

2.3 1.3 Definitions

1/2

Terms are defined throughout this International Standard, indicated by <italic> type. Terms
explicitly defined in this International Standard are not to be presumed to refer implicitly
to similar terms defined elsewhere. Mathematical terms not defined in this International



Standard are to be interpreted according to the <CRC Concise Encyclopedia of Mathe-
matics, Second Edition>. Other terms not defined in this International Standard are to be
interpreted according to the <Webster’s Third New International Dictionary of the English
Language>. Informal descriptions of some terms are also given in Chapter 27 [Annex N],
page 1283, "Chapter 27 [Annex NJ, page 1283, Glossary".



3 2 Lexical Elements

1

The text of a program consists of the texts of one or more compilations. The text of a
compilation is a sequence of lexical elements, each composed of characters; the rules of
composition are given in this section. Pragmas, which provide certain information for the
compiler, are also described in this section.

3.1 2.1 Character Set

1/2
The character repertoire for the text of an Ada program consists of the entire coding space
described by the ISO/TEC 10646:2003 Universal Multiple—Octet Coded Character Set. This
coding space is organized in <planes>, each plane comprising 65536 characters.

Syntax

<Paragraphs 2 and 3 were deleted.>
3.1/2

A character is defined by this International Standard for each cell

in the coding space described by ISO/IEC 10646:2003, regardless of

whether or not ISO/IEC 10646:2003 allocates a character to that

cell.

Static Semantics

4/2
The coded representation for characters is implementation defined (it need not be a repre-
sentation defined within ISO/IEC 10646:2003). A character whose relative code position in
its plane is 16#FFFE# or 16#FFFF+# is not allowed anywhere in the text of a program.

4.1/2

The semantics of an Ada program whose text is not in Normalization Form KC (as defined
by section 24 of ISO/IEC 10646:2003) is implementation defined.

5/2

The description of the language definition in this International Standard uses the character
properties General Category, Simple Uppercase Mapping, Uppercase Mapping, and Special
Case Condition of the documents referenced by the note in section 1 of ISO/IEC 10646:2003.
The actual set of graphic symbols used by an implementation for the visual representation
of the text of an Ada program is not specified.

6/2

Characters are categorized as follows:

7/2
<This paragraph was
deleted.>

8/2

letter_uppercase



9/2
letter_lowercase

9.1/2
letter_titlecase

9.2/2
letter_modifier

9.3/2
letter_other

9.4/2
mark_non_spacing

9.5/2

mark_spacing_combining

10/2
number_decimal

Any character whose
General Category is
defined to be "Letter,
Uppercase".

Any character whose
General Category is
defined to be "Letter,
Lowercase".

Any character whose
General Category is
defined to be "Letter,
Titlecase".

Any character whose
General Category is
defined to be "Letter,
Modifier".

Any character whose
General Category is
defined to be "Letter,
Other".

Any character whose
General Category is
defined to be "Mark,
Non—Spacing".

Any character whose
General Category is
defined to be "Mark,
Spacing Combining".

Any character whose
General Category



10.1/2
number_letter

10.2/2
punctuation_connector

10.3/2
other_format

11/2
separator_space

12/2
separator_line

12.1/2
separator_paragraph

13/2
format_effector

is defined to Dbe
"Number, Decimal".

Any character whose
General Category
is defined to Dbe
"Number, Letter".

Any character whose
General Category
is defined to Dbe
"Punctuation,
Connector".

Any character whose
General Category is
defined to be "Other,
Format".

Any character whose
General Category
is defined to be
"Separator, Space".

Any character whose
General Category
is defined to Dbe
"Separator, Line".

Any character
whose General
Category is defined
to be "Separator,
Paragraph".

The characters
whose code positions



13.1/2
other_control

13.2/2
other_private_use

13.3/2
other_surrogate

14/2
graphic_character

are 164094
(CHARACTER

TABULATION),

16#0A# (LINE
FEED), 16#0B#
(LINE TABULA-
TION), 16#0CH#
(FORM FEED),
16#0D# (CAR-
RIAGE RETURN),
16485+ (NEXT
LINE), and the char-
acters in categories
separator_line and
separator_paragraph.

Any character whose
General Category is
defined to be "Other,
Control", and which
is not defined to be a
format _effector.

Any character whose
General Category is
defined to be "Other,
Private Use".

Any character whose
General Category is
defined to be "Other,
Surrogate".

Any character that is
not in the categories
other_control,
other_private_use,
other_surrogate,
format_effector, and
whose relative code



position in its plane is

neither 16#FFFE#

nor 16#FFFF+#.
15/2
The following names are used when referring to certain characters (the first name is that
given in ISO/IEC 10646:2003):

graphic symbol name graphic symbol

" quotation mark
number sign
ampersand
apostrophe, tick =
left parenthesis >
right parenthesis -
asterisk, multiply |
plus sign /
comma, !
— hyphen—minus, minus %

full stop, dot, point

Implementation Permissions

+ R ey
A e e

16/2

<This paragraph was deleted.>
NOTES

17/2
1 The characters in categories other_control, other_private_use, and
other_surrogate are only allowed in comments.

18

2 The language does not specify the source representation of pro-
grams.

3.2 2.2 Lexical Elements, Separators, and Delimiters

Static Semantics

1

The text of a program consists of the texts of one or more compilations. The text of
each compilation is a sequence of separate <lexical elements>. Each lexical element is
formed from a sequence of characters, and is either a delimiter, an identifier, a reserved
word, a numeric_literal, a character_literal, a string_literal, or a comment. The meaning
of a program depends only on the particular sequences of lexical elements that form its
compilations, excluding comments.

2/2

The text of a compilation is divided into <lines>. In general, the representation for an end
of line is implementation defined. However, a sequence of one or more format_effectors

name

colon
semicolon
less—than si
equals sign
greater—tha
low line, une
vertical line
solidus, divi
exclamation
percent sign



other than the character whose code position is 16#09# (CHARACTER TABULATION)
signifies at least one end of line.

3/2
In some cases an explicit <separator> is required to separate adjacent lexical elements. A
separator is any of a separator_space, a format_effector, or the end of a line, as follows:

4/2

e A separator_space is a separator except within a comment, a string_literal, or a char-
acter_literal.

5/2

e The character whose code position is 16#09# (CHARACTER TABULATION) is a

separator except within a comment.

e The end of a line is always a separator.

7

One or more separators are allowed between any two adjacent lexical elements, before the
first of each compilation, or after the last. At least one separator is required between an
identifier, a reserved word, or a numeric_literal and an adjacent identifier, reserved word,
or numeric_literal.

8/2
A <delimiter> is either one of the following characters:
9
) e = <=
10

or one of the following <compound delimiters> each composed of two adjacent special char-
acters

11

12

Each of the special characters listed for single character delimiters is a single delimiter
except if this character is used as a character of a compound delimiter, or as a character of
a comment, string_literal, character_literal, or numeric_literal.

13
The following names are used when referring to compound delimiters:

delimiter name
=> arrow

double dot



double star, exponentiate
= assignment (pronounced: "becomes")
= inequality (pronounced: "not equal")

>= greater than or equal
= less than or equal

<< left label bracket

>> right label bracket

<> box

Implementation Requirements

14

An implementation shall support lines of at least 200 characters in length, not counting
any characters used to signify the end of a line. An implementation shall support lexical
elements of at least 200 characters in length. The maximum supported line length and
lexical element length are implementation defined.

3.3 2.3 Identifiers

1
Identifiers are used as names.
Syntax

2/2

identifier ::=
identifier_start {identifier_start | identifier_extend}
3/2

identifier_start ::=
letter_uppercase
| letter_lowercase
| letter_titlecase
| letter_modifier
| letter_other
| number_letter

3.1/2

identifier_extend ::=
mark_non_spacing
| mark_spacing_combining
| number_decimal
| punctuation_connector
| other_format

4/2

After eliminating the characters in category other_format, an iden-
tifier shall not contain two consecutive characters in category punc-
tuation_connector, or end with a character in that category.



Static Semantics
5/2
Two identifiers are considered the same if they consist of the same sequence of characters
after applying the following transformations (in this order):

5.1/2

e The characters in category other_format are eliminated.

5.2/2

e The remaining sequence of characters is converted to upper case.

5.3/2
After applying these transformations, an identifier shall not be identical to a reserved word
(in upper case).
Implementation Permissions
6

In a nonstandard mode, an implementation may support other upper/lower case equivalence
rules for identifiers, to accommodate local conventions.

NOTES
6.1/2
3 Identifiers differing only in the use of corresponding upper and
lower case letters are considered the same.
Ezamples
7
<Examples of identifiers:>
8/2
Count X Get_Symbol  Ethelyn Marion

Snobol_4 X1  Page_Count  Store_Next_Item
[Unicode 928] [Unicode 955] [Unicode 940] [Unicode 964] [Unicode 969] [Uni-Ii

code 957] ——< Plato>

[Unicode 1063] [Unicode 1072] [Unicode 1081] [Unicode 1082] [Unicode 1086] [Uni-N

code 1074] [Unicode 1089] [Unicode 1082] [Unicode 1080] [Unicode 1081] ——< Tchaikovs
[Unicode 952] [Unicode 966] ——< Angles>

3.4 2.4 Numeric Literals

1
There are two kinds of numeric_literals, <real literals> and <integer literals>. A real literal
is a numeric_literal that includes a point; an integer literal is a numeric_literal without a
point.

Syntax



numeric_literal ::= decimal_literal | based_literal
NOTES

4 The type of an integer literal is <universal_integer>. The type of
a real literal is <universal_real>.

3.4.1 2.4.1 Decimal Literals

1
A decimal_literal is a numeric_literal in the conventional decimal notation (that is, the base
is ten).

Syntax

2

decimal_literal ::= numeral [.numeral] [exponent]
3

numeral ::= digit {[underline] digit}
4

exponent ::= E [+] numeral | E — numeral
4.1/2

digit :=0111213141516171819
5

An exponent for an integer literal shall not have a minus sign.

Static Semantics

6

An underline character in a numeric_literal does not affect its meaning. The letter E of an
exponent can be written either in lower case or in upper case, with the same meaning.

7
An exponent indicates the power of ten by which the value of the decimal_literal without
the exponent is to be multiplied to obtain the value of the decimal_literal with the exponent.

Examples
8
<Examples of decimal literals:>
9
12 0 1E6 123_456 ——< 1integer literals>

12.0 0.0 0.456 3.14159_26 ——< real literals>



3.4.2 2.4.2 Based Literals

1
A based_literal is a numeric_literal expressed in a form that specifies the base explicitly.
Syntax
2
based_literal ::=
base # based_numeral [.based_numeral] # [exponent]
3
base ::= numeral
4
based_numeral ::=
extended_digit {[underline] extended_digit}
5
extended_digit == digit | AIBICIDI|EI|F
Legality Rules
6

The <base> (the numeric value of the decimal numeral preceding the first #) shall be at
least two and at most sixteen. The extended_digits A through F represent the digits ten
through fifteen, respectively. The value of each extended_digit of a based_literal shall be
less than the base.

Static Semantics

7

The conventional meaning of based notation is assumed. An exponent indicates the power
of the base by which the value of the based_literal without the exponent is to be multiplied
to obtain the value of the based_literal with the exponent. The base and the exponent, if
any, are in decimal notation.

8
The extended_digits A through F can be written either in lower case or in upper case, with
the same meaning.

Ezamples
9
<Examples of based literals:>
10
2#1111_1111# 16#FF# 016#0ff# ——< 1integer literals of value 255>
16#E#E1 2#1110_0000# ——< 1integer literals of value 224>}

16#F .FF#E+2 2#1.1111_1111_1110#E11 ——< real literals of value 4095.0>H



3.5 2.5 Character Literals

1
A character_literal is formed by enclosing a graphic character between two apostrophe
characters.

Syntax
2
character_literal ::= ’graphic_character’
NOTES
3
5 A character_literal is an enumeration literal of a character type.
See Section 4.5.2 [3.5.2], page 93.
Ezamples
4
<Examples of character literals:>
5/2
7A) J * ) PAP AN ) )
'L > [Unicode 1051]° > [Unicode 923]° ——< Various els.>
> [Unicode 8734]° ’ [Unicode 1488]° ——< Big numbers — infinity and .

3.6 2.6 String Literals

1

A string_literal is formed by a sequence of graphic characters (possibly none) enclosed
between two quotation marks used as string brackets. They are used to represent opera-
tor_symbols (see Section 7.1 [6.1], page 255), values of a string type (see Section 5.2 [4.2],
page 189), and array subaggregates (see Section 5.3.3 [4.3.3], page 196).

Syntax

2

string_literal ::= "{string_element}"
3

string_element ::= "" | <non_quotation_mark_>graphic_character
4

A string_element is either a pair of quotation marks (""), or a single

graphic_character other than a quotation mark.

Static Semantics

5

The <sequence of characters> of a string_literal is formed from the sequence of



string_elements between the bracketing quotation marks, in the given order, with a
string_element that is "" becoming a single quotation mark in the sequence of characters,
and any other string_element being reproduced in the sequence.

6
A <null string literal> is a string_literal with no string_elements between the quotation
marks.

NOTES
7
6 An end of line cannot appear in a string_literal.
7.1/2
7 No transformation is performed on the sequence of characters of
a string_literal.
Ezamples
8
<Examples of string literals:>
9/2

"Message of the day:"

" ——< a null string literal>
R "A" frn ——< three string literals of length 1>

"Characters such as $, %, and } are allowed in string literals"

"Archimedes said ""[Unicode 917] [Unicode 973] [Unicode 961] [Unicode 951] [Uni-Nli
code 954] [Unicode 945]"""

"Volume of cylinder (PIr’h) = "

3.7 2.7 Comments

1
A comment starts with two adjacent hyphens and extends up to the end of the line.
Syntax

2

comment ::= ——{<non_end_of_line_>character}
3

A comment may appear on any line of a program.

Static Semantics

4

The presence or absence of comments has no influence on whether a program is legal or



illegal. Furthermore, comments do not influence the meaning of a program; their sole
purpose is the enlightenment of the human reader.
Ezamples

5
<Examples of comments:>

6

——< the last sentence above echoes the Algol 68 report >
end; ——< processing of Line is complete >

——< a long comment may be split onto>
——< two or more consecutive lines >

———————————————— < the first two hyphens start the comment >}

3.8 2.8 Pragmas

1

A pragma is a compiler directive. There are language—defined pragmas that give instruc-
tions for optimization, listing control, etc. An implementation may support additional
(implementation—defined) pragmas.

Syntax
2
pragma ::=
pragma identifier [(pragma_argument_association {, pragma_argument_association})];
3
pragma_argument_association ::=
[<pragma_argument_>identifier =>] name
| [<pragma_argument_>identifier =>] expression
4
In a pragma, any pragma_argument_associations without a
<pragma_argument_>identifier shall precede any associations with a
<pragma_argument_>identifier.
5
Pragmas are only allowed at the following places in a program:
6

e After a semicolon delimiter, but not within a formal_part or
discriminant_part.



e At any place where the syntax rules allow a construct defined
by a syntactic category whose name ends with "declaration",
"statement", "clause", or "alternative", or one of the syntactic
categories variant or exception_handler; but not in place of such
a construct. Also at any place where a compilation_unit would

be allowed.
8
Additional syntax rules and placement restrictions exist for specific
pragmas.
9

The <name> of a pragma is the identifier following the reserved word pragma. The name
or expression of a pragma_argument_association is a <pragma argument>.

10
An <identifier specific to a pragma> is an identifier that is used in a pragma argument with
special meaning for that pragma.

Static Semantics

11
If an implementation does not recognize the name of a pragma, then it has no effect on the
semantics of the program. Inside such a pragma, the only rules that apply are the Syntax
Rules.

Dynamic Semantics

12
Any pragma that appears at the place of an executable construct is executed. Unless
otherwise specified for a particular pragma, this execution consists of the evaluation of each
evaluable pragma argument in an arbitrary order.

Implementation Requirements

13
The implementation shall give a warning message for an unrecognized pragma name.
Implementation Permissions

14
An implementation may provide implementation—defined pragmas; the name of an
implementation—defined pragma shall differ from those of the language—defined pragmas.

15
An implementation may ignore an unrecognized pragma even if it violates some of the
Syntax Rules, if detecting the syntax error is too complex.

Implementation Advice

16

Normally, implementation—defined pragmas should have no semantic effect for error—free
programs; that is, if the implementation—defined pragmas are removed from a working
program, the program should still be legal, and should still have the same semantics.



17
Normally, an implementation should not define pragmas that can make an illegal program
legal, except as follows:

18

e A pragma used to complete a declaration, such as a pragma Import;

19

e A pragma used to configure the environment by adding, removing, or replacing li-
brary_items.

Syntax
20
The forms of List, Page, and Optimize pragmas are as follows:
21
pragma List(identifier);
22
pragma Page;
23
pragma Optimize(identifier);
24
Other pragmas are defined throughout this International Standard,
and are summarized in Chapter 25 [Annex L], page 1242.
Static Semantics
25

A pragma List takes one of the identifiers On or Off as the single argument. This pragma
is allowed anywhere a pragma is allowed. It specifies that listing of the compilation is to be
continued or suspended until a List pragma with the opposite argument is given within the
same compilation. The pragma itself is always listed if the compiler is producing a listing.

26

A pragma Page is allowed anywhere a pragma is allowed. It specifies that the program text
which follows the pragma should start on a new page (if the compiler is currently producing
a listing).

27

A pragma Optimize takes one of the identifiers Time, Space, or Off as the single argument.
This pragma is allowed anywhere a pragma is allowed, and it applies until the end of the
immediately enclosing declarative region, or for a pragma at the place of a compilation_unit,
to the end of the compilation. It gives advice to the implementation as to whether time or



space is the primary optimization criterion, or that optional optimizations should be turned
off. It is implementation defined how this advice is followed.

Ezamples
28
<Examples of pragmas:>
29/2
pragma List(0ff); ——< turn off listing generation>
pragma Optimize(0ff); ——< turn off optional optimizations>
pragma Inline(Set_Mask); ——< generate code for Set_Mask inline>
pragma Import(C, Put_Char, External_Name => "putchar"); ——< import C putchar func
3.9 2.9 Reserved Words
Syntax
1/1
<This paragraph was deleted.>
2/2
The following are the <reserved words>. Within a program, some or
all of the letters of a reserved word may be in upper case, and one
or more characters in category other_format may be inserted within
or at the end of the reserved word.
abort else new return
abs elsif not reverse
abstract end null
accept entry select
access exception of separate
aliased exit or subtype
all others synchronized
and for out
array function overriding tagged
at task
generic package terminate
begin goto pragma then
body private type
if procedure
case in protected until
constant interface use
is raise
declare range when
delay limited record while
delta loop rem with

digits renames



do

mod requeue xor

NOTES

8 The reserved words appear in lower case boldface in this Interna-
tional Standard, except when used in the designator of an attribute
(see Section 5.1.4 [4.1.4], page 187). Lower case boldface is also used
for a reserved word in a string_literal used as an operator_symbol.
This is merely a convention —— programs may be written in what-
ever typeface is desired and available.



4 3 Declarations and Types

1
This section describes the types in the language and the rules for declaring constants,
variables, and named numbers.

4.1 3.1 Declarations

1

The language defines several kinds of named <entities> that are declared by declarations.
The entity’s <name> is defined by the declaration, usually by a defining_identifier (see
[S0022], page 49), but sometimes by a defining_character_literal (see [S0040], page 92) or
defining_operator_symbol (see [S0156], page 256).

2
There are several forms of declaration. A basic_declaration is a form of declaration defined
as follows.

Syntax

3/2

basic_declaration ::=

type_declaration | subtype_declaration

| object_declaration | number_declaration

| subprogram_declaration | abstract_subprogram_declaration
| null_procedure_declaration | package_declaration
| renaming_declaration | exception_declaration
| generic_declaration | generic_instantiation

defining_identifier ::= identifier
Static Semantics

5

A <declaration> is a language construct that associates a name with (a view of) an entity.
A declaration may appear explicitly in the program text (an <explicit> declaration), or may
be supposed to occur at a given place in the text as a consequence of the semantics of
another construct (an <implicit> declaration).

6/2

Each of the following is defined to be a declaration: any basic_declaration (see [S0021],
page 49); an enumeration_literal_specification (see [S0039], page 92); a discriminant_-
specification (see [S0062], page 123); a component_declaration (see [S0070], page 130);
a loop_parameter_specification (see [S0144], page 249); a parameter_specification (see
[S0160], page 256); a subprogram_body (see [S0162], page 261); an entry_declaration
(see [S0200], page 347); an entry_index_specification (see [S0206], page 348); a choice_-
parameter_specification (see [S0249], page 420); a generic_formal_parameter_declaration
(see [S0256], page 451). In addition, an extended_return_statement is a declaration of its
defining_identifier.



7

All declarations contain a <definition> for a <view> of an entity. A view consists of an
identification of the entity (the entity <of> the view), plus view—specific characteristics
that affect the use of the entity through that view (such as mode of access to an object,
formal parameter names and defaults for a subprogram, or visibility to components of a
type). In most cases, a declaration also contains the definition for the entity itself (a
renaming_declaration is an example of a declaration that does not define a new entity, but
instead defines a view of an existing entity (see Section 9.5 [8.5], page 316)).

8

For each declaration, the language rules define a certain region of text called the <scope> of
the declaration (see Section 9.2 [8.2], page 306). Most declarations associate an identifier
with a declared entity. Within its scope, and only there, there are places where it is possible
to use the identifier to refer to the declaration, the view it defines, and the associated entity;
these places are defined by the visibility rules (see Section 9.3 [8.3], page 308). At such places
the identifier is said to be a <name> of the entity (the direct_name or selector_name); the
name is said to <denote> the declaration, the view, and the associated entity (see Section 9.6
[8.6], page 324). The declaration is said to <declare> the name, the view, and in most cases,
the entity itself.

9

As an alternative to an identifier, an enumeration literal can be declared with a charac-
ter_literal as its name (see Section 4.5.1 [3.5.1], page 92), and a function can be declared
with an operator_symbol as its name (see Section 7.1 [6.1], page 255).

10
The syntax rules use the terms defining_identifier, defining_character_literal (see [S0040],
page 92), and defining_operator_symbol (see [S0156], page 256) for the defining occurrence
of a name; these are collectively called <defining names>. The terms direct_name and
selector_name are used for usage occurrences of identifiers, character_literals, and opera-
tor_symbols. These are collectively called <usage names>.

Dynamic Semantics

11

The process by which a construct achieves its run—time effect is called <execution>. This
process is also called <elaboration> for declarations and <evaluation> for expressions. One
of the terms execution, elaboration, or evaluation is defined by this International Standard
for each construct that has a run—time effect.

NOTES
12

1 At compile time, the declaration of an entity <declares> the entity.
At run time, the elaboration of the declaration <creates> the entity.

4.2 3.2 Types and Subtypes

Static Semantics

1
A <type> is characterized by a set of values, and a set of <primitive operations> which



implement the fundamental aspects of its semantics. An <object> of a given type is a
run—time entity that contains (has) a value of the type.

2/2

Types are grouped into <categories> of types. There exist several <language—defined cate-
gories> of types (see NOTES below), reflecting the similarity of their values and primitive
operations. Most categories of types form <classes> of types. <Elementary> types are those
whose values are logically indivisible; <composite> types are those whose values are com-
posed of <component> values.

3

The elementary types are the <scalar> types (<discrete> and <real>) and the <access> types
(whose values provide access to objects or subprograms). Discrete types are either <integer>
types or are defined by enumeration of their values (<enumeration> types). Real types are
either <floating point> types or <fixed point> types.

4/2

The composite types are the <record> types, <record extensions>, <array> types, <interface>
types, <task> types, and <protected> types.

4.1/2

There can be multiple views of a type with varying sets of operations. An <incomplete>
type represents an incomplete view (see Section 4.10.1 [3.10.1], page 160) of a type with
a very restricted usage, providing support for recursive data structures. A <private> type
or <private extension> represents a partial view (see Section 8.3 [7.3], page 283) of a type,
providing support for data abstraction. The full view (see Section 4.2.1 [3.2.1], page 53)
of a type represents its complete definition. An incomplete or partial view is considered a
composite type, even if the full view is not.

5/2

Certain composite types (and views thereof) have special components called <discrimi-
nants> whose values affect the presence, constraints, or initialization of other components.
Discriminants can be thought of as parameters of the type.

6/2

The term <subcomponent> is used in this International Standard in place of the term
component to indicate either a component, or a component of another subcomponent.
Where other subcomponents are excluded, the term component is used instead. Similarly,
a <part> of an object or value is used to mean the whole object or value, or any set of its
subcomponents. The terms component, subcomponent, and part are also applied to a type
meaning the component, subcomponent, or part of objects and values of the type.

7/2

The set of possible values for an object of a given type can be subjected to a condition that
is called a <constraint> (the case of a <null constraint> that specifies no restriction is also
included); the rules for which values satisfy a given kind of constraint are given in Section 4.5
[3.5], page 76, for range_constraints, Section 4.6.1 [3.6.1], page 117, for index_constraints,
and Section 4.7.1 [3.7.1], page 127, for discriminant_constraints. The set of possible values
for an object of an access type can also be subjected to a condition that excludes the null
value (see Section 4.10 [3.10], page 156).

8/2

A <subtype> of a given type is a combination of the type, a constraint on values of the



type, and certain attributes specific to the subtype. The given type is called the <type of
the subtype>. Similarly, the associated constraint is called the <constraint of the subtype>.
The set of values of a subtype consists of the values of its type that satisfy its constraint
and any exclusion of the null value. Such values <belong> to the subtype.

9

A subtype is called an <unconstrained> subtype if its type has unknown discriminants, or if
its type allows range, index, or discriminant constraints, but the subtype does not impose
such a constraint; otherwise, the subtype is called a <constrained> subtype (since it has no
unconstrained characteristics).

NOTES
10/2

2 Any set of types can be called a "category" of types, and any set of
types that is closed under derivation (see Section 4.4 [3.4], page 66)
can be called a "class" of types. However, only certain categories and
classes are used in the description of the rules of the language ——
generally those that have their own particular set of primitive oper-
ations (see Section 4.2.3 [3.2.3], page 57), or that correspond to a set
of types that are matched by a given kind of generic formal type (see
Section 13.5 [12.5], page 460). The following are examples of "in-
teresting" <language—defined classes>: elementary, scalar, discrete,
enumeration, character, boolean, integer, signed integer, modular,
real, floating point, fixed point, ordinary fixed point, decimal fixed
point, numeric, access, access—to—object, access—to—subprogram,
composite, array, string, (untagged) record, tagged, task, protected,
nonlimited. Special syntax is provided to define types in each of these
classes. In addition to these classes, the following are examples of
"interesting" <language—defined categories>: abstract, incomplete,
interface, limited, private, record.

11/2

These language—defined categories are organized like this:
12/2

all types
elementary
scalar
discrete
enumeration
character
boolean
other enumeration
integer
signed integer
modular integer



real
floating point
fixed point
ordinary fixed point
decimal fixed point
access
access—to—object
access—to—subprogram
composite
untagged
array
string
other array
record
task
protected
tagged (including interfaces)
nonlimited tagged record
limited tagged
limited tagged record
synchronized tagged
tagged task
tagged protected

13/2

There are other categories, such as "numeric" and "discriminated",
which represent other categorization dimensions, but do not fit into
the above strictly hierarchical picture.

4.2.1 3.2.1 Type Declarations

1
A type_declaration declares a type and its first subtype.
Syntax
2
type_declaration ::= full_type_declaration

| incomplete_type_declaration

| private_type_declaration

| private_extension_declaration
3

full_type_declaration ::=
type defining_identifier [known_discriminant_part] is type_definition;

| task_type_declaration
| protected_type_declaration



4/2

type_definition ::=
enumeration_type_definition | integer_type_definition
| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition | interface_type_definition
Legality Rules

5
A given type shall not have a subcomponent whose type is the given type itself.
Static Semantics

6

The defining_identifier (see [S0022], page 49) of a type_declaration (see [S0023], page 53) de-
notes the <first subtype> of the type. The known_discriminant_part (see [S0061], page 123),
if any, defines the discriminants of the type (see Section 4.7 [3.7], page 123, "Section 4.7 [3.7],
page 123, Discriminants"). The remainder of the type_declaration (see [S0023], page 53)
defines the remaining characteristics of (the view of) the type.

7/2

A type defined by a type_declaration (see [S0023], page 53) is a <named> type; such a type
has one or more nameable subtypes. Certain other forms of declaration also include type
definitions as part of the declaration for an object. The type defined by such a declaration is
<anonymous> —— it has no nameable subtypes. For explanatory purposes, this International
Standard sometimes refers to an anonymous type by a pseudo—name, written in italics, and
uses such pseudo—names at places where the syntax normally requires an identifier. For a
named type whose first subtype is T, this International Standard sometimes refers to the
type of T as simply "the type T".

8/2

A named type that is declared by a full_type_declaration (see [S0024], page 53), or an
anonymous type that is defined by an access_definition or as part of declaring an object
of the type, is called a <full type>. The declaration of a full type also declares the <full
view> of the type. The type_definition (see [S0025], page 54), task_definition (see [S0190],
page 329), protected_definition (see [S0195], page 338), or access_definition (see [S0084],
page 156) that defines a full type is called a <full type definition>. Types declared by other
forms of type_declaration (see [S0023|, page 53) are not separate types; they are partial or
incomplete views of some full type.

9

The definition of a type implicitly declares certain <predefined operators> that operate
on the type, according to what classes the type belongs, as specified in Section 5.5 [4.5],
page 203, "Section 5.5 [4.5], page 203, Operators and Expression Evaluation".

10

The <predefined types> (for example the types Boolean, Wide_Character, Integer,
<root_integer>, and <universal_integer>) are the types that are defined in a predefined
library package called Standard; this package also includes the (implicit) declarations
of their predefined operators. The package Standard is described in Section 15.1 [A.1],
page 556.



Dynamic Semantics

11
The elaboration of a full_type_declaration consists of the elaboration of the full type defini-
tion. Each elaboration of a full type definition creates a distinct type and its first subtype.

Ezxamples
12
<Examples of type definitions:>
13
(White, Red, Yellow, Green, Blue, Brown, Black)
range 1 .. 72
array(l .. 10) of Integer
14
<Examples of type declarations:>
15
type Color is (White, Red, Yellow, Green, Blue, Brown, Black);
type Column is range 1 .. 72;
type Table is array(l .. 10) of Integer;
NOTES
16

3 Each of the above examples declares a named type. The identifier
given denotes the first subtype of the type. Other named subtypes of
the type can be declared with subtype_declarations (see Section 4.2.2
[3.2.2], page 55). Although names do not directly denote types, a
phrase like "the type Column" is sometimes used in this Interna-
tional Standard to refer to the type of Column, where Column de-
notes the first subtype of the type. For an example of the definition
of an anonymous type, see the declaration of the array Color_Table
in Section 4.3.1 [3.3.1], page 61; its type is anonymous —— it has no
nameable subtypes.

4.2.2 3.2.2 Subtype Declarations

1
A subtype_declaration declares a subtype of some previously declared type, as defined by
a subtype_indication.

Syntax

subtype_declaration ::=
subtype defining_identifier is subtype_indication;

3/2



subtype_indication ::= [null_exclusion] subtype_mark [constraint]

4
subtype_mark ::= <subtype_>name
5
constraint ::= scalar_constraint | composite_constraint
6
scalar_constraint ::=
range_constraint | digits_constraint | delta_constraint
7
composite_constraint ::=
index_constraint | discriminant_constraint
Name Resolution Rules
8

A subtype_mark shall resolve to denote a subtype. The type <determined by> a sub-
type_mark is the type of the subtype denoted by the subtype_mark.
Dynamic Semantics

9

The elaboration of a subtype_declaration consists of the elaboration of the sub-
type_indication. The elaboration of a subtype_indication creates a new subtype. If
the subtype_indication does not include a constraint, the new subtype has the same
(possibly null) constraint as that denoted by the subtype_mark. The elaboration of a
subtype_indication that includes a constraint proceeds as follows:

10

e The constraint is first elaborated.

11

e A check is then made that the constraint is <compatible> with the subtype denoted by
the subtype_mark.

12

The condition imposed by a constraint is the condition obtained after elaboration of the
constraint. The rules defining compatibility are given for each form of constraint in the
appropriate subclause. These rules are such that if a constraint is <compatible> with a
subtype, then the condition imposed by the constraint cannot contradict any condition
already imposed by the subtype on its values. The exception Constraint_Error is raised if
any check of compatibility fails.

NOTES
13



14

<Examples

15/2

4 A scalar_constraint may be applied to a subtype of an appropriate
scalar type (see Section 4.5 [3.5], page 76, Section 4.5.9 [3.5.9],
page 106, and Section 23.3 [J.3], page 1167), even if the subtype is
already constrained. On the other hand, a composite_constraint
may be applied to a composite subtype (or an access—to—composite
subtype) only if the composite subtype is unconstrained (see
Section 4.6.1 [3.6.1], page 117, and Section 4.7.1 [3.7.1], page 127).

subtype Rainbow is
[3.2.1], page 53>

subtype Red_Blue is
subtype Int is
subtype Small_Int is
subtype Up_To_K is
[3.2.1], page 53>

subtype Square is
[3.6], page 114>
subtype Male is

[3.10.1], page 160>
subtype Binop_Ref is
[3.10], page 156>

of subtype declarations:>

Ezamples

Color range Red .. Blue;
Rainbow;

Integer;

Integer range —10 .. 10;
Column range 1 .. K;
Matrix(1 .. 10, 1 .. 10);
Person(Sex => M);

not null Binop_Ptr;

4.2.3 3.2.3 Classification of Operations

1/2

Static Semantics

see

see

see

see

see

Section 4.2.1}

Section 4.2.1}
Section 4.6
Section 4.10.1]

Section 4.10Q

An operation <operates on a type> <T> if it yields a value of type <T>, if it has an operand
whose expected type (see Section 9.6 [8.6], page 324) is <T>, or if it has an access parameter
or access result type (see Section 7.1 [6.1], page 255) designating <T>. A predefined operator,
or other language—defined operation such as assignment or a membership test, that operates
on a type, is called a <predefined operation> of the type. The <primitive operations> of a
type are the predefined operations of the type, plus any user—defined primitive subprograms.

2

The <primitive subprograms> of a specific type are defined as follows:

3

e The predefined operators of the type (see Section 5.5 [4.5], page 203);

e For a derived type, the inherited (see Section 4.4 [3.4], page 66) user—defined subpro-

grams;



e For an enumeration type, the enumeration literals (which are considered parameterless
functions —— see Section 4.5.1 [3.5.1], page 92);

e For a specific type declared immediately within a package_specification, any subpro-
grams (in addition to the enumeration literals) that are explicitly declared immediately
within the same package_specification and that operate on the type;

7/2

e For a nonformal type, any subprograms not covered above that are explicitly declared
immediately within the same declarative region as the type and that override (see
Section 9.3 [8.3], page 308) other implicitly declared primitive subprograms of the

type.
8

A primitive subprogram whose designator is an operator_symbol is called a <primitive
operator>.

4.3 3.3 Objects and Named Numbers

1
Objects are created at run time and contain a value of a given type. An object can be created
and initialized as part of elaborating a declaration, evaluating an allocator, aggregate, or
function_call, or passing a parameter by copy. Prior to reclaiming the storage for an object,
it is finalized if necessary (see Section 8.6.1 [7.6.1], page 299).

Static Semantics

2
All of the following are objects:

3

e the entity declared by an object_declaration;

e a formal parameter of a subprogram, entry, or generic subprogram;

e a generic formal object;

e a loop parameter;



e a choice parameter of an exception_handler;

e an entry index of an entry_body;

e the result of dereferencing an access—to—object value (see Section 5.1 [4.1], page 179);

10/2

e the return object created as the result of evaluating a function_call (or the equivalent
operator invocation —— see Section 7.6 [6.6], page 276);

11

e the result of evaluating an aggregate;

12

e a component, slice, or view conversion of another object.

13

An object is either a <constant> object or a <variable> object. The value of a constant
object cannot be changed between its initialization and its finalization, whereas the value
of a variable object can be changed. Similarly, a view of an object is either a <constant>
or a <variable>. All views of a constant object are constant. A constant view of a variable
object cannot be used to modify the value of the variable. The terms constant and variable
by themselves refer to constant and variable views of objects.

14

The value of an object is <read> when the value of any part of the object is evaluated, or
when the value of an enclosing object is evaluated. The value of a variable is <updated>
when an assignment is performed to any part of the variable, or when an assignment is
performed to an enclosing object.

15
Whether a view of an object is constant or variable is determined by the definition of the
view. The following (and no others) represent constants:

16

e an object declared by an object_declaration with the reserved word constant;

17

e a formal parameter or generic formal object of mode in;



18

e a discriminant;

19

e a loop parameter, choice parameter, or entry index;

20

e the dereference of an access—to—constant value;

21

e the result of evaluating a function_call or an aggregate;

22

e a selected_component, indexed_component, slice, or view conversion of a constant.

23

At the place where a view of an object is defined, a <nominal subtype> is associated with
the view. The object’s <actual subtype> (that is, its subtype) can be more restrictive
than the nominal subtype of the view; it always is if the nominal subtype is an <indefinite
subtype>. A subtype is an indefinite subtype if it is an unconstrained array subtype, or if it
has unknown discriminants or unconstrained discriminants without defaults (see Section 4.7
[3.7], page 123); otherwise the subtype is a <definite> subtype (all elementary subtypes are
definite subtypes). A class—wide subtype is defined to have unknown discriminants, and
is therefore an indefinite subtype. An indefinite subtype does not by itself provide enough
information to create an object; an additional constraint or explicit initialization expression
is necessary (see Section 4.3.1 [3.3.1], page 61). A component cannot have an indefinite
nominal subtype.

24
A <named number> provides a name for a numeric value known at compile time. It is
declared by a number_declaration.

NOTES

25
5 A constant cannot be the target of an assignment operation, nor
be passed as an in out or out parameter, between its initialization
and finalization, if any.

26

6 The nominal and actual subtypes of an elementary object are
always the same. For a discriminated or array object, if the nominal
subtype is constrained then so is the actual subtype.



4.3.1 3.3.1 Object Declarations

1
An object_declaration declares a <stand—alone> object with a given nominal subtype and,
optionally, an explicit initial value given by an initialization expression. For an array, task,
or protected object, the object_declaration may include the definition of the (anonymous)
type of the object.

Syntax

2/2

object_declaration ::=
defining_identifier_list : [aliased] [constant] subtype_indication [:= expression];

| defining_identifier_list : [aliased] [constant] access_definition [:= expression];
| defining_identifier_list : [aliased] [constant] array_type_definition [:= expression];

| single_task_declaration
| single_protected_declaration

defining_identifier_list ::=
defining_identifier {, defining_identifier}
Name Resolution Rules

4
For an object_declaration with an expression following the compound delimiter :=, the type
expected for the expression is that of the object. This expression is called the <initialization
expression>.
Legality Rules

5/2
An object_declaration without the reserved word constant declares a variable object. If
it has a subtype_indication or an array_type_definition that defines an indefinite subtype,
then there shall be an initialization expression.

Static Semantics

6

An object_declaration with the reserved word constant declares a constant object. If it has
an initialization expression, then it is called a <full constant declaration>. Otherwise it is
called a <deferred constant declaration>. The rules for deferred constant declarations are
given in clause Section 8.4 [7.4], page 290. The rules for full constant declarations are given
in this subclause.

7

Any declaration that includes a defining_identifier _list with more than one defining_identifier
is equivalent to a series of declarations each containing one defining_identifier from the list,
with the rest of the text of the declaration copied for each declaration in the series, in
the same order as the list. The remainder of this International Standard relies on this
equivalence; explanations are given for declarations with a single defining_identifier.



8/2
The subtype_indication, access_definition, or full type definition of an object_declaration
defines the nominal subtype of the object. The object_declaration declares an object of the
type of the nominal subtype.
8.1/2
A component of an object is said to <require late initialization> if it has an access discrim-
inant value constrained by a per—object expression, or if it has an initialization expression
that includes a name denoting the current instance of the type or denoting an access dis-
criminant.

Dynamic Semantics
9/2
If a composite object declared by an object_declaration has an unconstrained nominal sub-
type, then if this subtype is indefinite or the object is constant the actual subtype of this
object is constrained. The constraint is determined by the bounds or discriminants (if any)
of its initial value; the object is said to be <constrained by its initial value>. When not
constrained by its initial value, the actual and nominal subtypes of the object are the same.
If its actual subtype is constrained, the object is called a <constrained object>.

10

For an object_declaration without an initialization expression, any initial values for the
object or its subcomponents are determined by the <implicit initial values> defined for its
nominal subtype, as follows:

11

e The implicit initial value for an access subtype is the null value of the access type.
12

e The implicit initial (and only) value for each discriminant of a constrained discriminated
subtype is defined by the subtype.

13

e For a (definite) composite subtype, the implicit initial value of each component with
a default_expression is obtained by evaluation of this expression and conversion to the
component’s nominal subtype (which might raise Constraint_Error —— see Section 5.6
[4.6], page 219, "Section 5.6 [4.6], page 219, Type Conversions"), unless the component
is a discriminant of a constrained subtype (the previous case), or is in an excluded
variant (see Section 4.8.1 [3.8.1], page 134). For each component that does not have a
default_expression, any implicit initial values are those determined by the component’s
nominal subtype.

14

e For a protected or task subtype, there is an implicit component (an entry queue)
corresponding to each entry, with its implicit initial value being an empty queue.

15
The elaboration of an object_declaration proceeds in the following sequence of steps:



16/2

1. The subtype_indication (see [S0027], page 56), access_definition (see [S0084],
page 156), array_type_definition (see [S0051], page 114), single_task_declaration (see
[S0189], page 329), or single_protected_declaration (see [S0194], page 338) is first
elaborated. This creates the nominal subtype (and the anonymous type in the last
four cases).

17

2. If the object_declaration includes an initialization expression, the (explicit) initial
value is obtained by evaluating the expression and converting it to the nominal subtype
(which might raise Constraint_Error —— see Section 5.6 [4.6], page 219).

18/2

3. The object is created, and, if there is not an initialization expression, the object
is <initialized by default>. When an object is initialized by default, any per—object
constraints (see Section 4.8 [3.8], page 130) are elaborated and any implicit initial values
for the object or for its subcomponents are obtained as determined by the nominal
subtype. Any initial values (whether explicit or implicit) are assigned to the object or
to the corresponding subcomponents. As described in Section 6.2 [5.2], page 242, and
Section 8.6 [7.6], page 295, Initialize and Adjust procedures can be called.

19/2

<This paragraph was deleted.>

20/2
For the third step above, evaluations and assignments are performed in an arbitrary order
subject to the following restrictions:

20.1/2

e Assignment to any part of the object is preceded by the evaluation of the value that is
to be assigned.

20.2/2

e The evaluation of a default_expression that includes the name of a discriminant is
preceded by the assignment to that discriminant.

20.3/2

e The evaluation of the default_expression for any component that depends on a discrim-
inant is preceded by the assignment to that discriminant.

20.4/2

e The assignments to any components, including implicit components, not requiring late
initialization must precede the initial value evaluations for any components requiring



late initialization; if two components both require late initialization, then assignments
to parts of the component occurring earlier in the order of the component declarations
must precede the initial value evaluations of the component occurring later.

21
There is no implicit initial value defined for a scalar subtype. In the absence of an explicit

initialization, a newly created scalar object might have a value that does not belong to its
subtype (see Section 14.9.1 [13.9.1], page 522, and Section 22.1 [H.1], page 1153).

NOTES

22
7 Implicit initial values are not defined for an indefinite subtype,
because if an object’s nominal subtype is indefinite, an explicit initial
value is required.

23
8 As indicated above, a stand—alone object is an object
declared by an object_declaration. Similar definitions apply
to "stand—alone constant" and "stand—alone variable." A
subcomponent of an object is not a stand—alone object, nor is
an object that is created by an allocator. An object declared
by a loop_parameter_specification, parameter_specification,
entry_index_specification, choice_parameter_specification, or a
formal_object_declaration is not called a stand—alone object.

24
9 The type of a stand—alone object cannot be abstract (see
Section 4.9.3 [3.9.3], page 149).

Examples

25

<Example of a multiple object declaration:>

26
——< the multiple object declaration >

27/2
John, Paul : not null Person_Name := new Person(Sex => M); ——< see Section 4.1(
[3.10.1], page 160>

28
——< 1is equivalent to the two single object declarations in the order given>]

29/2

John : not null Person_Name := new Person(Sex => M);



Paul : not null Person_Name := new Person(Sex => M);

30
<Examples of variable declarations:>
31/2
Count, Sum : Integer;
Size : Integer range O .. 10_000 := O;
Sorted : Boolean := False;
Color_Table : array(l .. Max) of Color;
Option : Bit_Vector(1 .. 10) := (others => True);
Hello : aliased String := "Hi, world.";
[Unicode 952], [Unicode 966] : Float range —PI .. +PI;
32
<Examples of constant declarations:>
33/2
Limit : constant Integer := 10_000;
Low_Limit : constant Integer := Limit/10;
Tolerance : constant Real := Dispersion(1.15);
Hello_Msg : constant access String := Hello’Access; ——< see Section 4.10.2J

[3.10.2], page 164>

4.3.2 3.3.2 Number Declarations

1

A number_declaration declares a named number.
Syntax

2

number_declaration ::=
defining_identifier_list : constant := <static_>expression;
Name Resolution Rules
3

The <static_>expression given for a number_declaration is expected to be of any numeric

type.
Legality Rules

4
The <static_>expression given for a number declaration shall be a static expression, as
defined by clause Section 5.9 [4.9], page 234.

Static Semantics

5

The named number denotes a value of type <universal_integer> if the type of the <static_>-
expression is an integer type. The named number denotes a value of type <universal_real>
if the type of the <static_>expression is a real type.



6
The value denoted by the named number is the value of the <static_>expression, converted
to the corresponding universal type.

Dynamic Semantics

7
The elaboration of a number_declaration has no effect.
Ezamples

8

<Examples of number declarations:>

9
Two_Pi : constant := 2.0xAda.Numerics.Pi; ——< a real number (see Sectior
[A.5], page 648)>

10/2
Max : constant := 500; ——< an integer number>]]
Max_Line_Size : constant := Max/6; ——< the integer 83>}
Power_16 : constant := 2xx16; ——< the integer 65_536>]
One, Un, Eins : constant := 1; ——< three different names for

4.4 3.4 Derived Types and Classes

1/2
A derived_type_definition defines a <derived type> (and its first subtype) whose charac-
teristics are <derived> from those of a parent type, and possibly from progenitor types.

1.1/2

A <class of types> is a set of types that is closed under derivation; that is, if the parent or a
progenitor type of a derived type belongs to a class, then so does the derived type. By saying
that a particular group of types forms a class, we are saying that all derivatives of a type in
the set inherit the characteristics that define that set. The more general term <category of
types> is used for a set of types whose defining characteristics are not necessarily inherited
by derivatives; for example, limited, abstract, and interface are all categories of types, but
not classes of types.

Syntazx
2/2
derived_type_definition ::=
[abstract] [limited] new <parent_>subtype_indication [[and interface_list] record_extension_part
Legality Rules
3/2

The <parent_>subtype_indication defines the <parent subtype>; its type is the <parent
type>. The interface_list defines the progenitor types (see Section 4.9.4 [3.9.4], page 152).
A derived type has one parent type and zero or more progenitor types.



4

A type shall be completely defined (see Section 4.11.1 [3.11.1], page 177) prior to being
specified as the parent type in a derived_type_definition —— the full_type_declarations for
the parent type and any of its subcomponents have to precede the derived_type_definition.
5/2

If there is a record_extension_part, the derived type is called a <record extension> of the
parent type. A record_extension_part shall be provided if and only if the parent type is a
tagged type. An interface_list shall be provided only if the parent type is a tagged type.

5.1/2
If the reserved word limited appears in a derived_type_definition, the parent type shall be
a limited type.

Static Semantics

6

The first subtype of the derived type is unconstrained if a known_discriminant_part is
provided in the declaration of the derived type, or if the parent subtype is unconstrained.
Otherwise, the constraint of the first subtype <corresponds> to that of the parent subtype
in the following sense: it is the same as that of the parent subtype except that for a range
constraint (implicit or explicit), the value of each bound of its range is replaced by the
corresponding value of the derived type.

6.1/2
The first subtype of the derived type excludes null (see Section 4.10 [3.10], page 156) if and
only if the parent subtype excludes null.

7
The characteristics of the derived type are defined as follows:

8/2

e If the parent type or a progenitor type belongs to a class of types, then the derived type
also belongs to that class. The following sets of types, as well as any higher—level sets
composed from them, are classes in this sense, and hence the characteristics defining
these classes are inherited by derived types from their parent or progenitor types: signed
integer, modular integer, ordinary fixed, decimal fixed, floating point, enumeration,
boolean, character, access—to—constant, general access—to—variable, pool—specific
access—to—variable, access—to—subprogram, array, string, non—array composite, non-
limited, untagged record, tagged, task, protected, and synchronized tagged.

e If the parent type is an elementary type or an array type, then the set of possible values
of the derived type is a copy of the set of possible values of the parent type. For a
scalar type, the base range of the derived type is the same as that of the parent type.

10

e If the parent type is a composite type other than an array type, then the components,
protected subprograms, and entries that are declared for the derived type are as follows:



11

e The discriminants specified by a new
known_discriminant_part, if there is
one; otherwise, each discriminant of the
parent type (implicitly declared in the
same order with the same specifications)
—— in the latter case, the discriminants
are said to be <inherited>, or if unknown
in the parent, are also unknown in the
derived type;

12

e FEach nondiscriminant component, entry,
and protected subprogram of the parent
type, implicitly declared in the same
order with the same declarations; these
components, entries, and protected
subprograms are said to be <inherited>;

13

e Each component declared in a
record_extension_part, if any.

14

Declarations of components, protected subprograms, and entries,
whether implicit or explicit, occur immediately within the declar-
ative region of the type, in the order indicated above, following the
parent subtype_indication.

15/2

e <This paragraph was deleted.>
16

e For each predefined operator of the parent type, there is a corresponding predefined
operator of the derived type.

17/2

e For each user—defined primitive subprogram (other than a user—defined equality oper-
ator —— see below) of the parent type or of a progenitor type that already exists at the
place of the derived_type_definition, there exists a corresponding <inherited> primitive
subprogram of the derived type with the same defining name. Primitive user—defined
equality operators of the parent type and any progenitor types are also inherited by



the derived type, except when the derived type is a nonlimited record extension, and
the inherited operator would have a profile that is type conformant with the profile of
the corresponding predefined equality operator; in this case, the user—defined equality
operator is not inherited, but is rather incorporated into the implementation of the pre-
defined equality operator of the record extension (see Section 5.5.2 [4.5.2], page 206).

18/2

The profile of an inherited subprogram (including an inherited enu-
meration literal) is obtained from the profile of the corresponding
(user—defined) primitive subprogram of the parent or progenitor
type, after systematic replacement of each subtype of its profile (see
Section 7.1 [6.1], page 255) that is of the parent or progenitor type
with a <corresponding subtype> of the derived type. For a given
subtype of the parent or progenitor type, the corresponding subtype
of the derived type is defined as follows:

19

e If the declaration of the derived type
has neither a known_discriminant_part
nor a record_extension_part, then the
corresponding subtype has a constraint
that corresponds (as defined above for
the first subtype of the derived type) to
that of the given subtype.

20

e If the derived type is a record extension,
then the corresponding subtype is the
first subtype of the derived type.

21

e If the derived type has a new
known_discriminant_part but is not a
record extension, then the corresponding
subtype is constrained to those values
that when converted to the parent
type belong to the given subtype (see
Section 5.6 [4.6], page 219).

22/2

The same formal parameters have default_expressions in the profile
of the inherited subprogram. Any type mismatch due to the sys-
tematic replacement of the parent or progenitor type by the derived



type is handled as part of the normal type conversion associated with

parameter passing —— see Section 7.4.1 [6.4.1], page 270.
23/2
If a primitive subprogram of the parent or progenitor type is visible at the place of the
derived_type_definition, then the corresponding inherited subprogram is implicitly declared
immediately after the derived_type_definition. Otherwise, the inherited subprogram is im-
plicitly declared later or not at all, as explained in Section 8.3.1 [7.3.1], page 287.

24

A derived type can also be defined by a private_extension_declaration (see [S0177], page 283)
(see Section 8.3 [7.3], page 283) or a formal_derived_type_definition (see [S0265], page 463)
(see Section 13.5.1 [12.5.1], page 462). Such a derived type is a partial view of the corre-
sponding full or actual type.

25

All numeric types are derived types, in that they are implicitly derived from a corresponding

root numeric type (see Section 4.5.4 [3.5.4], page 95, and Section 4.5.6 [3.5.6], page 102).
Dynamic Semantics

26

The elaboration of a derived_type_definition creates the derived type and its first subtype,
and consists of the elaboration of the subtype_indication (see [S0027], page 56) and the
record_extension_part (see [S0075], page 143), if any. If the subtype_indication (see [S0027],
page 56) depends on a discriminant, then only those expressions that do not depend on a
discriminant are evaluated.

27/2

For the execution of a call on an inherited subprogram, a call on the corresponding primitive
subprogram of the parent or progenitor type is performed; the normal conversion of each
actual parameter to the subtype of the corresponding formal parameter (see Section 7.4.1
[6.4.1], page 270) performs any necessary type conversion as well. If the result type of the
inherited subprogram is the derived type, the result of calling the subprogram of the parent
or progenitor is converted to the derived type, or in the case of a null extension, extended
to the derived type using the equivalent of an extension_aggregate with the original result
as the ancestor_part and null record as the record_component_association_list.

NOTES

28
10 Classes are closed under derivation —— any class that contains
a type also contains its derivatives. Operations available for a given
class of types are available for the derived types in that class.

29

11 Evaluating an inherited enumeration literal is equivalent to eval-
uating the corresponding enumeration literal of the parent type, and
then converting the result to the derived type. This follows from
their equivalence to parameterless functions.

30



31

32

33

34

35

35.1/2

35.2/2

36

12 A generic subprogram is not a subprogram, and hence cannot be
a primitive subprogram and cannot be inherited by a derived type.
On the other hand, an instance of a generic subprogram can be a
primitive subprogram, and hence can be inherited.

13 If the parent type is an access type, then the parent and the
derived type share the same storage pool; there is a null access value
for the derived type and it is the implicit initial value for the type.
See Section 4.10 [3.10], page 156.

14 If the parent type is a boolean type, the predefined relational
operators of the derived type deliver a result of the predefined type
Boolean (see Section 5.5.2 [4.5.2], page 206). If the parent type is
an integer type, the right operand of the predefined exponentiation
operator is of the predefined type Integer (see Section 5.5.6 [4.5.6],
page 217).

15 Any discriminants of the parent type are either all inherited, or
completely replaced with a new set of discriminants.

16 For an inherited subprogram, the subtype of a formal parameter
of the derived type need not have any value in common with the first
subtype of the derived type.

17 1If the reserved word abstract is given in the declaration of a type,
the type is abstract (see Section 4.9.3 [3.9.3], page 149).

18 An interface type that has a progenitor type "is derived from"
that type. A derived_type_definition, however, never defines an in-
terface type.

19 It is illegal for the parent type of a derived_type_definition to be
a synchronized tagged type.
Ezamples

<Examples of derived type declarations:>



37

type Local_Coordinate is new Coordinate; ——< two different types>}

type Midweek is new Day range Tue .. Thu; ——< see Section 4.5.1

[3.5.1], page 92>

type Counter is new Positive; ——< same range as Positive >}
38

type Special_Key is new Key_Manager.Key; ——< see Section 8.3.1

[7.3.1], page 287>
——< the inherited subprograms have the following specifications: >J
——< procedure Get_Key(K : out Special_Key) ;>
——< function "<"(X,Y : Special_Key) return Boolean;>

4.4.1 3.4.1 Derivation Classes

1
In addition to the various language—defined classes of types, types can be grouped into
<derivation classes>.

Static Semantics
2/2
A derived type is <derived from> its parent type <directly>; it is derived <indirectly> from
any type from which its parent type is derived. A derived type, interface type, type exten-
sion, task type, protected type, or formal derived type is also derived from every ancestor of
each of its progenitor types, if any. The derivation class of types for a type <T> (also called
the class <rooted> at <T>) is the set consisting of <T> (the <root type> of the class) and all
types derived from <T> (directly or indirectly) plus any associated universal or class—wide
types (defined below).
3/2
Every type is either a <specific> type, a <class—wide> type, or a <universal> type. A specific
type is one defined by a type_declaration, a formal_type_declaration, or a full type definition
embedded in another construct. Class—wide and universal types are implicitly defined, to
act as representatives for an entire class of types, as follows:

4
Class—wide types

Class—wide types
are defined for (and
belong  to)  each
derivation class
rooted at a tagged
type (see Section 4.9
[3.9], page 136).
Given a subtype S
of a tagged type
<T>, S’Class is the
subtype_mark for



a corresponding
subtype of the
tagged class—wide
type <T>’Class.
Such types are
called "class—wide"
because  when a
formal parameter
is defined to be of
a class—wide type
<T>’Class, an actual
parameter of any
type in the derivation
class rooted at <T>
is acceptable (see
Section 9.6  [8.6],
page 324).

The set of values for
a class—wide type
<T>'Class is  the
discriminated union
of the set of values
of each specific type
in the derivation
class rooted at <T>
(the tag acts as the
implicit discriminant
—— see Section 4.9
[3.9], page 136).
Class—wide types
have mno primitive

subprograms of
their own. However,
as explained in

Section 4.9.2 [3.9.2],
page 145, operands
of a class—wide type
<T>Class can be
used as part of a
dispatching call on a
primitive subprogram
of the type <T>. The
only components
(including  discrimi-



6/2
Universal types

nants) of <T>'Class
that are visible are
those of <T>. If S
is a first subtype,
then S’Class is a first
subtype.

Universal types are
defined  for  (and
belong to) the integer,
real, fixed point,
and access classes,
and are referred to
in  this standard
as respectively,
<universal_integer>,
<universal_real>,
<universal_fixed>,

and <univer-
sal_access>. These
are analogous
to class—wide

types for these
language—defined

elementary  classes.
As with class—wide
types, if a formal
parameter is of a
universal type, then
an actual parameter
of any type in the
corresponding  class
is acceptable. In
addition, a value
of a universal
type (including
an integer or real
numeric_literal, or
the literal null) is
"universal" in that it
is acceptable where
some particular
type in the class
is  expected  (see



Section 9.6  [8.6],
page 324).

The set of values of
a universal type is
the undiscriminated
union of the set of
values possible for
any definable type in
the associated class.
Like class—wide
types, universal types
have mno primitive
subprograms of
their own. However,
their  "universality"
allows them to be
used as operands
with the primitive
subprograms of
any type in the
corresponding class.

8
The integer and real numeric classes each have a specific root type in addition to their
universal type, named respectively <root_integer> and <root_real>.

9
A class—wide or universal type is said to <cover> all of the types in its class. A specific
type covers only itself.

10/2

A specific type <T2> is defined to be a <descendant> of a type <T1> if <T2> is the same as
<T1>, or if <T2> is derived (directly or indirectly) from <T1>. A class—wide type <T2>’Class
is defined to be a descendant of type <T1> if <T2> is a descendant of <T1>. Similarly, the
numeric universal types are defined to be descendants of the root types of their classes. If a
type <T2> is a descendant of a type <T1>, then <T1> is called an <ancestor> of <T2>. An
<ultimate ancestor> of a type is an ancestor of that type that is not itself a descendant of
any other type. Every untagged type has a unique ultimate ancestor.

11

An inherited component (including an inherited discriminant) of a derived type is inherited
<from> a given ancestor of the type if the corresponding component was inherited by each
derived type in the chain of derivations going back to the given ancestor.

NOTES
12



20 Because operands of a universal type are acceptable to the prede-
fined operators of any type in their class, ambiguity can result. For
<universal_integer> and <universal_real>, this potential ambiguity is
resolved by giving a preference (see Section 9.6 [8.6], page 324) to the
predefined operators of the corresponding root types (<root_integer>
and <root_real>, respectively). Hence, in an apparently ambiguous
expression like

13

1+4<7
14

where each of the literals is of type <universal_integer>, the prede-
fined operators of <root_integer> will be preferred over those of other
specific integer types, thereby resolving the ambiguity.

4.5 3.5 Scalar Types

1

<Scalar> types comprise enumeration types, integer types, and real types. Enumeration
types and integer types are called <discrete> types; each value of a discrete type has a <po-
sition number> which is an integer value. Integer types and real types are called <numeric>
types. All scalar types are ordered, that is, all relational operators are predefined for their
values.

Syntax
2
range_constraint ::= range range
3
range ::= range_attribute_reference
| simple_expression .. simple_expression
4

A <range> has a <lower bound> and an <upper bound> and specifies a subset of the values
of some scalar type (the <type of the range>). A range with lower bound L and upper
bound R is described by "L .. R". If R is less than L, then the range is a <null range>, and
specifies an empty set of values. Otherwise, the range specifies the values of the type from
the lower bound to the upper bound, inclusive. A value <belongs> to a range if it is of the
type of the range, and is in the subset of values specified by the range. A value <satisfies>
a range constraint if it belongs to the associated range. One range is <included> in another
if all values that belong to the first range also belong to the second.
Name Resolution Rules

5
For a subtype_indication containing a range_constraint, either directly or as part of some
other scalar_constraint, the type of the range shall resolve to that of the type determined



by the subtype_mark of the subtype_indication. For a range of a given type, the sim-
ple_expressions of the range (likewise, the simple_expressions of the equivalent range for a
range_attribute_reference) are expected to be of the type of the range.

Static Semantics

6

The <base range> of a scalar type is the range of finite values of the type that can be
represented in every unconstrained object of the type; it is also the range supported at a
minimum for intermediate values during the evaluation of expressions involving predefined
operators of the type.

7
A constrained scalar subtype is one to which a range constraint applies. The <range> of a
constrained scalar subtype is the range associated with the range constraint of the subtype.
The <range> of an unconstrained scalar subtype is the base range of its type.

Dynamic Semantics

8

A range is <compatible> with a scalar subtype if and only if it is either a null range or each
bound of the range belongs to the range of the subtype. A range_constraint is <compatible>
with a scalar subtype if and only if its range is compatible with the subtype.

9

The elaboration of a range_constraint consists of the evaluation of the range. The evaluation
of a range determines a lower bound and an upper bound. If simple_expressions are given
to specify bounds, the evaluation of the range evaluates these simple_expressions in an
arbitrary order, and converts them to the type of the range. If a range_attribute_reference is
given, the evaluation of the range consists of the evaluation of the range_attribute_reference.

10

<Attributes>

11

For every scalar subtype S, the following attributes are defined:

12

S’First
S’First denotes the
lower bound of the
range of S. The value
of this attribute is of
the type of S.

13

S’Last
S’Last  denotes the
upper bound of the
range of S. The value
of this attribute is of
the type of S.

14

S’Range



S’Range is equivalent
to the range S’First ..

S’Last.
15
S’Base
S’Base denotes
an unconstrained
subtype of the type of
S. This unconstrained
subtype is called the
<base subtype> of the
type.
16
S’Min
S’Min denotes
a function with
the following
specification:
17
function S’Min(<Left>, <Right> : S’Base)l
return S’Base
18
The function returns
the lesser of the
values of the two
parameters.
19
S’Max
S'Max denotes
a function with
the following
specification:
20
function S’Max(<Left>, <Right> : S’Base)l
return S’Base
21

The function returns
the greater of the
values of the two
parameters.



22
S’Suce

S’Succ denotes
a function with
the following
specification:

23

function S’Succ(<Arg> : S’Base)
return S’Base

24

For an enumeration
type, the function
returns the value
whose position
number is one more
than that of the
value  of  <Arg>;
Constraint_Error  is
raised if there is no
such value of the
type. For an integer
type, the function
returns the result
of adding one to
the value of <Arg>.
For a fixed point
type, the function
returns the result of
adding <small> to
the value of <Arg>.
For a floating point
type, the function
returns the machine
number (as defined
in Section 4.5.7
[3.5.7], page 103)
immediately  above
the value of <Arg>;
Constraint_Error

is raised if there is
no such machine
number.

25
S’Pred



S’Pred denotes
a function with
the following
specification:

26

function S’Pred(<Arg> : S’Base)
return S’Base

27

For an enumeration
type, the function
returns the value
whose position
number is one less
than that of the
value of  <Arg>;
Constraint_Error

is raised if there is
no such value of
the type. For an
integer type, the
function returns the
result of subtracting
one from the wvalue
of <Arg>. For a
fixed point type, the
function returns the
result of subtracting
<small> from the
value of <Arg>. For
a  floating point
type, the function
returns the machine
number (as defined
in Section 4.5.7
[3.5.7], page 103)
immediately  below
the value of <Arg>;
Constraint_Error

is raised if there is
no such machine
number.

27.1/2
S’Wide_Wide_Image



S’Wide_Wide_Image
denotes a function
with the following
specification:

27.2/2

function S’Wide_Wide_Image(<Arg> : S’Base)ll
return Wide_Wide_String

27.3/2

The function returns
an <image> of the
value  of  <Arg>,
that is, a sequence
of characters
representing the value
in display form. The
lower bound of the
result is one.

27.4/2

The image of an
integer value is
the corresponding
decimal literal,
without  underlines,
leading Z€ros,
exponent, or trailing
spaces, but  with
a  single leading
character  that is
either a minus sign or
a space.

27.5/2

The image of an
enumeration value
is either the corre-
sponding identifier
in upper case or
the corresponding
character literal
(including the two
apostrophes); neither
leading nor trailing



27.6/2

spaces are included.
For a <nongraphic
character> (a value of
a character type that
has no enumeration
literal associated
with it), the result
is a corresponding
language—defined
name in upper
case (for example,
the image of the
nongraphic character
identified as <nul>
is "NUL" —— the
quotes are not part of
the image).

The image of a
floating point value is
a decimal real literal
best  approximating
the value (rounded
away from zero if
halfway between)
with a single leading
character  that is
either a minus sign
or a space, a single
digit (that is nonzero
unless the wvalue is
zero), a  decimal
point, S’Digits—1 (see
Section 4.5.8 [3.5.8],
page 105) digits after
the decimal point
(but one if S'Digits is
one), an upper case
E, the sign of the
exponent (either + or
—), and two or more
digits (with leading
zeros if necessary)
representing the
exponent. If



S’Signed_Zeros is
True, then the leading
character is a minus
sign for a negatively
signed zero.

27.7/2

The image of a fixed
point value is a
decimal real literal
best  approximating
the value (rounded
away from zero if
halfway between)
with a single leading
character  that is
either a minus sign
or a space, one or
more digits before the
decimal point (with
no redundant leading
zeros), a decimal
point, and S’Aft
(see Section 4.5.10
[3.5.10], page 109)
digits after the
decimal point.

28
S’Wide_Image

S’Wide_Image
denotes a function
with the following
specification:

29

function S’Wide_Image(<Arg> : S’Base)
return Wide_String

30,2

The function returns
an image of the
value of <Arg> as a
Wide_String. The
lower bound of the
result is one. The



image has the same
sequence of character
as defined for
S’Wide_Wide_Image

if all the graphic
characters are defined
in  Wide_Character;
otherwise the
sequence of characters
is implementation
defined  (but  no
shorter than that of
S’Wide_Wide_Image

for the same value of

Arg).

<Paragraphs

31 through 34
were moved to

Wide_Wide_Image.>

35
S’Image
S’Image denotes
a  function  with
the following
specification:
36
function S’Image(<Arg> : S’Base)
return String
37/2

The function returns
an image of the value
of <Arg> as a String.
The lower bound
of the result is one.
The image has the
same  sequence  of
graphic characters
as that defined for
S’Wide_Wide_Image

if all the graphic
characters are
defined in Character;
otherwise the



37.1/2
S'Wide_Wide_Width

38
S’Wide_Width

39
S'Width

sequence of characters
is implementation
defined  (but  no
shorter than that of
S’Wide_Wide_Image
for the same value of
<Arg>).

S’Wide_Wide_Width
denotes the
maximum length of
a Wide_Wide_String
returned by
S’Wide_Wide_Image
over all values of
the subtype S. It
denotes zero for a
subtype that has a
null range. Its type is
<universal_integer>.

S’Wide_Width
denotes the
maximum length of a
Wide_String returned
by S’Wide_Image
over all wvalues of
the subtype S. It
denotes zero for a
subtype that has a
null range. Its type is
<universal_integer>.

S’Width denotes the
maximum length of
a String returned
by S’Image over all
values of the subtype
S. It denotes zero for
a subtype that has a
null range. Its type is
<universal_integer>.



39.1/2
S’Wide_Wide_Value

S’Wide_Wide_Value
denotes a function
with the following
specification:

39.2/2

function S’Wide_Wide_Value(<Arg> : Wide_Wide_String)]]
return S’Base

39.3/2

This function returns
a value given an
image of the value as
a Wide_Wide_String,
ignoring any leading
or trailing spaces.

39.4/2

For the evaluation
of a call on
S’Wide_Wide_Value

for an enumeration
subtype S, if the
sequence of characters
of the parameter
(ignoring leading
and trailing spaces)
has the syntax of an
enumeration  literal
and if it corresponds
to a literal of the type
of S (or corresponds
to the result of
S’Wide_Wide_Image

for a  nongraphic
character  of  the
type), the result is

the corresponding
enumeration
value; otherwise

Constraint_Error is
raised.



39.5/2

39.6,2

39.7/2

39.8/2

For the evaluation
of a call on
S’Wide_Wide_Value
for an integer subtype
S, if the sequence
of characters of the
parameter (ignoring
leading and trailing
spaces)  has  the
syntax of an integer
literal, with an
optional leading sign
character (plus or
minus for a signed
type; only plus for a
modular type), and
the corresponding
numeric value belongs
to the base range
of the type of S,
then that value is
the result; otherwise
Constraint_Error  is
raised.

For the evaluation
of a call on
S’Wide_Wide_Value
for a real subtype
S, if the sequence
of characters of the
parameter (ignoring
leading and trailing
spaces)  has  the
syntax of one of the
following:

e numeric_literal

e numeral.[exponent]



39.9/2

e .numeral[exponent] |

39.10/2

e base#based_numeral.#[exponent]

39.11/2

e base#.based_numeral# exponent|

39.12/2

with an  optional
leading sign character
(plus or minus), and
if the corresponding
numeric value belongs
to the base range
of the type of S,
then that wvalue is
the result; otherwise
Constraint_Error s
raised. The sign of a
zero value is preserved
(positive if none has
been  specified) if
S’Signed_Zeros is
True.

40
S"Wide_Value

S’Wide_Value
denotes a function
with the following
specification:

41

function S’Wide_Value(<Arg> : Wide_String)]]
return S’Base

42

This function returns
a value given an im-
age of the value as a
Wide_String, ignoring



43/2

52
S’Value

any leading or trailing
spaces.

For the evaluation

of a call on
S’Wide_Value for
an enumeration

subtype S, if the
sequence of characters
of the parameter
(ignoring leading
and trailing spaces)
has the syntax of an
enumeration  literal
and if it corresponds
to a literal of the type
of S (or corresponds
to the result of
S’Wide_Image

for a value of the
type), the result is
the corresponding
enumeration

value; otherwise
Constraint_Error

is raised. For a
numeric subtype S,
the evaluation of a
call on S’Wide_Value
with <Arg> of type
Wide_String is
equivalent to a call on
S’Wide_Wide_Value
for a corresponding
<Arg> of type
Wide_Wide_String.

<Paragraphs
44 through 51
were moved to

Wide_Wide_Value.>

S’Value denotes
a function with



the following
specification:

53

function S’Value(<Arg> : String)
return S’Base

o4

This function returns
a value given an
image of the value as
a String, ignoring any
leading or trailing
spaces.

55/2

For the evaluation
of a call on S’Value
for an enumeration
subtype S, if the
sequence of characters
of the parameter
(ignoring leading
and trailing spaces)
has the syntax of an
enumeration  literal
and if it corresponds
to a literal of the type
of S (or corresponds
to the result of
S’Image for a value of
the type), the result
is the corresponding
enumeration

value; otherwise
Constraint_Error  is
raised. For a numeric
subtype S, the
evaluation of a call on
S’Value with <Arg>
of type String is
equivalent to a call on
S’Wide_Wide_Value
for a corresponding
<Arg> of type
Wide_Wide_String.



56/2

An implementation may extend the Wide_-Wide_Value, Wide_Value,

Implementation Permissions

Value,

Wide_Wide_Image, Wide_Image, and Image attributes of a floating point type to support
special values such as infinities and NaNs.

57

58

59

60
<Examples

61

62
<Examples

63

NOTES

21 The evaluation of S’First or S’Last never raises an exception. If
a scalar subtype S has a nonnull range, S’First and S’Last belong to
this range. These values can, for example, always be assigned to a
variable of subtype S.

22 For a subtype of a scalar type, the result delivered by the at-
tributes Succ, Pred, and Value might not belong to the subtype;
similarly, the actual parameters of the attributes Succ, Pred, and
Image need not belong to the subtype.

23 For any value V (including any nongraphic charac-
ter) of an enumeration subtype S, S’Value(S'Image(V))
equals V, as do S'Wide_Value(S’Wide_Image(V)) and
S’Wide_Wide_Value(S’Wide_Wide_Image(V)). None of these

expressions ever raise Constraint_Error.

Examples
of ranges:>
—-10 .. 10
X..X+1
0.0 .. 2.0%Pi
Red .. Green ——< see Section 4.5.1 [3.5.1], page 92>
1..0 ——< a null range>
Table’Range ——< a range attribute reference (see Section 4.6

[3.6], page 114)>

of range constraints:>

range —999.0 .. +999.0
range S’First+l .. S’Last-—1



4.5.1 3.5.1 Enumeration Types

1
An enumeration_type_definition defines an enumeration type.
Syntax

2

enumeration_type_definition ::=

(enumeration_literal_specification {, enumeration_literal_specification})

3

enumeration_literal_specification ::= defining_identifier | defining_character_literal
4

defining_character_literal ::= character_literal

Legality Rules

5

The defining_identifiers and defining_character_literals listed in an enumera-
tion_type_definition shall be distinct.
Static Semantics

6

Each enumeration_literal _specification is the explicit declaration of the corresponding <enu-
meration literal>: it declares a parameterless function, whose defining name is the defin-
ing_identifier (see [S0022], page 49) or defining_character_literal (see [S0040], page 92), and
whose result type is the enumeration type.

7

Each enumeration literal corresponds to a distinct value of the enumeration type, and to a
distinct position number. The position number of the value of the first listed enumeration
literal is zero; the position number of the value of each subsequent enumeration literal is
one more than that of its predecessor in the list.

8
The predefined order relations between values of the enumeration type follow the order of
corresponding position numbers.

9
If the same defining_identifier or defining_character_literal is specified in more than one
enumeration_type_definition (see [S0038], page 92), the corresponding enumeration literals
are said to be <overloaded>. At any place where an overloaded enumeration literal occurs
in the text of a program, the type of the enumeration literal has to be determinable from
the context (see Section 9.6 [8.6], page 324).

Dynamic Semantics

10
The elaboration of an enumeration_type_definition creates the enumeration type and its
first subtype, which is constrained to the base range of the type.



11
When called, the parameterless function associated with an enumeration literal returns the
corresponding value of the enumeration type.

NOTES
12
24 If an enumeration literal occurs in a context that does not other-
wise suffice to determine the type of the literal, then qualification by
the name of the enumeration type is one way to resolve the ambiguity
(see Section 5.7 [4.7], page 229).
Examples
13
<Examples of enumeration types and subtypes: >
14
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Suit is (Clubs, Diamonds, Hearts, Spades);
type Gender is (M, F);
type Level is (Low, Medium, Urgent);
type Color is (White, Red, Yellow, Green, Blue, Brown, Black);
type Light is (Red, Amber, Green); ——< Red and Green are overloaded>]]
15
type Hexa is (’A’, °B’, °C’, °D’, ’E’, ’F’);
type Mixed is (’A’, °B’, ’x’, B, Nome, ’7’, ’%’);
16

subtype Weekday is Day range Mon .. Fri;
subtype Major is Suit range Hearts .. Spades;
subtype Rainbow is Color range Red .. Blue; ——< the Color Red, not the Light>]]

4.5.2 3.5.2 Character Types
Static Semantics

1

An enumeration type is said to be a <character type> if at least one of its enumeration
literals is a character_literal.

2/2

The predefined type Character is a character type whose values correspond to the 256
code positions of Row 00 (also known as Latin—1) of the ISO/IEC 10646:2003 Basic Mul-
tilingual Plane (BMP). Each of the graphic characters of Row 00 of the BMP has a cor-
responding character_literal in Character. Each of the nongraphic positions of Row 00
(0000—001F and 007F—009F) has a corresponding language—defined name, which is not
usable as an enumeration literal, but which is usable with the attributes Image, Wide_Image,
Wide_Wide_Image, Value, Wide_Value, and Wide_Wide_Value; these names are given in



the definition of type Character in Section 15.1 [A.1], page 556, "Section 15.1 [A.1], page 556,
The Package Standard", but are set in <italics>.

3/2

The predefined type Wide_Character is a character type whose values correspond to the
65536 code positions of the ISO/IEC 10646:2003 Basic Multilingual Plane (BMP). Each of
the graphic characters of the BMP has a corresponding character_literal in Wide_Character.
The first 256 values of Wide_Character have the same character_literal or language—defined
name as defined for Character. Each of the graphic_characters has a corresponding charac-
ter_literal.

3.1/2

The predefined type Wide_Wide_Character is a character type whose values correspond
to the 2147483648 code positions of the ISO/IEC 10646:2003 character set. Each of the
graphic_characters has a corresponding character_literal in Wide_Wide_Character. The first
65536 values of Wide_Wide_Character have the same character_literal or language—defined
name as defined for Wide_Character.

3.2/2
The characters whose code position is larger than 16#FF# and which are not
graphic_characters have language—defined names which are formed by appending to
the string "Hex_" the representation of their code position in hexadecimal as eight
extended digits. As with other language—defined names, these names are usable only
with the attributes (Wide_)Wide_Image and (Wide_)Wide_Value; they are not usable as
enumeration literals.

Implementation Permissions
4/2
<This paragraph was deleted.>

Implementation Advice

5/2

<This paragraph was deleted.>
NOTES

6
25 The language—defined library package Characters.Latin_1 (see
Section 15.3.3 [A.3.3], page 573) includes the declaration of constants
denoting control characters, lower case characters, and special char-
acters of the predefined type Character.

7
26 A conventional character set such as <EBCDIC> can be declared
as a character type; the internal codes of the characters can be spec-
ified by an enumeration_representation_clause as explained in clause
Section 14.4 [13.4], page 500.

Examples
8

<Example of a character type: >



type Roman_Digit is (°I°, °Vv’, ’X’, ’L’, °C’, ’D’, ’M’);

4.5.3 3.5.3 Boolean Types
Static Semantics

1

There is a predefined enumeration type named Boolean, declared in the visible part of
package Standard. It has the two enumeration literals False and True ordered with the
relation False < True. Any descendant of the predefined type Boolean is called a <boolean>

type.

4.5.4 3.5.4 Integer Types

1

An integer_type_definition defines an integer type; it defines either a <signed> integer type,
or a <modular> integer type. The base range of a signed integer type includes at least
the values of the specified range. A modular type is an integer type with all arithmetic
modulo a specified positive <modulus>; such a type corresponds to an unsigned type with
wrap—around semantics.

Syntax

2

integer_type_definition ::= signed_integer_type_definition | modular_type_definition |
3

signed _integer_type_definition ::= range <static_>simple_expression .. <static_>simple_expression
4

modular_type_definition ::= mod <static_>expression

Name Resolution Rules

5

Each simple_expression in a signed_integer_type_definition is expected to be of any integer
type; they need not be of the same type. The expression in a modular_type_definition is
likewise expected to be of any integer type.

Legality Rules

6
The simple_expressions of a signed_integer_type_definition shall be static, and their values
shall be in the range System.Min_Int .. System.Max_Int.

7
The expression of a modular_type_definition shall be static, and its value (the <modulus>)
shall be positive, and shall be no greater than System.Max_Binary_Modulus if a power of
2, or no greater than System.Max_Nonbinary_Modulus if not.

Static Semantics



8

The set of values for a signed integer type is the (infinite) set of mathematical integers,
though only values of the base range of the type are fully supported for run—time operations.
The set of values for a modular integer type are the values from 0 to one less than the
modulus, inclusive.

9

A signed_integer_type_definition defines an integer type whose base range includes at least
the values of the simple_expressions and is symmetric about zero, excepting possibly an ex-
tra negative value. A signed_integer_type_definition also defines a constrained first subtype
of the type, with a range whose bounds are given by the values of the simple_expressions,
converted to the type being defined.

10

A modular_type_definition defines a modular type whose base range is from zero to one less
than the given modulus. A modular_type_definition also defines a constrained first subtype
of the type with a range that is the same as the base range of the type.

11

There is a predefined signed integer subtype named Integer, declared in the visible part of
package Standard. It is constrained to the base range of its type.

12

Integer has two predefined subtypes, declared in the visible part of package Standard:

13

subtype Natural is Integer range O .. Integer’Last;

subtype Positive is Integer range 1 .. Integer’Last;
14
A type defined by an integer_type_definition is implicitly derived from <root_integer>, an
anonymous predefined (specific) integer type, whose base range is System.Min_Int .. Sys-
tem.Max_Int. However, the base range of the new type is not inherited from <root_integer>,
but is instead determined by the range or modulus specified by the integer_type_definition.
Integer literals are all of the type <universal_integer>, the universal type (see Section 4.4.1
[3.4.1], page 72) for the class rooted at <root_integer>, allowing their use with the operations
of any integer type.

15
The <position number> of an integer value is equal to the value.
16/2
For every modular subtype S, the following attributes are defined:
16.1/2
S’Mod
S’Mod denotes
a  function  with
the following
specification:
16.2/2

function S’Mod (<Arg> : <universal_integer>)|]



return S’Base
16.3/2

This function
returns <Arg> mod
S’Modulus, as a value
of the type of S.

17
S’Modulus

S’Modulus yields
the modulus of
the type of S, as a
value of the type
<universal_integer>.

Dynamic Semantics

18
The elaboration of an integer_type_definition creates the integer type and its first subtype.

19

For a modular type, if the result of the execution of a predefined operator (see Section 5.5
[4.5], page 203) is outside the base range of the type, the result is reduced modulo the
modulus of the type to a value that is within the base range of the type.

20
For a signed integer type, the exception Constraint_Error is raised by the execution of an
operation that cannot deliver the correct result because it is outside the base range of the
type. For any integer type, Constraint_Error is raised by the operators "/", "rem", and
"mod" if the right operand is zero.

Implementation Requirements

21
In an implementation, the range of Integer shall include the range —2**15+1 .. +2**15—1.

22
If Long_Integer is predefined for an implementation, then its range shall include the range
—2%*31+1 .. +2%*%31—1.

23
System.Max_Binary_Modulus shall be at least 2**16.
Implementation Permissions

24

For the execution of a predefined operation of a signed integer type, the implementation
need not raise Constraint_Error if the result is outside the base range of the type, so long
as the correct result is produced.

25

An implementation may provide additional predefined signed integer types, declared in
the visible part of Standard, whose first subtypes have names of the form Short_Integer,
Long_Integer, Short_Short_Integer, Long_Long_Integer, etc. Different predefined integer
types are allowed to have the same base range. However, the range of Integer should be no



wider than that of Long_Integer. Similarly, the range of Short_Integer (if provided) should
be no wider than Integer. Corresponding recommendations apply to any other predefined
integer types. There need not be a named integer type corresponding to each distinct base
range supported by an implementation. The range of each first subtype should be the base
range of its type.

26

An implementation may provide <nonstandard integer types>, descendants of <root_integer>
that are declared outside of the specification of package Standard, which need not have all
the standard characteristics of a type defined by an integer_type_definition. For example, a
nonstandard integer type might have an asymmetric base range or it might not be allowed
as an array or loop index (a very long integer). Any type descended from a nonstandard
integer type is also nonstandard. An implementation may place arbitrary restrictions on
the use of such types; it is implementation defined whether operators that are predefined
for "any integer type" are defined for a particular nonstandard integer type. In any case,
such types are not permitted as explicit_generic_actual_parameters for formal scalar types
—— see Section 13.5.2 [12.5.2], page 466.

27

For a one’s complement machine, the high bound of the base range of a modular type whose
modulus is one less than a power of 2 may be equal to the modulus, rather than one less
than the modulus. It is implementation defined for which powers of 2, if any, this permission
is exercised.

27.1/1

For a one’s complement machine, implementations may support non—binary modulus values

greater than System.Max_Nonbinary_Modulus. It is implementation defined which specific

values greater than System.Max_Nonbinary_Modulus, if any, are supported.
Implementation Advice

28

An implementation should support Long_Integer in addition to Integer if the target machine
supports 32—bit (or longer) arithmetic. No other named integer subtypes are recommended
for package Standard. Instead, appropriate named integer subtypes should be provided in
the library package Interfaces (see Section 16.2 [B.2], page 900).

29

An implementation for a two’s complement machine should support modular types with a
binary modulus up to System.Max_Int*2+2. An implementation should support a nonbinary
modulus up to Integer’Last.

NOTES
30

27 Integer literals are of the anonymous predefined integer type
<universal_integer>. Other integer types have no literals. How-
ever, the overload resolution rules (see Section 9.6 [8.6], page 324,
"Section 9.6 [8.6], page 324, The Context of Overload Resolution")
allow expressions of the type <universal_integer> whenever an integer
type is expected.



31

32

33

28 The same arithmetic operators are predefined for all signed inte-
ger types defined by a signed_integer_type_definition (see Section 5.5
[4.5], page 203, "Section 5.5 [4.5], page 203, Operators and Expres-
sion Evaluation"). For modular types, these same operators are
predefined, plus bit—wise logical operators (and, or, xor, and not).
In addition, for the unsigned types declared in the language—defined
package Interfaces (see Section 16.2 [B.2], page 900), functions are
defined that provide bit—wise shifting and rotating.

29 Modular types match a generic_formal_parameter_declaration of
the form "type T is mod <>;"; signed integer types match "type T
is range <>;" (see Section 13.5.2 [12.5.2], page 466).

Ezamples

<Examples of integer types and subtypes: >

34

35

36

type Page_Num is range 1 .. 2_000;
type Line_Size is range 1 .. Max_Line_Size;

subtype Small_Int is Integer range —10 .. 10;

subtype Column_Ptr is Line_Size range 1 .. 10;
subtype Buffer_Size is Integer range O .. Max;
type Byte is mod 256; ——< an unsigned byte>
type Hash_Index 1is mod 97; ——< modulus is prime>

4.5.5 3.5.5 Operations of Discrete Types

1

Static Semantics

For every discrete subtype S, the following attributes are defined:

2
S’Pos

S’Pos denotes
a function with
the following

specification:



function S’Pos(<Arg> : S’Base)
return <universal_integer>

This function returns
the position number
of the value of <Arg>,
as a value of type
<universal_integer>.

S’Val

S’Val denotes
a function with
the following
specification:

function S’Val(<Arg> : <universal_integer>)|]
return S’Base

This function returns
a value of the type
of S whose position
number equals the
value of <Arg>. For
the evaluation of a
call on S’Val, if there
is no value in the
base range of its
type with the given
position number,
Constraint_Error is
raised.

Implementation Advice

8

For the evaluation of a call on S’Pos for an enumeration subtype, if the value of the operand
does not correspond to the internal code for any enumeration literal of its type (perhaps due
to an uninitialized variable), then the implementation should raise Program_Error. This is
particularly important for enumeration types with noncontiguous internal codes specified
by an enumeration_representation_clause (see [S0287], page 500).

NOTES



30 Indexing and loop iteration use values of discrete types.
10

31 The predefined operations of a discrete type include the assign-
ment operation, qualification, the membership tests, and the rela-
tional operators; for a boolean type they include the short—circuit
control forms and the logical operators; for an integer type they in-
clude type conversion to and from other numeric types, as well as
the binary and unary adding operators — and +, the multiplying
operators, the unary operator abs, and the exponentiation operator.
The assignment operation is described in Section 6.2 [5.2], page 242.
The other predefined operations are described in Section 4.

11

32 As for all types, objects of a discrete type have Size and Address
attributes (see Section 14.3 [13.3], page 486).

12

33 For a subtype of a discrete type, the result delivered by the
attribute Val might not belong to the subtype; similarly, the actual
parameter of the attribute Pos need not belong to the subtype. The
following relations are satisfied (in the absence of an exception) by
these attributes:

13

S’Val(S’Pos (X)) X
S’Pos(8’Val(N)) N
Ezamples

14
<Examples of attributes of discrete subtypes: >

15

——< For the types and subtypes declared in subclause Section 4.5.1
[3.5.1], page 92 the following hold: >

16

—— Color’First
—— Rainbow’First

White, Color’Last
Red, Rainbow’Last

Black
Blue

17

—— Color’Succ(Blue) = Rainbow’Succ(Blue)

Brown



Rainbow’Pos(Blue) = 4
Rainbow’Val(0) White

—— Color’Pos(Blue)
—— Color’Val(0)

4.5.6 3.5.6 Real Types

1
Real types provide approximations to the real numbers, with relative bounds on errors for
floating point types, and with absolute bounds for fixed point types.

Syntax
2
real_type_definition ::=
floating_point_definition | fixed_point_definition
Static Semantics
3

A type defined by a real_type_definition is implicitly derived from <root_real>, an anony-
mous predefined (specific) real type. Hence, all real types, whether floating point or fixed
point, are in the derivation class rooted at <root_real>.

4

Real literals are all of the type <universal_real>, the universal type (see Section 4.4.1 [3.4.1],

page 72) for the class rooted at <root_real>, allowing their use with the operations of any real

type. Certain multiplying operators have a result type of <universal_fixed> (see Section 5.5.5

[4.5.5], page 213), the universal type for the class of fixed point types, allowing the result

of the multiplication or division to be used where any specific fixed point type is expected.
Dynamic Semantics

5
The elaboration of a real_type_definition consists of the elaboration of the float-
ing_point_definition or the fixed_point_definition.

Implementation Requirements

6
An implementation shall perform the run—time evaluation of a use of a predefined operator
of <root_real> with an accuracy at least as great as that of any floating point type definable
by a floating_point_definition.

Implementation Permissions
7/2
For the execution of a predefined operation of a real type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct
result is produced, or the Machine_Overflows attribute of the type is False (see Section 21.2
[G.2], page 1103).

8

An implementation may provide <nonstandard real types>, descendants of <root_real> that
are declared outside of the specification of package Standard, which need not have all the
standard characteristics of a type defined by a real_type_definition. For example, a nonstan-
dard real type might have an asymmetric or unsigned base range, or its predefined operations
might wrap around or "saturate" rather than overflow (modular or saturating arithmetic),
or it might not conform to the accuracy model (see Section 21.2 [G.2], page 1103). Any



type descended from a nonstandard real type is also nonstandard. An implementation may
place arbitrary restrictions on the use of such types; it is implementation defined whether
operators that are predefined for "any real type" are defined for a particular nonstandard
real type. In any case, such types are not permitted as explicit_generic_actual_parameters
for formal scalar types —— see Section 13.5.2 [12.5.2], page 466.

NOTES

34 As stated, real literals are of the anonymous predefined real type
<universal_real>. Other real types have no literals. However, the
overload resolution rules (see Section 9.6 [8.6], page 324) allow ex-
pressions of the type <universal_real> whenever a real type is ex-
pected.

4.5.7 3.5.7 Floating Point Types

1
For floating point types, the error bound is specified as a relative precision by giving the
required minimum number of significant decimal digits.

Syntax
2
floating_point_definition ::=
digits <static_>expression [real_range_specification]
3
real_range_specification ::=
range <static_>simple_expression .. <static_>simple_expression
Name Resolution Rules
4

The <requested decimal precision>, which is the minimum number of significant decimal
digits required for the floating point type, is specified by the value of the expression given
after the reserved word digits. This expression is expected to be of any integer type.

5
Each simple_expression of a real_range_specification is expected to be of any real type; the
types need not be the same.

Legality Rules

6

The requested decimal precision shall be specified by a static expression whose value
is positive and no greater than System.Max_Base_Digits. FEach simple_expression of a
real_range_specification shall also be static. If the real_range_specification is omitted, the
requested decimal precision shall be no greater than System.Max_Digits.

7
A floating_point_definition is illegal if the implementation does not support a floating point
type that satisfies the requested decimal precision and range.



Static Semantics

8

The set of values for a floating point type is the (infinite) set of rational numbers. The
<machine numbers> of a floating point type are the values of the type that can be represented
exactly in every unconstrained variable of the type. The base range (see Section 4.5 [3.5],
page 76) of a floating point type is symmetric around zero, except that it can include some
extra negative values in some implementations.

9

The <base decimal precision> of a floating point type is the number of decimal digits of
precision representable in objects of the type. The <safe range> of a floating point type
is that part of its base range for which the accuracy corresponding to the base decimal
precision is preserved by all predefined operations.

10

A floating_point_definition defines a floating point type whose base decimal precision is no
less than the requested decimal precision. If a real_range_specification is given, the safe
range of the floating point type (and hence, also its base range) includes at least the values
of the simple expressions given in the real_range_specification. If a real_range_specification
is not given, the safe (and base) range of the type includes at least the values of the range
—10.0**(4*D) .. +10.0**(4*D) where D is the requested decimal precision. The safe range
might include other values as well. The attributes Safe_First and Safe_Last give the actual
bounds of the safe range.

11

A floating_point_definition also defines a first subtype of the type. If a
real_range_specification is given, then the subtype 1is constrained to a range
whose bounds are given by a conversion of the values of the simple_expressions of the
real_range_specification to the type being defined. Otherwise, the subtype is unconstrained.

12
There is a predefined, unconstrained, floating point subtype named Float, declared in the
visible part of package Standard.

Dynamic Semantics

13
The elaboration of a floating_point_definition creates the floating point type and its first
subtype.

Implementation Requirements

14
In an implementation that supports floating point types with 6 or more digits of precision,
the requested decimal precision for Float shall be at least 6.

15
If Long_Float is predefined for an implementation, then its requested decimal precision shall
be at least 11.

Implementation Permissions

16

An implementation is allowed to provide additional predefined floating point types, declared
in the visible part of Standard, whose (unconstrained) first subtypes have names of the form
Short_Float, Long_Float, Short_Short_Float, Long_Long_Float, etc. Different predefined



floating point types are allowed to have the same base decimal precision. However, the

precision of Float should be no greater than that of Long_Float. Similarly, the precision of

Short_Float (if provided) should be no greater than Float. Corresponding recommendations

apply to any other predefined floating point types. There need not be a named floating point

type corresponding to each distinct base decimal precision supported by an implementation.
Implementation Advice

17

An implementation should support Long_Float in addition to Float if the target machine
supports 11 or more digits of precision. No other named floating point subtypes are recom-
mended for package Standard. Instead, appropriate named floating point subtypes should
be provided in the library package Interfaces (see Section 16.2 [B.2], page 900).

NOTES
18
35 If a floating point subtype is unconstrained, then assignments
to variables of the subtype involve only Overflow_Checks, never
Range_Checks.
Examples
19
<Examples of floating point types and subtypes:>
20
type Coefficient is digits 10 range —1.0 .. 1.0;
21
type Real is digits 8;
type Mass is digits 7 range 0.0 .. 1.0E35;
22

subtype Probability is Real range 0.0 .. 1.0; ——< a subtype with a smaller re

4.5.8 3.5.8 Operations of Floating Point Types

Static Semantics

1

The following attribute is defined for every floating point subtype S:

2/1

S’Digits
S’Digits denotes the
requested decimal
precision  for  the
subtype S. The value
of  this attribute
is  of the type
<universal_integer>.



The requested
decimal precision of
the base subtype of
a floating point type
<T> is defined to be
the largest value of
<d> for which
ceiling(<d> * log(10) /
log(T’Machine_Radix)) |
+ <g> <=
T’Model _Mantissa
where g is 0 if
Machine_Radix is a
positive power of 10
and 1 otherwise.

NOTES

36 The predefined operations of a floating point type include the
assignment operation, qualification, the membership tests, and ex-
plicit conversion to and from other numeric types. They also include
the relational operators and the following predefined arithmetic op-
erators: the binary and unary adding operators — and +, certain
multiplying operators, the unary operator abs, and the exponentia-
tion operator.

37 As for all types, objects of a floating point type have Size and
Address attributes (see Section 14.3 [13.3], page 486). Other at-
tributes of floating point types are defined in Section 15.5.3 [A.5.3],
page 663.

4.5.9 3.5.9 Fixed Point Types

1
A fixed point type is either an ordinary fixed point type, or a decimal fixed point type. The
error bound of a fixed point type is specified as an absolute value, called the <delta> of the
fixed point type.

Syntax

fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition

ordinary_fixed_point_definition ::=
delta <static_>expression real_range_specification



decimal_fixed_point_definition ::=
delta <static_>expression digits <static_>expression [real_range_specification]

digits_constraint ::=
digits <static_>expression [range_constraint]
Name Resolution Rules

6

For a type defined by a fixed_point_definition, the <delta> of the type is specified by the
value of the expression given after the reserved word delta; this expression is expected to
be of any real type. For a type defined by a decimal_fixed_point_definition (a <decimal>
fixed point type), the number of significant decimal digits for its first subtype (the <digits>
of the first subtype) is specified by the expression given after the reserved word digits; this
expression is expected to be of any integer type.

Legality Rules

7

In a fixed_point_definition or digits_constraint, the expressions given after the reserved
words delta and digits shall be static; their values shall be positive.

8/2

The set of values of a fixed point type comprise the integral multiples of a number called
the <small> of the type. The <machine numbers> of a fixed point type are the values of the
type that can be represented exactly in every unconstrained variable of the type. For a type
defined by an ordinary_fixed_point_definition (an <ordinary> fixed point type), the <small>
may be specified by an attribute_definition_clause (see [S0286], page 487) (see Section 14.3
[13.3], page 486); if so specified, it shall be no greater than the <delta> of the type. If not
specified, the <small> of an ordinary fixed point type is an implementation—defined power
of two less than or equal to the <delta>.

9

For a decimal fixed point type, the <small> equals the <delta>; the <delta> shall be a power
of 10. If a real_range_specification is given, both bounds of the range shall be in the range
—(10**<digits>—1)*<delta> .. +(10**<digits>—1)*<delta>.

10

A fixed_point_definition is illegal if the implementation does not support a fixed point type
with the given <small> and specified range or <digits>.

11
For a subtype_indication with a digits_constraint, the subtype_mark shall denote a decimal
fixed point subtype.

Static Semantics
12
The base range (see Section 4.5 [3.5], page 76) of a fixed point type is symmetric around
zero, except possibly for an extra negative value in some implementations.

13
An ordinary_fixed_point_definition defines an ordinary fixed point type whose base range



includes at least all multiples of <small> that are between the bounds specified in the
real_range_specification. The base range of the type does not necessarily include the spec-
ified bounds themselves. An ordinary_fixed_point_definition (see [S0048|, page 106) also
defines a constrained first subtype of the type, with each bound of its range given by the
closer to zero of:

14

e the value of the conversion to the fixed point type of the corresponding expression of
the real_range_specification;

15

e the corresponding bound of the base range.

16

A decimal_fixed_point_definition defines a decimal fixed point type whose base range in-
cludes at least the range —(10**<digits>—1)*<delta> .. +(10**<digits>—1)*<delta>. A
decimal_fixed_point_definition also defines a constrained first subtype of the type. If a
real_range_specification is given, the bounds of the first subtype are given by a conversion
of the values of the expressions of the real_range_specification. Otherwise, the range of the
first subtype is —(10**<digits>—1)*<delta> .. +(10**<digits>—1)*<delta>.

Dynamic Semantics

17
The elaboration of a fixed_point_definition creates the fixed point type and its first subtype.

18

For a digits_constraint on a decimal fixed point subtype with a given <delta>, if it does
not have a range_constraint, then it specifies an implicit range —(10**<D>—1)*<delta> ..
+(10**<D>—1)*<delta>, where <D> is the value of the expression. A digits_constraint is
<compatible> with a decimal fixed point subtype if the value of the expression is no greater
than the <digits> of the subtype, and if it specifies (explicitly or implicitly) a range that is
compatible with the subtype.

19
The elaboration of a digits_constraint consists of the elaboration of the range_constraint, if
any. If a range_constraint is given, a check is made that the bounds of the range are both in
the range —(10**<D>—1)*<delta> .. +(10**<D>—1)*<delta>, where <D> is the value of the
(static) expression given after the reserved word digits. If this check fails, Constraint_Error
is raised.

Implementation Requirements

20
The implementation shall support at least 24 bits of precision (including the sign bit) for
fixed point types.

Implementation Permissions

21
Implementations are permitted to support only <small>s that are a power of two. In par-
ticular, all decimal fixed point type declarations can be disallowed. Note however that



conformance with the Information Systems Annex requires support for decimal <small>s,
and decimal fixed point type declarations with <digits> up to at least 18.

NOTES
22
38 The base range of an ordinary fixed point type need not include
the specified bounds themselves so that the range specification can
be given in a natural way, such as:
23
type Fraction is delta 2.0%*(—15) range —1.0 .. 1.0;
24
With 2’s complement hardware, such a type could have a signed
16—Dbit representation, using 1 bit for the sign and 15 bits for fraction,
resulting in a base range of —1.0 .. 1.0—2.0**(—15).
Ezamples
25
<Examples of fixed point types and subtypes:>
26
type Volt is delta 0.125 range 0.0 .. 255.0;
27
—— <A pure fraction which requires all the available>
—— <space in a word can be declared as the type Fraction:>
type Fraction is delta System.Fine_Delta range —1.0 .. 1.0;
—— <Fraction’Last = 1.0 — System.Fine_Delta>
28

type Money is delta 0.01 digits 15; —— <decimal fixed point>
subtype Salary is Money digits 10;
—— <Money’Last = 10.0**13 — 0.01, Salary’Last = 10.0**8 — 0.01>

4.5.10 3.5.10 Operations of Fixed Point Types

Static Semantics
1
The following attributes are defined for every fixed point subtype S:
2/1
S’Small

S’Small denotes the
<small> of the type of



S’Delta

S’Fore

S. The value of this
attribute is of the
type <universal_real>.
Small may be
specified for
nonderived ordinary
fixed point types
via an attribute_-
definition_clause (see
[S0286], page 487)
(see  Section  14.3
[13.3], page 486); the
expression of such a
clause shall be static.

S’Delta  denotes the
<delta> of the fixed
point  subtype S.
The wvalue of this
attribute is of the
type <universal_real>.

S’Fore  yields the
minimum number of
characters needed
before the decimal
point for the decimal
representation of any
value of the subtype
S, assuming that

the representation
does not include
an exponent,
but includes a

one—character prefix
that is either a minus
sign or a space. (This

minimum number
does not include
superfluous ZEeros

or underlines, and
is at least 2.) The
value of this attribute



is of the type
<universal_integer>.

S’Aft

S’Aft  yields  the
number of decimal
digits needed after
the decimal point
to accommodate
the <delta> of the
subtype S, unless
the <delta> of the
subtype S is greater
than 0.1, in which
case the attribute
yields  the  value
one. (S’Aft is the
smallest positive
integer N for which
(10**N)*S’Delta  is
greater than or equal
to one.) The value
of  this attribute
is of the type
<universal_integer>.

6
The following additional attributes are defined for every decimal fixed point subtype S:

7

S’Digits
S’Digits denotes
the <digits> of
the decimal fixed
point  subtype S,
which corresponds
to the number of
decimal digits that
are representable
in objects of the
subtype. The value
of this attribute is
of the type <uni-

versal_integer>. Its
value is determined
as follows:



e For a first
subtype or a
subtype defined
by a sub-
type_indication
with a  dig-
its_constraint,
the digits is the
value of the
expression given
after the reserved
word digits;

e For a subtype
defined by a sub-
type_indication
without a
digits_constraint,
the digits of the
subtype is the
same as that
of the subtype
denoted by the
subtype_mark
in the sub-
type-indication.

10

e The digits of a
base subtype
is the largest
integer <D> such
that the range
—(10**<D>—1)*<delta>

+(10**<D>—1)*<delta>
is included in the
base range of the
type.
11
S’Scale
S’Scale denotes the

<scale> of the subtype
S, defined as the value



12
S’Round

13

14

15

16

17

N such that S’Delta
= 10.0**(—=N).
The scale indicates
the position of the
point relative to the
rightmost significant
digits of values of
subtype S. The value
of  this  attribute
is of the type
<universal_integer>.

S’Round denotes
a function with
the following
specification:

function S’Round(<X> : <universal_real>)ll
return S’Base

The function returns
the wvalue obtained
by rounding X (away
from 0, if X is midway
between two values of
the type of S).

NOTES

39 All subtypes of a fixed point type will have the same value for the
Delta attribute, in the absence of delta_constraints (see Section 23.3
[J.3], page 1167).

40 S’Scale is not always the same as S’Aft for a decimal subtype;
for example, if S’Delta = 1.0 then S’Aft is 1 while S’Scale is 0.

41 The predefined operations of a fixed point type include the as-
signment operation, qualification, the membership tests, and explicit
conversion to and from other numeric types. They also include the



relational operators and the following predefined arithmetic opera-
tors: the binary and unary adding operators — and +, multiplying
operators, and the unary operator abs.

18

42 As for all types, objects of a fixed point type have Size and Ad-
dress attributes (see Section 14.3 [13.3], page 486). Other attributes
of fixed point types are defined in Section 15.5.4 [A.5.4], page 679.

4.6 3.6 Array Types

1

An <array> object is a composite object consisting of components which all have the same
subtype. The name for a component of an array uses one or more index values belonging
to specified discrete types. The value of an array object is a composite value consisting of
the values of the components.

Syntax
2
array_type_definition ::=
unconstrained_array_definition | constrained_array_definition
3
unconstrained_array_definition ::=
array (index_subtype_definition {, index_subtype_definition}) of component_definition
4
index_subtype_definition ::= subtype_mark range <>
5
constrained_array_definition ::=
array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition
6
discrete_subtype_definition ::= <discrete_>subtype_indication | range |
7/2
component_definition ::=
[aliased] subtype_indication
| [aliased] access_definition
Name Resolution Rules
8

For a discrete_subtype_definition that is a range, the range shall resolve to be of some
specific discrete type; which discrete type shall be determined without using any context



other than the bounds of the range itself (plus the preference for <root_integer> —— see
Section 9.6 [8.6], page 324).
Legality Rules

9
Each index_subtype_definition or discrete_subtype_definition in an array_type_definition
defines an <index subtype>; its type (the <index type>) shall be discrete.

10
The subtype defined by the subtype_indication of a component_definition (the <component
subtype>) shall be a definite subtype.
11/2
<This paragraph was deleted.>
Static Semantics

12

An array is characterized by the number of indices (the <dimensionality> of the array),
the type and position of each index, the lower and upper bounds for each index, and the
subtype of the components. The order of the indices is significant.

13

A one—dimensional array has a distinct component for each possible index value. A mul-
tidimensional array has a distinct component for each possible sequence of index values
that can be formed by selecting one value for each index position (in the given order). The
possible values for a given index are all the values between the lower and upper bounds,
inclusive; this range of values is called the <index range>. The <bounds> of an array are
the bounds of its index ranges. The <length> of a dimension of an array is the number
of values of the index range of the dimension (zero for a null range). The <length> of a
one—dimensional array is the length of its only dimension.

14

An array_type_definition defines an array type and its first subtype. For each object of this
array type, the number of indices, the type and position of each index, and the subtype of
the components are as in the type definition; the values of the lower and upper bounds for
each index belong to the corresponding index subtype of its type, except for null arrays (see
Section 4.6.1 [3.6.1], page 117).

15

An unconstrained_array_definition defines an array type with an unconstrained first sub-
type. Each index_subtype_definition (see [S0053], page 114) defines the corresponding index
subtype to be the subtype denoted by the subtype_mark (see [S0028], page 56). The com-
pound delimiter <> (called a <box>) of an index_subtype_definition stands for an undefined
range (different objects of the type need not have the same bounds).

16

A constrained_array_definition defines an array type with a constrained first subtype. Each
discrete_subtype_definition (see [S0055], page 114) defines the corresponding index subtype,
as well as the corresponding index range for the constrained first subtype. The <constraint>
of the first subtype consists of the bounds of the index ranges.

17
The discrete subtype defined by a discrete_subtype_definition (see [S0055], page 114) is



either that defined by the subtype_indication (see [S0027], page 56), or a subtype determined
by the range as follows:

18

e If the type of the range resolves to <root_integer>, then the discrete_subtype_definition
defines a subtype of the predefined type Integer with bounds given by a conversion to
Integer of the bounds of the range;

19

e Otherwise, the discrete_subtype_definition defines a subtype of the type of the range,
with the bounds given by the range.

20
The component_definition of an array_type_definition defines the nominal subtype of the
components. If the reserved word aliased appears in the component_definition, then each
component of the array is aliased (see Section 4.10 [3.10], page 156).

Dynamic Semantics

21

The elaboration of an array_type_definition creates the array type and its first subtype, and
consists of the elaboration of any discrete_subtype_definition (see [S0055], page 114)s and
the component_definition (see [S0056], page 114).

22/2

The elaboration of a discrete_subtype_definition that does not contain any per—object ex-
pressions creates the discrete subtype, and consists of the elaboration of the subtype._-
indication (see [S0027], page 56) or the evaluation of the range. The elaboration of a
discrete_subtype_definition that contains one or more per—object expressions is defined
in Section 4.8 [3.8], page 130. The elaboration of a component_definition (see [S0056],
page 114) in an array_type_definition (see [S0051], page 114) consists of the elaboration of
the subtype_indication (see [S0027], page 56) or access_definition. The elaboration of any
discrete_subtype_definition (see [S0055], page 114)s and the elaboration of the component_-
definition (see [S0056], page 114) are performed in an arbitrary order.

NOTES

23
43 All components of an array have the same subtype. In particular,
for an array of components that are one—dimensional arrays, this
means that all components have the same bounds and hence the
same length.

24

44 Each elaboration of an array_type_definition creates a distinct
array type. A consequence of this is that each object whose
object_declaration contains an array_type_definition is of its own
unique type.

Ezamples



25
<Examples of type declarations with unconstrained array definitions: >

26
type Vector is array(Integer range <>) of Real;
type Matrix is array(Integer range <>, Integer range <>) of Real;]]
type Bit_Vector is array(Integer range <>) of Boolean;
type Roman is array(Positive range <>) of Roman_Digit; ——< see Section 4.5.Z
[3.5.2], page 93>
27
<Examples of type declarations with constrained array definitions: >
28
type Table is array(l .. 10) of Integer;
type Schedule is array(Day) of Boolean;
type Line is array(1 .. Max_Line_Size) of Character;
29
<Examples of object declarations with array type definitions: >
30/2
Grid : array(1 .. 80, 1 .. 100) of Boolean;
Mix : array(Color range Red .. Green) of Boolean;

Msg_Table : constant array(Error_Code) of access constant String :=
(Too_Big => new String’("Result too big"), Too_Small => ...);

Page : array(Positive range <>) of Line := ——< an array of arrays>]]

(1 ] 50 => Line’(1 | Line’Last => ’+’, others => ’—’), ——< see Section 5.3.3|
[4.3.3], page 196>

2 .. 49 => Line’(1 | Line’Last => ’|’, others => ’ ’));

——< Page is constrained by its initial value to (1..50)>

4.6.1 3.6.1 Index Constraints and Discrete Ranges

1
An index_constraint determines the range of possible values for every index of an array
subtype, and thereby the corresponding array bounds.

Syntax
2
index_constraint ::= (discrete_range {, discrete_range})
3
discrete_range ::= <discrete_>subtype_indication | range
Name Resolution Rules
4

The type of a discrete_range is the type of the subtype defined by the subtype_indication,



or the type of the range. For an index_constraint, each discrete_range shall resolve to be of
the type of the corresponding index.
Legality Rules

5
An index_constraint shall appear only in a subtype_indication whose subtype_mark denotes
either an unconstrained array subtype, or an unconstrained access subtype whose designated
subtype is an unconstrained array subtype; in either case, the index_constraint shall provide
a discrete_range for each index of the array type.

Static Semantics

6
A discrete_range defines a range whose bounds are given by the range, or by the range of
the subtype defined by the subtype_indication.

Dynamic Semantics

7

An index_constraint is <compatible> with an unconstrained array subtype if and only if
the index range defined by each discrete_range is compatible (see Section 4.5 [3.5], page 76)
with the corresponding index subtype. If any of the discrete_ranges defines a null range, any
array thus constrained is a <null array>, having no components. An array value <satisfies>
an index_constraint if at each index position the array value and the index_constraint have
the same index bounds.

8

The elaboration of an index_constraint consists of the evaluation of the discrete_range(s),
in an arbitrary order. The evaluation of a discrete_range consists of the elaboration of the
subtype_indication or the evaluation of the range.

NOTES

9
45 The elaboration of a subtype_indication consisting of a
subtype_mark followed by an index_constraint checks the
compatibility of the index_constraint with the subtype_mark (see
Section 4.2.2 [3.2.2], page 55).

10
46 Even if an array value does not satisfy the index constraint of an
array subtype, Constraint_Error is not raised on conversion to the
array subtype, so long as the length of each dimension of the array
value and the array subtype match. See Section 5.6 [4.6], page 219.

Examples

11

<Examples of array declarations including an index constraint: >

12
Board : Matrix(1 .. 8, 1 .. 8); ——< see Section 4.6 [3.6],

page 114>



Rectangle : Matrix(1 .. 20, 1 .. 30);

Inverse : Matrix(1 .. N, 1 .. N); ——< N need not be static >
13
Filter : Bit_Vector(0 .. 31);
14
<Example of array declaration with a constrained array subtype: >
15
My_Schedule : Schedule; ——< all arrays of type Schedule have the same bounds>j
16
<Example of record type with a component that is an array: >
17
type Var_Line(Length : Natural) is
record
Image : String(l .. Length);
end record;
18

Null_Line : Var_Line(0); ——< ©Null_Line.Image is a null array>

4.6.2 3.6.2 Operations of Array Types

Legality Rules

1
The argument N used in the attribute_designators for the N—th dimension of an array shall
be a static expression of some integer type. The value of N shall be positive (nonzero) and
no greater than the dimensionality of the array.

Static Semantics
2/1
The following attributes are defined for a prefix A that is of an array type (after any implicit
dereference), or denotes a constrained array subtype:

3

A’First
A’First denotes
the lower  bound
of the first index
range; its type is the
corresponding index
type.

4

A’First(N)

A’First(N)  denotes
the lower  bound



A’Last

A’Last(N)

A’Range

A’Range(N)

9
A’Length

10
A’Length(N)

of the N—th index
range; its type is the
corresponding index
type.

A’Last denotes
the upper bound
of the first index
range; its type is the
corresponding index
type.

A’Last(N)  denotes
the upper bound
of the N—th index
range; its type is the
corresponding index
type.

A’Range is equivalent
to the range A’First
.. A’Last, except that
the prefix A is only
evaluated once.

A’Range(N) is
equivalent to  the
range A’First(N)
A’Last(N), except
that the prefix A is
only evaluated once.

A’Length denotes
the number of values
of the first index
range (zero for a null
range); its type is
<universal_integer>.



A’Length(N) denotes
the number of values
of the N—th index
range (zero for a null
range); its type is
<universal_integer>.

Implementation Advice

11

An implementation should normally represent multidimensional arrays in row—major order,
consistent with the notation used for multidimensional array aggregates (see Section 5.3.3
[4.3.3], page 196). However, if a pragma Convention(Fortran, ...) applies to a multidimen-
sional array type, then column—major order should be used instead (see Section 16.5 [B.5],
page 945, "Section 16.5 [B.5], page 945, Interfacing with Fortran").

NOTES
12

47 The attribute_references A’First and A’First(1) denote the same
value. A similar relation exists for the attribute_references A’Last,
A’Range, and A’Length. The following relation is satisfied (except
for a null array) by the above attributes if the index type is an integer

type:
13

A’Length(N) = A’Last(N) — A’First(N) + 1
14

48 An array type is limited if its component type is limited (see
Section 8.5 [7.5], page 292).

15

49 The predefined operations of an array type include the member-
ship tests, qualification, and explicit conversion. If the array type is
not limited, they also include assignment and the predefined equal-
ity operators. For a one—dimensional array type, they include the
predefined concatenation operators (if nonlimited) and, if the com-
ponent type is discrete, the predefined relational operators; if the
component type is boolean, the predefined logical operators are also
included.

16/2

50 A component of an array can be named with an in-
dexed_component. A value of an array type can be specified with
an array_aggregate. For a one—dimensional array type, a slice



of the array can be named; also, string literals are defined if the
component type is a character type.
Ezamples

17
<Examples (using arrays declared in the examples of subclause Section 4.6.1 [3.6.1],
page 117):>

18

—— Filter’First = 0 Filter’Last
—— Rectangle’Last (1) 20 Rectangle’Last(2)

31 Filter’Length = 32
30

4.6.3 3.6.3 String Types

Static Semantics

1

A one—dimensional array type whose component type is a character type is called a <string>
type.

2/2

There are three predefined string types, String, Wide_String, and Wide_Wide_String, each
indexed by values of the predefined subtype Positive; these are declared in the visible part
of package Standard:

3

subtype Positive is Integer range 1 .. Integer’Last;

4/2

type String is array(Positive range <>) of Character;
type Wide_String is array(Positive range <>) of Wide_Character;
type Wide_Wide_String is array(Positive range <>) of Wide_Wide_Character;ll

NOTES

51 String literals (see Section 3.6 [2.6], page 42, and Section 5.2
[4.2], page 189) are defined for all string types. The concatena-
tion operator & is predefined for string types, as for all nonlim-
ited one—dimensional array types. The ordering operators <, <=, >,
and >= are predefined for string types, as for all one—dimensional
discrete array types; these ordering operators correspond to lexico-
graphic order (see Section 5.5.2 [4.5.2], page 206).
Examples

6
<Examples of string objects:>



Stars : String(1 .. 120) (1 .. 120 => %’ );
Question : constant String := "How many characters?";
——< Question’First = 1, Question’Last = 20>
——< Question’Length = 20 (the number of characters)>

Ask_Twice : String := Question & Question; ——< constrained to (1..40)>]
Ninety_Six : constant Roman := "XCVI"; ——< see Section 4.5.2 [3.5.2],]

page 93 and Section 4.6 [3.6], page 114>

4.7 3.7 Discriminants

1/2

A composite type (other than an array or interface type) can have discriminants, which
parameterize the type. A known_discriminant_part specifies the discriminants of a com-
posite type. A discriminant of an object is a component of the object, and is either of a
discrete type or an access type. An unknown_discriminant_part in the declaration of a view
of a type specifies that the discriminants of the type are unknown for the given view; all
subtypes of such a view are indefinite subtypes.

Syntax
2/2
discriminant_part ::= unknown_discriminant_part | known_discriminant_part
3
unknown_discriminant_part ::= (<>)
4
known_discriminant_part ::=
(discriminant_specification {; discriminant_specification})
5/2
discriminant_specification ::=
defining_identifier_list : [null_exclusion] subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]
6
default_expression ::= expression
Name Resolution Rules
7

The expected type for the default_expression of a discriminant_specification is that of the
corresponding discriminant.



Legality Rules
8/2
A discriminant_part is only permitted in a declaration for a composite type that is not
an array or interface type (this includes generic formal types). A type declared with a
known_discriminant_part is called a <discriminated> type, as is a type that inherits (known)
discriminants.
9/2
The subtype of a discriminant may be defined by an optional null_exclusion and a sub-
type_mark, in which case the subtype_mark shall denote a discrete or access subtype,
or it may be defined by an access_definition. A discriminant that is defined by an ac-
cess_definition is called an <access discriminant> and is of an anonymous access type.
9.1/2
Default_expressions shall be provided either for all or for none of the discriminants of
a known_discriminant_part (see [S0061], page 123). No default_expression (see [S0063],
page 123)s are permitted in a known_discriminant_part (see [S0061], page 123) in a decla-
ration of a tagged type or a generic formal type.
10/2
A discriminant_specification for an access discriminant may have a default_expression only
in the declaration for a task or protected type, or for a type that is a descendant of an
explicitly limited record type. In addition to the places where Legality Rules normally
apply (see Section 13.3 [12.3], page 454), this rule applies also in the private part of an
instance of a generic unit.
11/2
<This paragraph was deleted.>
12
For a type defined by a derived_type_definition, if a known_discriminant_part is provided
in its declaration, then:

13

e The parent subtype shall be constrained;
14

e If the parent type is not a tagged type, then each discriminant of the derived type shall
be used in the constraint defining the parent subtype;

15

e If a discriminant is used in the constraint defining the parent subtype, the subtype of
the discriminant shall be statically compatible (see Section 5.9.1 [4.9.1], page 238) with
the subtype of the corresponding parent discriminant.

16
The type of the default_expression, if any, for an access discriminant shall be convertible to
the anonymous access type of the discriminant (see Section 5.6 [4.6], page 219).

Static Semantics



17

A discriminant_specification declares a discriminant; the subtype_mark denotes its subtype
unless it is an access discriminant, in which case the discriminant’s subtype is the anonymous
access—to—variable subtype defined by the access_definition.

18

For a type defined by a derived_type_definition, each discriminant of the parent type is either
inherited, constrained to equal some new discriminant of the derived type, or constrained to
the value of an expression. When inherited or constrained to equal some new discriminant,
the parent discriminant and the discriminant of the derived type are said to <correspond>.
Two discriminants also correspond if there is some common discriminant to which they
both correspond. A discriminant corresponds to itself as well. If a discriminant of a parent
type is constrained to a specific value by a derived_type_definition, then that discriminant
is said to be <specified> by that derived_type_definition.

19

A constraint that appears within the definition of a discriminated type <depends on a dis-
criminant> of the type if it names the discriminant as a bound or discriminant value. A
component_definition depends on a discriminant if its constraint depends on the discrimi-
nant, or on a discriminant that corresponds to it.

20

A component <depends on a discriminant> if:

21

e Its component_definition depends on the discriminant; or

22

e It is declared in a variant_part that is governed by the discriminant; or

23

e [t is a component inherited as part of a derived_type_definition, and the constraint of
the <parent_>subtype_indication depends on the discriminant; or

24

e It is a subcomponent of a component that depends on the discriminant.

25

Each value of a discriminated type includes a value for each component of the type that
does not depend on a discriminant; this includes the discriminants themselves. The values
of discriminants determine which other component values are present in the value of the
discriminated type.

26

A type declared with a known_discriminant_part is said to have <known discriminants>;
its first subtype is unconstrained. A type declared with an unknown_discriminant_part is
said to have <unknown discriminants>. A type declared without a discriminant_part has
no discriminants, unless it is a derived type; if derived, such a type has the same sort



of discriminants (known, unknown, or none) as its parent (or ancestor) type. A tagged
class—wide type also has unknown discriminants. Any subtype of a type with unknown
discriminants is an unconstrained and indefinite subtype (see Section 4.2 [3.2], page 50, and
Section 4.3 [3.3], page 58).

Dynamic Semantics
27/2
For an access discriminant, its access_definition is elaborated when the value of the ac-
cess discriminant is defined: by evaluation of its default_expression, by elaboration of a
discriminant_constraint, or by an assignment that initializes the enclosing object.

NOTES
28

52 If a discriminated type has default_expressions for its discrimi-
nants, then unconstrained variables of the type are permitted, and
the values of the discriminants can be changed by an assignment to
such a variable. If defaults are not provided for the discriminants,
then all variables of the type are constrained, either by explicit con-
straint or by their initial value; the values of the discriminants of
such a variable cannot be changed after initialization.

29

53 The default_expression for a discriminant of a type is evaluated
when an object of an unconstrained subtype of the type is created.

30

54 Assignment to a discriminant of an object (after its initialization)
is not allowed, since the name of a discriminant is a constant; neither
assignment_statements nor assignments inherent in passing as an in
out or out parameter are allowed. Note however that the value of
a discriminant can be changed by assigning to the enclosing object,
presuming it is an unconstrained variable.

31

55 A discriminant that is of a named access type is not called an
access discriminant; that term is used only for discriminants defined
by an access_definition.

Examples

32
<Examples of discriminated types:>
33

type Buffer(Size : Buffer_Size := 100) is ——< see Section 4.5.4}
[3.5.4], page 95>
record



Pos : Buffer_Size := 0;
Value : String(1l .. Size);
end record;

34
type Matrix_Rec(Rows, Columns : Integer) is
record
Mat : Matrix(l .. Rows, 1 .. Columns); ——< see Section 4.6J}
[3.6], page 114>
end record;
35
type Square(Side : Integer) is new
Matrix_Rec(Rows => Side, Columns => Side);
36
type Double_Square(Number : Integer) is
record
Left : Square(Number);
Right : Square(Number) ;
end record;
37/2

task type Worker(Prio : System.Priority; Buf : access Buffer) is

——< discriminants used to parameterize the task type (see Section 10.1]]
[9.1], page 329)>

pragma Priority(Prio); ——< see Section 18.1 [D.1], page 975>

entry Fill;

entry Drain;
end Worker;

4.7.1 3.7.1 Discriminant Constraints
1

A discriminant_constraint specifies the values of the discriminants for a given discriminated

type.
Syntax

discriminant_constraint ::=
(discriminant_association {, discriminant_association})

discriminant_association ::=
[<discriminant_>selector_name {| <discriminant_>selector_name} =>] expression



A discriminant_association is said to be <named> if it has one or
more <discriminant_>selector_names; it is otherwise said to be <po-
sitional>. In a discriminant_constraint, any positional associations
shall precede any named associations.

Name Resolution Rules

5

Each selector_name of a named discriminant_association (see [S0065], page 127) shall re-
solve to denote a discriminant of the subtype being constrained; the discriminants so
named are the <associated discriminants> of the named association. For a positional as-
sociation, the <associated discriminant> is the one whose discriminant_specification (see
[S0062], page 123) occurred in the corresponding position in the known_discriminant_part
(see [S0061], page 123) that defined the discriminants of the subtype being constrained.

6
The expected type for the expression in a discriminant_association is that of the associated
discriminant(s).

Legality Rules
7/2
A discriminant_constraint is only allowed in a subtype_indication whose subtype_mark de-
notes either an unconstrained discriminated subtype, or an unconstrained access subtype
whose designated subtype is an unconstrained discriminated subtype. However, in the case
of an access subtype, a discriminant_constraint (see [S0064], page 127) is illegal if the des-
ignated type has a partial view that is constrained or, for a general access subtype, has
default_expressions for its discriminants. In addition to the places where Legality Rules
normally apply (see Section 13.3 [12.3], page 454), these rules apply also in the private part
of an instance of a generic unit. In a generic body, this rule is checked presuming all formal
access types of the generic might be general access types, and all untagged discriminated
formal types of the generic might have default_expressions for their discriminants.

8

A named discriminant_association with more than one selector_name is allowed only if the
named discriminants are all of the same type. A discriminant_constraint shall provide
exactly one value for each discriminant of the subtype being constrained.

9
The expression associated with an access discriminant shall be of a type convertible to the
anonymous access type.

Dynamic Semantics

10

A discriminant_constraint is <compatible> with an unconstrained discriminated subtype if
each discriminant value belongs to the subtype of the corresponding discriminant.

11

A composite value <satisfies> a discriminant constraint if and only if each discriminant of
the composite value has the value imposed by the discriminant constraint.

12

For the elaboration of a discriminant_constraint, the expressions in the discrimi-



nant_associations are evaluated in an arbitrary order and converted to the type of the
associated discriminant (which might raise Constraint_Error —— see Section 5.6 [4.6],
page 219); the expression of a named association is evaluated (and converted) once for
each associated discriminant. The result of each evaluation and conversion is the value
imposed by the constraint for the associated discriminant.

NOTES
13
56 The rules of the language ensure that a discriminant of an object
always has a value, either from explicit or implicit initialization.
Examples
14

<Examples (using types declared above in clause Section 4.7 [3.7], page 123):>
15

Large : Buffer(200); ——< constrained, always 200 characters>
——<  (explicit discriminant value)>

Message : Buffer; ——< unconstrained, initially 100 characters>}
——<  (default discriminant value)>

Basis : Square(5); ——< constrained, always 5 by 5>

Illegal : Square; ——< illegal, a Square has to be constrained>]

4.7.2 3.7.2 Operations of Discriminated Types

1
If a discriminated type has default_expressions for its discriminants, then unconstrained
variables of the type are permitted, and the discriminants of such a variable can be changed
by assignment to the variable. For a formal parameter of such a type, an attribute is
provided to determine whether the corresponding actual parameter is constrained or un-
constrained.

Static Semantics

2
For a prefix A that is of a discriminated type (after any implicit dereference), the following
attribute is defined:

3
A’Constrained

Yields the  value
True if A denotes a
constant, a value, or a
constrained variable,
and False otherwise.

Erroneous Erecution

4
The execution of a construct is erroneous if the construct has a constituent that is a name
denoting a subcomponent that depends on discriminants, and the value of any of these



discriminants is changed by this execution between evaluating the name and the last use
(within this execution) of the subcomponent denoted by the name.

4.8 3.8 Record Types

1
A record object is a composite object consisting of named components. The value of a
record object is a composite value consisting of the values of the components.

Syntax
2
record_type_definition ::= [[abstract] tagged] [limited] record_definition
3
record_definition ::=
record
component_list
end record
| null record
4
component_list ::=
component_item {component_item}
| {component_item} variant_part
| null;
5/1
component_item ::= component_declaration | aspect_clause
6
component_declaration ::=
defining_identifier_list : component_definition [:= default_expression];
Name Resolution Rules
7

The expected type for the default_expression, if any, in a component_declaration is the type
of the component.

Legality Rules
8/2
<This paragraph was deleted.>
9/2
Each component_declaration declares a component of the record type. Besides components
declared by component_declarations, the components of a record type include any compo-
nents declared by discriminant_specifications of the record type declaration. The identifiers
of all components of a record type shall be distinct.



10
Within a type_declaration, a name that denotes a component, protected subprogram, or
entry of the type is allowed only in the following cases:

11

e A name that denotes any component, protected subprogram, or entry is allowed within
a representation item that occurs within the declaration of the composite type.

12

e A name that denotes a noninherited discriminant is allowed within the declaration of
the type, but not within the discriminant_part. If the discriminant is used to define
the constraint of a component, the bounds of an entry family, or the constraint of
the parent subtype in a derived_type_definition then its name shall appear alone as a
direct_name (not as part of a larger expression or expanded name). A discriminant
shall not be used to define the constraint of a scalar component.

13
If the name of the current instance of a type (see Section 9.6 [8.6], page 324) is used to
define the constraint of a component, then it shall appear as a direct_name that is the prefix
of an attribute_reference whose result is of an access type, and the attribute_reference shall
appear alone.

Static Semantics

13.1/2
If a record_type_definition includes the reserved word limited, the type is called an <explic-
itly limited record> type.

14

The component_definition of a component_declaration defines the (nominal) subtype of the
component. If the reserved word aliased appears in the component_definition, then the
component is aliased (see Section 4.10 [3.10], page 156).

15

If the component_list of a record type is defined by the reserved word null and there are no

discriminants, then the record type has no components and all records of the type are <null

records>. A record_definition of null record is equivalent to record null; end record.
Dynamic Semantics

16

The elaboration of a record_type_definition creates the record type and its first subtype, and
consists of the elaboration of the record_definition. The elaboration of a record_definition
consists of the elaboration of its component_list, if any.

17

The elaboration of a component_list consists of the elaboration of the component_items
and variant_part, if any, in the order in which they appear. The elaboration of a compo-
nent_declaration consists of the elaboration of the component_definition.

18/2

Within the definition of a composite type, if a component_definition or dis-
crete_subtype_definition (see Section 10.5.2 [9.5.2], page 347) includes a name that denotes



a discriminant of the type, or that is an attribute_reference whose prefix denotes the
current instance of the type, the expression containing the name is called a <per—object
expression>, and the constraint or range being defined is called a <per—object constraint>.
For the elaboration of a component_definition of a component_declaration or the discrete_-
subtype_definition (see [S0055], page 114) of an entry_declaration (see [S0200], page 347)
for an entry family (see Section 10.5.2 [9.5.2], page 347), if the component subtype is
defined by an access_definition or if the constraint or range of the subtype_indication
or discrete_subtype_definition (see [S0055], page 114) is not a per—object constraint,
then the access_definition, subtype_indication, or discrete_subtype_definition (see [S0055],
page 114) is elaborated. On the other hand, if the constraint or range is a per—object
constraint, then the elaboration consists of the evaluation of any included expression that
is not part of a per—object expression. Each such expression is evaluated once unless it is
part of a named association in a discriminant constraint, in which case it is evaluated once
for each associated discriminant.

18.1/1

When a per—object constraint is elaborated (as part of creating an object), each
per—object expression of the constraint is evaluated. For other expressions, the values
determined during the elaboration of the component_definition (see [S0056], page 114)
or entry_declaration (see [S0200], page 347) are used. Any checks associated with the
enclosing subtype_indication or discrete_subtype_definition are performed, including the
subtype compatibility check (see Section 4.2.2 [3.2.2], page 55), and the associated subtype
is created.

NOTES
19

57 A component_declaration with several identifiers is equivalent
to a sequence of single component_declarations, as explained in
Section 4.3.1 [3.3.1], page 61.

20

58 The default_expression of a record component is only evaluated
upon the creation of a default—initialized object of the record type
(presuming the object has the component, if it is in a variant_part
—— see Section 4.3.1 [3.3.1], page 61).

21

59 The subtype defined by a component_definition (see Section 4.6
[3.6], page 114) has to be a definite subtype.

22

60 If a record type does not have a variant_part, then the same
components are present in all values of the type.

23



61 A record type is limited if it has the reserved word limited in its
definition, or if any of its components are limited (see Section 8.5
[7.5], page 292).

24
62 The predefined operations of a record type include membership
tests, qualification, and explicit conversion. If the record type is
nonlimited, they also include assignment and the predefined equality
operators.
25/2
63 A component of a record can be named with a se-
lected_component. A value of a record can be specified with a
record_aggregate.
Examples
26
<Examples of record type declarations: >
27
type Date is
record
Day : Integer range 1 .. 31;
Month : Month_Name;
Year : Integer range O .. 4000;
end record;
28
type Complex is
record
Re : Real := 0.0;
Im : Real := 0.0;
end record;
29
<Examples of record variables: >
30
Tomorrow, Yesterday : Date;
A, B, C : Complex;
31

——< both components of A, B, and C are implicitly initialized to zero >J



4.8.1 3.8.1 Variant Parts and Discrete Choices

1

A record type with a variant_part specifies alternative lists of components. Each vari-
ant defines the components for the value or values of the discriminant covered by its dis-
crete_choice_list.

Syntax
2
variant_part ::=
case <discriminant_>direct_name is
variant
{variant}
end case;
3
variant 1=
when discrete_choice_list =>
component_list
4
discrete_choice_list ::= discrete_choice {| discrete_choice}
5
discrete_choice ::= expression | discrete_range | others
Name Resolution Rules
6

The <discriminant_>direct_name shall resolve to denote a discriminant (called the
<discriminant of the variant_part>) specified in the known_discriminant_part of the
full_type_declaration that contains the wvariant_part.  The expected type for each
discrete_choice in a variant is the type of the discriminant of the variant_part.

Legality Rules

7
The discriminant of the variant_part shall be of a discrete type.

8

The expressions and discrete_ranges given as discrete_choices in a variant_part shall be
static. The discrete_choice others shall appear alone in a discrete_choice_list, and such a
discrete_choice_list, if it appears, shall be the last one in the enclosing construct.

9

A discrete_choice is defined to <cover a value> in the following cases:

10

e A discrete_choice that is an expression covers a value if the value equals the value of
the expression converted to the expected type.



11

e A discrete_choice that is a discrete_range covers all values (possibly none) that belong
to the range.

12

e The discrete_choice others covers all values of its expected type that are not covered
by previous discrete_choice_lists of the same construct.

13
A discrete_choice_list covers a value if one of its discrete_choices covers the value.

14
The possible values of the discriminant of a variant_part shall be covered as follows:

15

e If the discriminant is of a static constrained scalar subtype, then each non—others
discrete_choice (see [S0074], page 134) shall cover only values in that subtype, and each
value of that subtype shall be covered by some discrete_choice (see [S0074], page 134)
(either explicitly or by others);

16

o If the type of the discriminant is a descendant of a generic formal scalar type then the
variant_part shall have an others discrete_choice;

17

e Otherwise, each value of the base range of the type of the discriminant shall be covered
(either explicitly or by others).

18
Two distinct discrete_choices of a variant_part shall not cover the same value.
Static Semantics

19
If the component_list of a variant is specified by null, the variant has no components.

20

The discriminant of a variant_part is said to <govern> the variant_part and its variants.

In addition, the discriminant of a derived type governs a variant_part and its variants if it

corresponds (see Section 4.7 [3.7], page 123) to the discriminant of the variant_part.
Dynamic Semantics

21

A record value contains the values of the components of a particular variant only if the
value of the discriminant governing the variant is covered by the discrete_choice_list of the
variant. This rule applies in turn to any further variant that is, itself, included in the
component_list of the given variant.



22
The elaboration of a variant_part consists of the elaboration of the component_list of each
variant in the order in which they appear.

Ezamples
23
<Example of record type with a variant part: >
24
type Device is (Printer, Disk, Drum);
type State is (Open, Closed);
25
type Peripheral(Unit : Device := Disk) is
record
Status : State;
case Unit is
when Printer =>
Line_Count : Integer range 1 .. Page_Size;
when others =>
Cylinder : Cylinder_Index;
Track : Track_Number;
end case;
end record;
26
<Examples of record subtypes:>
27
subtype Drum_Unit is Peripheral (Drum) ;
subtype Disk_Unit is Peripheral(Disk);
28
<Examples of constrained record variables:>
29

Writer : Peripheral(Unit => Printer);
Archive : Disk_Unit;

4.9 3.9 Tagged Types and Type Extensions

1
Tagged types and type extensions support object—oriented programming, based on inheri-
tance with extension and run—time polymorphism via <dispatching operations>.
Static Semantics
2/2
A record type or private type that has the reserved word tagged in its declaration is called



a <tagged> type. In addition, an interface type is a tagged type, as is a task or protected
type derived from an interface (see Section 4.9.4 [3.9.4], page 152). When deriving from
a tagged type, as for any derived type, additional primitive subprograms may be defined,
and inherited primitive subprograms may be overridden. The derived type is called an
<extension> of its ancestor types, or simply a <type extension>.

2.1/2

Every type extension is also a tagged type, and is a <record extension> or a <private
extension> of some other tagged type, or a non—interface synchronized tagged type (see
Section 4.9.4 [3.9.4], page 152). A record extension is defined by a derived_type_definition
with a record_extension_part (see Section 4.9.1 [3.9.1], page 143), which may include the
definition of additional components. A private extension, which is a partial view of a record
extension or of a synchronized tagged type, can be declared in the visible part of a package
(see Section 8.3 [7.3], page 283) or in a generic formal part (see Section 13.5.1 [12.5.1],
page 462).

3

An object of a tagged type has an associated (run—time) <tag> that identifies the specific
tagged type used to create the object originally. The tag of an operand of a class—wide
tagged type <T>’Class controls which subprogram body is to be executed when a primitive
subprogram of type <T> is applied to the operand (see Section 4.9.2 [3.9.2], page 145); using
a tag to control which body to execute is called <dispatching>.

4/2

The tag of a specific tagged type identifies the full_type_declaration of the type, and for a
type extension, is sufficient to uniquely identify the type among all descendants of the same
ancestor. If a declaration for a tagged type occurs within a generic_package_declaration,
then the corresponding type declarations in distinct instances of the generic package are
associated with distinct tags. For a tagged type that is local to a generic package body and
with all of its ancestors (if any) also local to the generic body, the language does not specify
whether repeated instantiations of the generic body result in distinct tags.

5
The following language—defined library package exists:

6/2
package Ada.Tags is
pragma Preelaborate(Tags) ;
type
Tag is private;
pragma Preelaborable_Initialization(Tag);
6.1/2

No_Tag : constant Tag;
7/2



function
Expanded_Name(T : Tag) return String;
function
Wide_Expanded_Name(T : Tag) return Wide_String;
function
Wide_Wide_Expanded_Name(T : Tag) return Wide_Wide_String;
function
External_Tag(T : Tag) return String;
function
Internal_Tag(External : String) return Tag;

7.1/2
function
Descendant_Tag(External : String; Ancestor : Tag) return Tag;
function
Is_Descendant_At_Same_Level(Descendant, Ancestor : Tag)
return Boolean;
7.2/2
function
Parent_Tag (T : Tag) return Tag;
7.3/2
type
Tag_Array is array (Positive range <>) of Tag;
7.4/2
function
Interface_Ancestor_Tags (T : Tag) return Tag_Array;
8
Tag_Error : exception;
9
private
... —— <not specified by the language>
end Ada.Tags;
9.1/2
No_Tag is the default initial value of type Tag.
10/2

The function Wide_Wide_Expanded_Name returns the full expanded name of the first sub-
type of the specific type identified by the tag, in upper case, starting with a root library



unit. The result is implementation defined if the type is declared within an unnamed
block_statement.

10.1/2

The function Expanded_Name (respectively, Wide_Expanded_Name) returns the same se-
quence of graphic characters as that defined for Wide_Wide_Expanded_Name, if all the
graphic characters are defined in Character (respectively, Wide_Character); otherwise, the
sequence of characters is implementation defined, but no shorter than that returned by
Wide_Wide_Expanded_Name for the same value of the argument.

11

The function External_Tag returns a string to be used in an external representation
for the given tag. The call External_Tag(S'Tag) is equivalent to the attribute_reference
S’External_Tag (see Section 14.3 [13.3], page 486).

11.1/2

The string returned by the functions Expanded_-Name, Wide_Expanded_Name,
Wide_Wide_Expanded_Name, and External_Tag has lower bound 1.

12/2

The function Internal_Tag returns a tag that corresponds to the given external tag, or raises
Tag_FError if the given string is not the external tag for any specific type of the partition.
Tag_Error is also raised if the specific type identified is a library—level type whose tag has
not yet been created (see Section 14.14 [13.14], page 550).

12.1/2

The function Descendant_Tag returns the (internal) tag for the type that corresponds to the
given external tag and is both a descendant of the type identified by the Ancestor tag and
has the same accessibility level as the identified ancestor. Tag_Error is raised if External is
not the external tag for such a type. Tag_Error is also raised if the specific type identified
is a library—level type whose tag has not yet been created.

12.2/2

The function Is_Descendant_At_Same_Level returns True if the Descendant tag identifies a
type that is both a descendant of the type identified by Ancestor and at the same accessi-
bility level. If not, it returns False.

12.3/2

The function Parent_Tag returns the tag of the parent type of the type whose tag is T. If the
type does not have a parent type (that is, it was not declared by a derived_type_declaration),
then No_Tag is returned.

12.4/2

The function Interface_Ancestor_Tags returns an array containing the tag of each interface
ancestor type of the type whose tag is T, other than T itself. The lower bound of the
returned array is 1, and the order of the returned tags is unspecified. Each tag appears in
the result exactly once. If the type whose tag is T has no interface ancestors, a null array
is returned.

13

For every subtype S of a tagged type <T> (specific or class—wide), the following attributes
are defined:

14

S’Class



S’Class denotes
a subtype of the
class—wide type
(called <T>’Class in
this International
Standard) for the
class rooted at <T>
(or if S already
denotes a class—wide
subtype, then S’Class
is the same as S).

15

S’Class is  uncon-
strained. However, if
S is constrained, then
the values of S’Class
are only those that
when converted to
the type <T> belong
to S.

16

S’Tag
S’Tag denotes the
tag of the type
<T> (or if <T> is
class—wide, the tag of
the root type of the
corresponding class).
The value of this
attribute is of type
Tag.

17

Given a prefix X that is of a class—wide tagged type (after any implicit dereference), the

following attribute is defined:

18

X'Tag
X'Tag denotes the
tag of X. The value
of this attribute is of
type Tag.

18.1/2

The following language—defined generic function exists:
18.2/2



generic
type T (<>) is abstract tagged limited private;
type Parameters (<>) is limited private;
with function Constructor (Params : not null access Parameters)
return T is abstract;
function Ada.Tags.Generic_Dispatching_Constructor
(The_Tag : Tag;
Params : not null access Parameters) return T’Class;
pragma Preelaborate(Generic_Dispatching_Constructor);
pragma Convention(Intrinsic, Generic_Dispatching_Constructor);

18.3/2
Tags.Generic_Dispatching_Constructor provides a mechanism to create an object of an ap-
propriate type from just a tag value. The function Constructor is expected to create the
object given a reference to an object of type Parameters.

Dynamic Semantics

19
The tag associated with an object of a tagged type is determined as follows:

20

e The tag of a stand—alone object, a component, or an aggregate of a specific tagged
type <T> identifies <T>.

21

e The tag of an object created by an allocator for an access type with a specific designated
tagged type <T>, identifies <T>.

22

e The tag of an object of a class—wide tagged type is that of its initialization expression.

23

e The tag of the result returned by a function whose result type is a specific tagged type
<T> identifies <T>.

24/2

e The tag of the result returned by a function with a class—wide result type is that of
the return object.

25
The tag is preserved by type conversion and by parameter passing. The tag of a value is
the tag of the associated object (see Section 7.2 [6.2], page 260).

25.1/2
Tag_Error is raised by a call of Descendant_Tag, Expanded_Name, External_Tag,



Interface_Ancestor_Tag, Is_Descendant_At_Same_Level, or Parent_Tag if any tag passed is
No_Tag.

25.2/2

An instance of Tags.Generic_Dispatching_Constructor raises Tag_Error if The_Tag does not
represent a concrete descendant of T or if the innermost master (see Section 8.6.1 [7.6.1],
page 299) of this descendant is not also a master of the instance. Otherwise, it dispatches
to the primitive function denoted by the formal Constructor for the type identified by
The_Tag, passing Params, and returns the result. Any exception raised by the function is
propagated.

Erroneous Ezecution

25.3/2
If an internal tag provided to an instance of Tags.Generic_Dispatching_Constructor or to
any subprogram declared in package Tags identifies either a type that is not library—level
and whose tag has not been created (see Section 14.14 [13.14], page 550), or a type that
does not exist in the partition at the time of the call, then execution is erroneous.

Implementation Permissions
26/2
The implementation of Internal_Tag and Descendant_Tag may raise Tag_Error if no specific
type corresponding to the string External passed as a parameter exists in the partition at
the time the function is called, or if there is no such type whose innermost master is a
master of the point of the function call.

Implementation Advice

26.1/2
Internal_Tag should return the tag of a type whose innermost master is the master of the
point of the function call.

NOTES

27
64 A type declared with the reserved word tagged should normally
be declared in a package_specification, so that new primitive subpro-
grams can be declared for it.

28
65 Once an object has been created, its tag never changes.

29

66 Class—wide types are defined to have unknown discriminants
(see Section 4.7 [3.7], page 123). This means that objects of a
class—wide type have to be explicitly initialized (whether created
by an object_declaration or an allocator), and that aggregates have
to be explicitly qualified with a specific type when their expected
type is class—wide.

30/2



<This paragraph was deleted.>

30.1/2
67 The capability provided by Tags.Generic_Dispatching_Constructor
is sometimes known as a <factory>.
Ezamples
31
<Examples of tagged record types:>
32
type Point is tagged
record
X, Y : Real := 0.0;
end record;
33

type Expression is tagged null record;
——< Components will be added by each extension>

4.9.1 3.9.1 Type Extensions

1/2
Every type extension is a tagged type, and is a <record extension> or a <private extension>
of some other tagged type, or a non—interface synchronized tagged type..

Syntazx
2
record_extension_part ::= with record_definition
Legality Rules
3/2

The parent type of a record extension shall not be a class—wide type nor shall it be a
synchronized tagged type (see Section 4.9.4 [3.9.4], page 152). If the parent type or any
progenitor is nonlimited, then each of the components of the record_extension_part shall be
nonlimited. In addition to the places where Legality Rules normally apply (see Section 13.3
[12.3], page 454), these rules apply also in the private part of an instance of a generic unit.
4/2

Within the body of a generic unit, or the body of any of its descendant library units, a
tagged type shall not be declared as a descendant of a formal type declared within the
formal part of the generic unit.

Static Semantics

4.1/2
A record extension is a <null extension> if its declaration has no known_discriminant_part

and its record_extension_part includes no component_declarations.
Dynamic Semantics



5
The elaboration of a record_extension_part consists of the elaboration of the
record_definition.

NOTES

68 The term "type extension" refers to a type as a whole. The term
"extension part" refers to the piece of text that defines the additional
components (if any) the type extension has relative to its specified
ancestor type.

7/2

69 When an extension is declared immediately within a body, prim-
itive subprograms are inherited and are overridable, but new primi-
tive subprograms cannot be added.

70 A name that denotes a component (including a dis-
criminant) of the parent type is not allowed within the
record_extension_part. Similarly, a name that denotes a component
defined within the record_extension_part is not allowed within the
record_extension_part. It is permissible to use a name that denotes
a discriminant of the record extension, providing there is a new
known_discriminant_part in the enclosing type declaration. (The
full rule is given in Section 4.8 [3.8], page 130.)

71 Each visible component of a record extension has to have a
unique name, whether the component is (visibly) inherited from the
parent type or declared in the record_extension_part (see Section 9.3
[8.3], page 308).
Ezamples
10
<Examples of record extensions (of types defined above in Section 4.9 [3.9], page 136):>

11

type Painted_Point is new Point with
record
Paint : Color := White;
end record;
——< Components X and Y are inherited>

12

Origin : constant Painted_Point := (X | Y => 0.0, Paint => Black);



13

type Literal is new Expression with
record ——< a leaf in an Expression tree>
Value : Real;
end record;

14
type Expr_Ptr is access all Expression’Class;
——< see Section 4.10 [3.10], page 156>}
15
type Binary_Operation is new Expression with
record ——< an internal node in an Expression tree>}
Left, Right : Expr_Ptr;
end record;
16
type Addition is new Binary_Operation with null record;
type Subtraction is new Binary_Operation with null record;
——< No additional components needed for these extensions>
17

Tree : Expr_Ptr := ——< A tree representation of "5.0 + (13.0—7.0)">}
new Addition’ (
Left => new Literal’(Value => 5.0),
Right => new Subtraction’(
Left => new Literal’(Value => 13.0),
Right => new Literal’(Value => 7.0)));

4.9.2 3.9.2 Dispatching Operations of Tagged Types
1/2
The primitive subprograms of a tagged type, the subprograms declared by formal_abstract_-
subprogram_declaration (see [S0277], page 471)s, and the stream attributes of a specific
tagged type that are available (see Section 14.13.2 [13.13.2], page 540) at the end of the
declaration list where the type is declared are called <dispatching operations>. A dispatching
operation can be called using a statically determined <controlling> tag, in which case the
body to be executed is determined at compile time. Alternatively, the controlling tag can be
dynamically determined, in which case the call <dispatches> to a body that is determined
at run time; such a call is termed a <dispatching call>. As explained below, the properties
of the operands and the context of a particular call on a dispatching operation determine
how the controlling tag is determined, and hence whether or not the call is a dispatching
call. Run—time polymorphism is achieved when a dispatching operation is called by a
dispatching call.

Static Semantics



2/2

A <call on a dispatching operation> is a call whose name or prefix denotes the declaration
of a dispatching operation. A <controlling operand> in a call on a dispatching operation
of a tagged type <T> is one whose corresponding formal parameter is of type <T> or is of
an anonymous access type with designated type <T>; the corresponding formal parameter
is called a <controlling formal parameter>. If the controlling formal parameter is an access
parameter, the controlling operand is the object designated by the actual parameter, rather
than the actual parameter itself. If the call is to a (primitive) function with result type <T>,
then the call has a <controlling result> —— the context of the call can control the dispatching.
Similarly, if the call is to a function with access result type designating <T>, then the call
has a <controlling access result>, and the context can similarly control dispatching.

3

A name or expression of a tagged type is either <statically> tagged, <dynamically> tagged, or
<tag indeterminate>, according to whether, when used as a controlling operand, the tag that
controls dispatching is determined statically by the operand’s (specific) type, dynamically
by its tag at run time, or from context. A qualified_expression or parenthesized expression
is statically, dynamically, or indeterminately tagged according to its operand. For other
kinds of names and expressions, this is determined as follows:

4/2

e The name or expression is <statically tagged> if it is of a specific tagged type and,
if it is a call with a controlling result or controlling access result, it has at least one
statically tagged controlling operand;

5/2

e The name or expression is <dynamically tagged> if it is of a class—wide type, or it is a
call with a controlling result or controlling access result and at least one dynamically
tagged controlling operand;

6/2

e The name or expression is <tag indeterminate> if it is a call with a controlling result
or controlling access result, all of whose controlling operands (if any) are tag indeter-
minate.

7/1

A type_conversion is statically or dynamically tagged according to whether the type de-
termined by the subtype_mark is specific or class—wide, respectively. For an object that
is designated by an expression whose expected type is an anonymous access—to—specific
tagged type, the object is dynamically tagged if the expression, ignoring enclosing parenthe-
ses, is of the form X’Access, where X is of a class—wide type, or is of the form new T’(...),
where T denotes a class—wide subtype. Otherwise, the object is statically or dynamically
tagged according to whether the designated type of the type of the expression is specific or
class—wide, respectively.

Legality Rules



8
A call on a dispatching operation shall not have both dynamically tagged and statically
tagged controlling operands.

9/1

If the expected type for an expression or name is some specific tagged type, then the
expression or name shall not be dynamically tagged unless it is a controlling operand in
a call on a dispatching operation. Similarly, if the expected type for an expression is an
anonymous access—to—specific tagged type, then the object designated by the expression
shall not be dynamically tagged unless it is a controlling operand in a call on a dispatching
operation.

10/2

In the declaration of a dispatching operation of a tagged type, everywhere a subtype of the
tagged type appears as a subtype of the profile (see Section 7.1 [6.1], page 255), it shall
statically match the first subtype of the tagged type. If the dispatching operation overrides
an inherited subprogram, it shall be subtype conformant with the inherited subprogram.
The convention of an inherited dispatching operation is the convention of the corresponding
primitive operation of the parent or progenitor type. The default convention of a dispatching
operation that overrides an inherited primitive operation is the convention of the inherited
operation; if the operation overrides multiple inherited operations, then they shall all have
the same convention. An explicitly declared dispatching operation shall not be of convention
Intrinsic.

11/2
The default_expression for a controlling formal parameter of a dispatching operation shall
be tag indeterminate.

11.1/2

If a dispatching operation is defined by a subprogram_renaming_declaration or the instan-
tiation of a generic subprogram, any access parameter of the renamed subprogram or the
generic subprogram that corresponds to a controlling access parameter of the dispatching
operation, shall have a subtype that excludes null.

12
A given subprogram shall not be a dispatching operation of two or more distinct tagged

types.

13
The explicit declaration of a primitive subprogram of a tagged type shall occur before
the type is frozen (see Section 14.14 [13.14], page 550). For example, new dispatching
operations cannot be added after objects or values of the type exist, nor after deriving a
record extension from it, nor after a body.

Dynamic Semantics

14

For the execution of a call on a dispatching operation of a type <T>, the <controlling tag
value> determines which subprogram body is executed. The controlling tag value is defined
as follows:

15



e If one or more controlling operands are statically tagged, then the controlling tag value
is <statically determined> to be the tag of <T>.

16

e If one or more controlling operands are dynamically tagged, then the controlling tag
value is not statically determined, but is rather determined by the tags of the controlling
operands. If there is more than one dynamically tagged controlling operand, a check
is made that they all have the same tag. If this check fails, Constraint_Error is raised
unless the call is a function_call whose name denotes the declaration of an equality
operator (predefined or user defined) that returns Boolean, in which case the result of
the call is defined to indicate inequality, and no subprogram_body is executed. This
check is performed prior to evaluating any tag—indeterminate controlling operands.

17/2

e If all of the controlling operands (if any) are tag—indeterminate, then:

18/2

e If the call has a controlling result or
controlling access result and is itself, or
designates, a (possibly parenthesized
or qualified) controlling operand of an
enclosing call on a dispatching operation
of a descendant of type <T>, then its
controlling tag wvalue is determined
by the controlling tag value of this
enclosing call;

18.1/2

e If the call has a controlling result
or controlling access result and
(possibly parenthesized, qualified, or
dereferenced) is the expression of an
assignment_statement whose target is of
a class—wide type, then its controlling
tag value is determined by the target;

19

e Otherwise, the controlling tag value is
statically determined to be the tag of
type <T>.

20/2
For the execution of a call on a dispatching operation, the action performed is determined by
the properties of the corresponding dispatching operation of the specific type identified by



the controlling tag value. If the corresponding operation is explicitly declared for this type,
even if the declaration occurs in a private part, then the action comprises an invocation of
the explicit body for the operation. If the corresponding operation is implicitly declared for
this type:

20.1/2

e if the operation is implemented by an entry or protected subprogram (see Section 10.1
[9.1], page 329, and Section 10.4 [9.4], page 337), then the action comprises a call on this
entry or protected subprogram, with the target object being given by the first actual
parameter of the call, and the actual parameters of the entry or protected subprogram
being given by the remaining actual parameters of the call, if any;

20.2/2

e otherwise, the action is the same as the action for the corresponding operation of the
parent type.

NOTES
21

72 The body to be executed for a call on a dispatching operation
is determined by the tag; it does not matter whether that tag is
determined statically or dynamically, and it does not matter whether
the subprogram’s declaration is visible at the place of the call.

22/2

73 This subclause covers calls on dispatching subprograms of a
tagged type. Rules for tagged type membership tests are described
in Section 5.5.2 [4.5.2], page 206. Controlling tag determination for
an assignment_statement is described in Section 6.2 [5.2], page 242.

23

74 A dispatching call can dispatch to a body whose declaration is
not visible at the place of the call.

24

75 A call through an access—to—subprogram value is never a
dispatching call, even if the access value designates a dispatching
operation. Similarly a call whose prefix denotes a subpro-
gram_renaming_declaration cannot be a dispatching call unless the
renaming itself is the declaration of a primitive subprogram.

4.9.3 3.9.3 Abstract Types and Subprograms

1/2
An <abstract type> is a tagged type intended for use as an ancestor of other types, but



which is not allowed to have objects of its own. An <abstract subprogram> is a subprogram
that has no body, but is intended to be overridden at some point when inherited. Because
objects of an abstract type cannot be created, a dispatching call to an abstract subprogram
always dispatches to some overriding body.

Syntax
1.1/2
abstract_subprogram_declaration ::=
[overriding_indicator]
subprogram_specification is abstract;
Static Semantics
1.2/2

Interface types (see Section 4.9.4 [3.9.4], page 152) are abstract types. In addition, a
tagged type that has the reserved word abstract in its declaration is an abstract type. The
class—wide type (see Section 4.4.1 [3.4.1], page 72) rooted at an abstract type is not itself
an abstract type.

Legality Rules
2/2
Only a tagged type shall have the reserved word abstract in its declaration.
3/2
A subprogram declared by an abstract_subprogram_declaration (see [S0076], page 150) or
a formal_abstract_subprogram_declaration (see [S0277|, page 471) (see Section 13.6 [12.6],
page 470) is an <abstract subprogram>. If it is a primitive subprogram of a tagged type,
then the tagged type shall be abstract.
4/2
If a type has an implicitly declared primitive subprogram that is inherited or is the pre-
defined equality operator, and the corresponding primitive subprogram of the parent or
ancestor type is abstract or is a function with a controlling access result, or if a type other
than a null extension inherits a function with a controlling result, then:

5/2

e If the type is abstract or untagged, the implicitly declared subprogram is <abstract>.
6/2

e Otherwise, the subprogram shall be overridden with a nonabstract subprogram or, in
the case of a private extension inheriting a function with a controlling result, have a
full type that is a null extension; for a type declared in the visible part of a package, the
overriding may be either in the visible or the private part. Such a subprogram is said
to <require overriding>. However, if the type is a generic formal type, the subprogram
need not be overridden for the formal type itself; a nonabstract version will necessarily
be provided by the actual type.

7
A call on an abstract subprogram shall be a dispatching call; nondispatching calls to an
abstract subprogram are not allowed.



8

The type of an aggregate, or of an object created by an object_declaration or an allocator,
or a generic formal object of mode in, shall not be abstract. The type of the target of an
assignment operation (see Section 6.2 [5.2], page 242) shall not be abstract. The type of
a component shall not be abstract. If the result type of a function is abstract, then the
function shall be abstract.

9

If a partial view is not abstract, the corresponding full view shall not be abstract. If a
generic formal type is abstract, then for each primitive subprogram of the formal that is
not abstract, the corresponding primitive subprogram of the actual shall not be abstract.

10
For an abstract type declared in a visible part, an abstract primitive subprogram shall not
be declared in the private part, unless it is overriding an abstract subprogram implicitly
declared in the visible part. For a tagged type declared in a visible part, a primitive function
with a controlling result shall not be declared in the private part, unless it is overriding a
function implicitly declared in the visible part.
11/2
A generic actual subprogram shall not be an abstract subprogram unless the generic formal
subprogram is declared by a formal_abstract_subprogram_declaration. The prefix of an
attribute_reference for the Access, Unchecked_Access, or Address attributes shall not denote
an abstract subprogram.

Dynamic Semantics

11.1/2

The elaboration of an abstract_subprogram_declaration has no effect.
NOTES

12
76 Abstractness is not inherited; to declare an abstract type, the
reserved word abstract has to be used in the declaration of the type
extension.

13
77 A class—wide type is never abstract. Even if a class is rooted at
an abstract type, the class—wide type for the class is not abstract,
and an object of the class—wide type can be created; the tag of such
an object will identify some nonabstract type in the class.

Examples
14

<Example of an abstract type representing a set of natural numbers:>
15

package Sets is
subtype Element_Type is Natural;
type Set is abstract tagged null record;



function Empty return Set is abstract;
function Union(Left, Right : Set) return Set is abstract;
function Intersection(Left, Right : Set) return Set is abstract;]]
function Unit_Set(Element : Element_Type) return Set is abstract;]]
procedure Take(Element : out Element_Type;
From : in out Set) is abstract;
end Sets;

NOTES
16

78 <Notes on the example:> Given the above abstract type, one
could then derive various (nonabstract) extensions of the type, rep-
resenting alternative implementations of a set. One might use a bit
vector, but impose an upper bound on the largest element repre-
sentable, while another might use a hash table, trading off space for
flexibility.

4.9.4 3.9.4 Interface Types
1/2
An interface type is an abstract tagged type that provides a restricted form of multiple

inheritance. A tagged type, task type, or protected type may have one or more interface
types as ancestors.

Syntax

2/2

interface_type_definition ::=

[limited | task | protected | synchronized| interface [and interface_list]

3/2

interface_list ::= <interface_>subtype_mark {and <interface_>subtype_mark}

Static Semantics

4/2

An interface type (also called an <interface>) is a specific abstract tagged type that is defined
by an interface_type_definition.

5/2

An interface with the reserved word limited, task, protected, or synchronized in its definition
is termed, respectively, a <limited interface>, a <task interface>, a <protected interface>, or
a <synchronized interface>. In addition, all task and protected interfaces are synchronized
interfaces, and all synchronized interfaces are limited interfaces.

6/2

A task or protected type derived from an interface is a tagged type. Such a tagged type is

called a <synchronized> tagged type, as are synchronized interfaces and private extensions
whose declaration includes the reserved word synchronized.



7/2
A task interface is an abstract task type. A protected interface is an abstract protected
type.
8/2
An interface type has no components.
9/2
An <interface_>subtype_mark in an interface_list names a <progenitor subtype>; its type is
the <progenitor type>. An interface type inherits user—defined primitive subprograms from
each progenitor type in the same way that a derived type inherits user—defined primitive
subprograms from its progenitor types (see Section 4.4 [3.4], page 66).
Legality Rules

10/2
All user—defined primitive subprograms of an interface type shall be abstract subprograms
or null procedures.
11/2
The type of a subtype named in an interface_list shall be an interface type.
12/2
A type derived from a nonlimited interface shall be nonlimited.
13/2
An interface derived from a task interface shall include the reserved word task in its defi-
nition; any other type derived from a task interface shall be a private extension or a task
type declared by a task declaration (see Section 10.1 [9.1], page 329).
14/2
An interface derived from a protected interface shall include the reserved word protected in
its definition; any other type derived from a protected interface shall be a private extension
or a protected type declared by a protected declaration (see Section 10.4 [9.4], page 337).
15/2
An interface derived from a synchronized interface shall include one of the reserved words
task, protected, or synchronized in its definition; any other type derived from a synchronized
interface shall be a private extension, a task type declared by a task declaration, or a
protected type declared by a protected declaration.
16/2
No type shall be derived from both a task interface and a protected interface.
17/2
In addition to the places where Legality Rules normally apply (see Section 13.3 [12.3],
page 454), these rules apply also in the private part of an instance of a generic unit.

Dynamic Semantics

18/2

The elaboration of an interface_type_definition has no effect.
NOTES

19/2

79 Nonlimited interface types have predefined nonabstract equal-
ity operators. These may be overridden with user—defined abstract



equality operators. Such operators will then require an explicit over-
riding for any nonabstract descendant of the interface.
Ezamples
20/2
<Example of a limited interface and a synchronized interface extending it:>
21/2

type Queue is limited interface;
procedure Append(Q : in out Queue; Person : in Person_Name) is abstract;|]
procedure Remove_First(Q : in out Queue;
Person : out Person_Name) is abstract;
function Cur_Count(Q : in Queue) return Natural is abstract;
function Max_Count(Q : in Queue) return Natural is abstract;
—— <See Section 4.10.1 [3.10.1], page 160 for Person_Name.>

22/2

Queue_Error : exception;
——< Append raises Queue_Error if Count(Q) = Max_Count(Q)>
——< Remove_First raises Queue_Error if Count(Q) = 0>

23/2

type Synchronized_Queue is synchronized interface and Queue; ——< see Section 10.1
[9.11], page 391>
procedure Append_Wait(Q : in out Synchronized_Queue;
Person : in Person_Name) is abstract;
procedure Remove_First_Wait(Q : in out Synchronized_Queue;
Person : out Person_Name) is abstract;

24/2

25/2

procedure Transfer(From : in out Queue’Class;
To : in out Queue’Class;
Number : in Natural := 1) is
Person : Person_Name;
begin
for I in 1..Number loop
Remove_First (From, Person);
Append(To, Person);
end loop;
end Transfer;
26/2
This defines a Queue interface defining a queue of people. (A similar design could be cre-
ated to define any kind of queue simply by replacing Person_Name by an appropriate type.)



The Queue interface has four dispatching operations, Append, Remove_First, Cur_Count,
and Max_Count. The body of a class—wide operation, Transfer is also shown. Every
non—abstract extension of Queue must provide implementations for at least its four dis-
patching operations, as they are abstract. Any object of a type derived from Queue may
be passed to Transfer as either the From or the To operand. The two operands need not
be of the same type in any given call.

27/2

The Synchronized_Queue interface inherits the four dispatching operations from Queue and
adds two additional dispatching operations, which wait if necessary rather than raising the
Queue_Error exception. This synchronized interface may only be implemented by a task or
protected type, and as such ensures safe concurrent access.

28/2
<Example use of the interface:>
29/2
type Fast_Food_Queue is new Queue with record ...;
procedure Append(Q : in out Fast_Food_Queue; Person : in Person_Name);|}
procedure Remove_First(Q : in out Fast_Food_Queue; Person : in Person_Name);]j
function Cur_Count(Q : in Fast_Food_Queue) return Natural;
function Max_Count(Q : in Fast_Food_Queue) return Natural;
30/2
31/2
Cashier, Counter : Fast_Food_Queue;
32/2
—— <Add George (see Section 4.10.1 [3.10.1], page 160) to the cashier’s queue:>j
Append (Cashier, George);
—— <After payment, move George to the sandwich counter queue:>
Transfer (Cashier, Counter);
33/2

An interface such as Queue can be used directly as the parent of a new type (as shown here),
or can be used as a progenitor when a type is derived. In either case, the primitive operations
of the interface are inherited. For Queue, the implementation of the four inherited routines
must be provided. Inside the call of Transfer, calls will dispatch to the implementations of
Append and Remove_First for type Fast_Food_Queue.

34/2

<Example of a task interface:>

35/2



type Serial_Device is task interface; ——< see Section 10.1 [9.1],

page 329>

procedure Read (Dev : in Serial_Device; C : out Character) is abstract;]]

procedure Write(Dev : in Serial_Device; C : in Character) is abstract;]]
36/2
The Serial_Device interface has two dispatching operations which are intended to be imple-
mented by task entries (see 9.1).

4.10 3.10 Access Types

1

A value of an access type (an <access value>) provides indirect access to the object or
subprogram it <designates>. Depending on its type, an access value can designate either
subprograms, objects created by allocators (see Section 5.8 [4.8], page 230), or more gener-
ally <aliased> objects of an appropriate type.

Syntax
2/2
access_type_definition ::=
[null_exclusion] access_to_object_definition
| [null_exclusion| access_to_subprogram_definition
3
access_to_object_definition ::=
access [general_access_modifier| subtype_indication
4
general_access_modifier ::= all | constant
5
access_to_subprogram_definition ::=
access [protected] procedure parameter_profile
| access [protected] function parameter_and_result_profile
5.1/2
null_exclusion ::= not null
6/2

access_definition ::=
[null_exclusion| access [constant] subtype_mark
| [null_exclusion] access [protected]| procedure parameter_profile
| [null_exclusion] access [protected] function parameter_and_result_profile
Static Semantics



7/1

There are two kinds of access types, <access—to—object> types, whose values designate
objects, and <access—to—subprogram> types, whose values designate subprograms.
Associated with an access—to—object type is a <storage pool>; several access types may
share the same storage pool. All descendants of an access type share the same storage
pool. A storage pool is an area of storage used to hold dynamically allocated objects
(called <pool elements>) created by allocators; storage pools are described further in
Section 14.11 [13.11], page 526, "Section 14.11 [13.11], page 526, Storage Management".

8

Access—to—object types are further subdivided into <pool—specific> access types, whose
values can designate only the elements of their associated storage pool, and <general>
access types, whose values can designate the elements of any storage pool, as well as aliased
objects created by declarations rather than allocators, and aliased subcomponents of other
objects.

9/2

A view of an object is defined to be <aliased> if it is defined by an object_declaration
(see [S0032], page 61) or component_definition (see [S0056], page 114) with the reserved
word aliased, or by a renaming of an aliased view. In addition, the dereference of an
access—to—object value denotes an aliased view, as does a view conversion (see Section 5.6
[4.6], page 219) of an aliased view. The current instance of a limited tagged type, a protected
type, a task type, or a type that has the reserved word limited in its full definition is also
defined to be aliased. Finally, a formal parameter or generic formal object of a tagged type
is defined to be aliased. Aliased views are the ones that can be designated by an access
value.

10

An access_to_object_definition defines an access—to—object type and its first subtype; the
subtype_indication (see [S0027], page 56) defines the <designated subtype> of the access
type. If a general_access_modifier (see [S0081], page 156) appears, then the access type is
a general access type. If the modifier is the reserved word constant, then the type is an
<access—to—constant type>; a designated object cannot be updated through a value of such
a type. If the modifier is the reserved word all, then the type is an <access—to—variable
type>; a designated object can be both read and updated through a value of such a type. If
no general_access_modifier (see [S0081], page 156) appears in the access_to_object_definition
(see [S0080], page 156), the access type is a pool—specific access—to—variable type.

11

An access_to_subprogram_definition defines an access—to—subprogram type and its first
subtype; the parameter_profile or parameter_and_result_profile defines the <designated pro-
file> of the access type. There is a <calling convention> associated with the designated pro-
file; only subprograms with this calling convention can be designated by values of the access
type. By default, the calling convention is "<protected>" if the reserved word protected
appears, and "Ada" otherwise. See Chapter 16 [Annex B], page 894, for how to override
this default.

12/2

An access_definition defines an anonymous general access type or an anonymous
access—to—subprogram type. For a general access type, the subtype_mark denotes its
<designated subtype>; if the general_access_modifier (see [S0081], page 156) constant



appears, the type is an access—to—constant type; otherwise it is an access—to—variable
type. For an access—to—subprogram type, the parameter_profile (see [S0157], page 256) or
parameter_and_result_profile (see [S0158], page 256) denotes its <designated profile>.

13/2

For each access type, there is a null access value designating no entity at all, which
can be obtained by (implicitly) converting the literal null to the access type. The null
value of an access type is the default initial value of the type. Non—null values of an
access—to—object type are obtained by evaluating an allocator, which returns an access
value designating a newly created object (see Section 4.10.2 [3.10.2], page 164), or in the
case of a general access—to—object type, evaluating an attribute_reference for the Access
or Unchecked_Access attribute of an aliased view of an object. Non—null values of an
access—to—subprogram type are obtained by evaluating an attribute_reference for the Ac-
cess attribute of a non—intrinsic subprogram..

13.1/2
A null_exclusion in a construct specifies that the null value does not belong to the access
subtype defined by the construct, that is, the access subtype <excludes null>. In addition,
the anonymous access subtype defined by the access_definition for a controlling access pa-
rameter (see Section 4.9.2 [3.9.2], page 145) excludes null. Finally, for a subtype_indication
without a null_exclusion, the subtype denoted by the subtype_indication excludes null if
and only if the subtype denoted by the subtype_mark in the subtype_indication excludes
null.
14/1
All subtypes of an access—to—subprogram type are constrained. The first subtype of a
type defined by an access_definition or an access_to_object_definition is unconstrained if
the designated subtype is an unconstrained array or discriminated subtype; otherwise it is
constrained.

Legality Rules

14.1/2
If a subtype_indication (see [S0027], page 56), discriminant_specification (see [S0062],
page 123), parameter_specification (see [S0160], page 256), parameter_and_result_profile
(see [S0158], page 256), object_renaming_declaration (see [S0183], page 317), or
formal_object_declaration (see [S0261], page 458) has a null_exclusion (see [S0083],
page 156), the subtype_mark (see [S0028], page 56) in that construct shall denote an access
subtype that does not exclude null.

Dynamic Semantics
15/2
A composite_constraint is <compatible> with an unconstrained access subtype if it is com-
patible with the designated subtype. A null_exclusion is compatible with any access subtype
that does not exclude null. An access value <satisfies> a composite_constraint of an access
subtype if it equals the null value of its type or if it designates an object whose value satisfies
the constraint. An access value satisfies an exclusion of the null value if it does not equal
the null value of its type.
16
The elaboration of an access_type_definition creates the access type and its first sub-
type. For an access—to—object type, this elaboration includes the elaboration of the sub-
type_indication, which creates the designated subtype.



17/2
The elaboration of an access_definition creates an anonymous access type.

NOTES

18
80 Access values are called "pointers" or "references" in some other
languages.

19
81 Each access—to—object type has an associated storage pool; sev-
eral access types can share the same pool. An object can be created
in the storage pool of an access type by an allocator (see Section 5.8
[4.8], page 230) for the access type. A storage pool (roughly) corre-
sponds to what some other languages call a "heap." See Section 14.11
[13.11], page 526, for a discussion of pools.

20
82 Only index_constraints and discriminant_constraints can be
applied to access types (see Section 4.6.1 [3.6.1], page 117, and
Section 4.7.1 [3.7.1], page 127).

Examples

21

<Examples of access—to—object types:>

22/2
type Peripheral_Ref is not null access Peripheral; ——< see Section 4.8.1}
[3.8.1], page 134>
type Binop_Ptr is access all Binary_Operation’Class;

——< general access—to—class—wide, se

[3.9.1], page 143>

23

<Example of an access subtype:>

24
subtype Drum_Ref is Peripheral_Ref(Drum); ——< see Section 4.8.1
[3.8.1], page 134>

25

<Example of an access—to—subprogram type:>

26

type Message_Procedure is access procedure (M : in String := "Error!");]}
procedure Default_Message_Procedure(M : in String);
Give_Message : Message_Procedure := Default_Message_Procedure’Access;|]



procedure Other_Procedure(M : in String);

Give_Message := Other_Procedure’Access;

Give_Message("File not found."); ——< call with parameter (.all is optional)>J
Give_Message.all; ——< call with no parameters>

4.10.1 3.10.1 Incomplete Type Declarations

1

There are no particular limitations on the designated type of an access type. In particular,
the type of a component of the designated type can be another access type, or even the
same access type. This permits mutually dependent and recursive access types. An incom-
plete_type_declaration can be used to introduce a type to be used as a designated type,
while deferring its full definition to a subsequent full_type_declaration.

Syntax
2/2
incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged];
Static Semantics
2.1/2

An incomplete_type_declaration declares an <incomplete view> of a type and its first sub-
type; the first subtype is unconstrained if a discriminant_part appears. If the incomplete_-
type_declaration (see [S0085], page 160) includes the reserved word tagged, it declares a
<tagged incomplete view>. An incomplete view of a type is a limited view of the type (see
Section 8.5 [7.5], page 292).

2.2/2

Given an access type <A> whose designated type <T> is an incomplete view, a dereference
of a value of type <A> also has this incomplete view except when:

2.3/2

e it occurs within the immediate scope of the completion of <T>, or

2.4/2

e it occurs within the scope of a nonlimited_with_clause that mentions a library package
in whose visible part the completion of <T> is declared.

2.5/2
In these cases, the dereference has the full view of <T>.

2.6/2
Similarly, if a subtype_mark denotes a subtype_declaration defining a subtype of an incom-
plete view <T>, the subtype_mark denotes an incomplete view except under the same two
circumstances given above, in which case it denotes the full view of <T>.

Legality Rules



3

An incomplete_type_declaration requires a completion, which shall be a full_type_-
declaration (see [S0024]|, page 53). If the incomplete_type_declaration (see [S0085],
page 160) occurs immediately within either the visible part of a package_specification
(see [S0174], page 279) or a declarative_part (see [S0086], page 175), then the full_type_-
declaration (see [S0024], page 53) shall occur later and immediately within this visible part
or declarative_part (see [S0086], page 175). If the incomplete_type_declaration (see [S0085],
page 160) occurs immediately within the private part of a given package_specification (see
[S0174], page 279), then the full_type_declaration (see [S0024], page 53) shall occur later
and immediately within either the private part itself, or the declarative_part (see [S0086],
page 175) of the corresponding package_body (see [S0175], page 281).

4/2

If an incomplete_type_declaration (see [S0085], page 160) includes the reserved word tagged,
then a full_type_declaration (see [S0024], page 53) that completes it shall declare a tagged
type. If an incomplete_type_declaration (see [S0085], page 160) has a known_discriminant_-
part (see [S0061], page 123), then a full_type_declaration (see [S0024], page 53) that com-
pletes it shall have a fully conforming (explicit) known_discriminant_part (see [S0061],
page 123) (see Section 7.3.1 [6.3.1], page 263). If an incomplete_type_declaration (see
[S0085], page 160) has no discriminant_part (or an unknown_discriminant_part (see [S0060],
page 123)), then a corresponding full_type_declaration (see [S0024], page 53) is nevertheless
allowed to have discriminants, either explicitly, or inherited via derivation.

5/2

A name that denotes an incomplete view of a type may be used as follows:

6

e as the subtype_mark in the subtype_indication of an access_to_object_definition (see
[S0080], page 156); the only form of constraint allowed in this subtype_indication is a
discriminant_constraint;

7/2

e as the subtype_mark in the subtype_indication of a subtype_declaration; the subtype_-
indication (see [S0027], page 56) shall not have a null_exclusion (see [S0083], page 156)
or a constraint;

8/2

e as the subtype_mark in an access_definition.

8.1/2
If such a name denotes a tagged incomplete view, it may also be used:

8.2/2

e as the subtype_mark defining the subtype of a parameter in a formal_part;

9/2



e as the prefix of an attribute_reference whose attribute_designator (see [S0101],
page 187) is Class; such an attribute_reference (see [S0100], page 187) is restricted to
the uses allowed here; it denotes a tagged incomplete view.

9.1/2
If such a name occurs within the declaration list containing the completion of the incomplete
view, it may also be used:

9.2/2

e as the subtype_mark defining the subtype of a parameter or result of an access_to_-
subprogram_definition (see [S0082], page 156).

9.3/2
If any of the above uses occurs as part of the declaration of a primitive subprogram of
the incomplete view, and the declaration occurs immediately within the private part of a
package, then the completion of the incomplete view shall also occur immediately within
the private part; it shall not be deferred to the package body.
9.4/2
No other uses of a name that denotes an incomplete view of a type are allowed.
10/2
A prefix that denotes an object shall not be of an incomplete view.
Static Semantics

11/2
<This paragraph was deleted.>

Dynamic Semantics

12

The elaboration of an incomplete_type_declaration has no effect.
NOTES

13
83 Within a declarative_part, an incomplete_type_declaration and
a corresponding full_type_declaration cannot be separated by an in-
tervening body. This is because a type has to be completely defined
before it is frozen, and a body freezes all types declared prior to it
in the same declarative_part (see Section 14.14 [13.14], page 550).

Ezamples

14

<Example of a recursive type:>

15
type Cell; ——< 1incomplete type declaration>
type Link is access Cell;

16

type Cell is



17

18

record
Value : Integer;
Succ : Link;
Pred : Link;
end record;
Head : Link := new Cell’ (0, null, null);
Next : Link = Head.Succ;

<Examples of mutually dependent access types:>

19/2

20/2

21/2

22

23

type P
type C

type P
type C

type C
rec

end

type P
rec

end

My_Car
[4.8],

George :

erson(<>); ——< incomplete type declaration>
ar is tagged; ——< incomplete type declaration>
erson_Name is access Person;
ar_Name is access all Car’Class;
ar is tagged
ord
Number : Integer;
Owner : Person_Name;
record;
erson(Sex : Gender) is
ord
Name : String(l .. 20);
Birth : Date;
Age : Integer range O .. 130;
Vehicle : Car_Name;
case Sex is
when M => Wife : Person_Name(Sex => F);
when F => Husband : Person_Name(Sex => M);
end case;
record;
, Your_Car, Next_Car : Car_Name := new Car; ——< see Section 5.8]]
page 230>
Person_Name := new Person(M);



George.Vehicle := Your_Car;

4.10.2 3.10.2 Operations of Access Types

1
The attribute Access is used to create access values designating aliased objects and
non—intrinsic subprograms. The "accessibility" rules prevent dangling references (in the
absence of uses of certain unchecked features —— see Section 13).

Name Resolution Rules
2/2
For an attribute_reference with attribute_designator Access (or Unchecked_Access —— see
Section 14.10 [13.10], page 525), the expected type shall be a single access type <A> such
that:

2.1/2

e <A> is an access—to—object type with designated type <D> and the type of the prefix
is <D>’Class or is covered by <D>, or

2.2/2

e <A> is an access—to—subprogram type whose designated profile is type conformant
with that of the prefix.

2.3/2
The prefix of such an attribute_reference is never interpreted as an implicit_dereference or
a parameterless function_call (see Section 5.1.4 [4.1.4], page 187). The designated type or
profile of the expected type of the attribute_reference is the expected type or profile for the
prefix.

Static Semantics
3/2
The accessibility rules, which prevent dangling references, are written in terms of <accessi-
bility levels>, which reflect the run—time nesting of <masters>. As explained in Section 8.6.1
[7.6.1], page 299, a master is the execution of a certain construct, such as a subpro-
gram_body. An accessibility level is <deeper than> another if it is more deeply nested
at run time. For example, an object declared local to a called subprogram has a deeper
accessibility level than an object declared local to the calling subprogram. The accessibility
rules for access types require that the accessibility level of an object designated by an access
value be no deeper than that of the access type. This ensures that the object will live at
least as long as the access type, which in turn ensures that the access value cannot later
designate an object that no longer exists. The Unchecked_Access attribute may be used to
circumvent the accessibility rules.

4

A given accessibility level is said to be <statically deeper> than another if the given level
is known at compile time (as defined below) to be deeper than the other for all possible
executions. In most cases, accessibility is enforced at compile time by Legality Rules.
Run—time accessibility checks are also used, since the Legality Rules do not cover certain
cases involving access parameters and generic packages.



5

Each master, and each entity and view created by it, has an accessibility level:

6

7/2

9/2

The accessibility level of a given master is deeper than that of each dynamically en-
closing master, and deeper than that of each master upon which the task executing the
given master directly depends (see Section 10.3 [9.3], page 335).

An entity or view defined by a declaration and created as part of its elaboration has
the same accessibility level as the innermost master of the declaration except in the
cases of renaming and derived access types described below. A parameter of a master
has the same accessibility level as the master.

The accessibility level of a view of an object or subprogram defined by a renam-
ing_declaration is the same as that of the renamed view.

The accessibility level of a view conversion, qualified_expression, or parenthesized ex-
pression, is the same as that of the operand.

10/2

The accessibility level of an aggregate or the result of a function call (or equivalent
use of an operator) that is used (in its entirety) to directly initialize part of an object
is that of the object being initialized. In other contexts, the accessibility level of an
aggregate or the result of a function call is that of the innermost master that evaluates
the aggregate or function call.

10.1/2

11

Within a return statement, the accessibility level of the return object is that of the
execution of the return statement. If the return statement completes normally by
returning from the function, then prior to leaving the function, the accessibility level
of the return object changes to be a level determined by the point of call, as does the
level of any coextensions (see below) of the return object.

The accessibility level of a derived access type is the same as that of its ultimate
ancestor.

11.1/2

The accessibility level of the anonymous access type defined by an access_definition of
an object_renaming_declaration is the same as that of the renamed view.



12/2

e The accessibility level of the anonymous access type of an access discriminant in the
subtype_indication or qualified_expression of an allocator, or in the expression or re-
turn_subtype_indication (see [S0171], page 272) of a return statement is determined as
follows:

12.1/2

e If the wvalue of the access dis-
criminant is  determined by a
discriminant_association in a sub-
type_indication, the accessibility level of
the object or subprogram designated by
the associated value (or library level if
the value is null);

12.2/2

e If the wvalue of the access dis-
criminant is  determined by a
record_component_association in an
aggregate, the accessibility level of the
object or subprogram designated by the
associated value (or library level if the
value is null);

12.3/2

e In other cases, where the value of the ac-
cess discriminant is determined by an ob-
ject with an unconstrained nominal sub-
type, the accessibility level of the object.

12.4/2

e The accessibility level of the anonymous access type of an access discriminant in any
other context is that of the enclosing object.

13/2

e The accessibility level of the anonymous access type of an access parameter specifying
an access—to—object type is the same as that of the view designated by the actual.

13.1/2

e The accessibility level of the anonymous access type of an access parameter specifying
an access—to—subprogram type is deeper than that of any master; all such anonymous
access types have this same level.



14/2

e The accessibility level of an object created by an allocator is the same as that of the
access type, except for an allocator of an anonymous access type that defines the value
of an access parameter or an access discriminant. For an allocator defining the value of
an access parameter, the accessibility level is that of the innermost master of the call.
For one defining an access discriminant, the accessibility level is determined as follows:

14.1/2

e for an allocator used to define the
constraint in a subtype_declaration, the
level of the subtype_declaration;

14.2/2

e for an allocator used to define the
constraint in a component_definition,
the level of the enclosing type;

14.3/2

e for an allocator used to define the dis-
criminant of an object, the level of the
object.

14.4/2

In this last case, the allocated object is said to be a <coextension>
of the object whose discriminant designates it, as well as of any
object of which the discriminated object is itself a coextension or
subcomponent. All coextensions of an object are finalized when the
object is finalized (see Section 8.6.1 [7.6.1], page 299).

15

e The accessibility level of a view of an object or subprogram denoted by a dereference
of an access value is the same as that of the access type.

16

e The accessibility level of a component, protected subprogram, or entry of (a view of)
a composite object is the same as that of (the view of) the composite object.

16.1/2

In the above rules, the operand of a view conversion, parenthesized expression or quali-
fied_expression is considered to be used in a context if the view conversion, parenthesized
expression or qualified_expression itself is used in that context.



17
One accessibility level is defined to be <statically deeper> than another in the following
cases:

18

e For a master that is statically nested within another master, the accessibility level of
the inner master is statically deeper than that of the outer master.

18.1/2

e The accessibility level of the anonymous access type of an access parameter specifying
an access—to—subprogram type is statically deeper than that of any master; all such
anonymous access types have this same level.

19/2

e The statically deeper relationship does not apply to the accessibility level of the anony-
mous type of an access parameter specifying an access—to—object type; that is, such
an accessibility level is not considered to be statically deeper, nor statically shallower,
than any other.

20

e For determining whether one level is statically deeper than another when within a
generic package body, the generic package is presumed to be instantiated at the same
level as where it was declared; run—time checks are needed in the case of more deeply
nested instantiations.

21

e For determining whether one level is statically deeper than another when within the
declarative region of a type_declaration, the current instance of the type is presumed
to be an object created at a deeper level than that of the type.

22
The accessibility level of all library units is called the <library level>; a library—Ilevel decla-
ration or entity is one whose accessibility level is the library level.

23

The following attribute is defined for a prefix X that denotes an aliased view of an object:

24/1

X’Access
X’Access yields an
access value that
designates the object
denoted by X. The
type of X’Access is
an access—to—object
type, as determined



by the expected type.
The expected type
shall be a general
access type. X shall
denote an aliased
view of an object,
including possibly
the current instance
(see  Section 9.6
[8.6], page 324) of a
limited type within
its definition, or a
formal parameter
or generic formal
object of a tagged
type. The view
denoted by the prefix
X shall satisfy the
following additional
requirements,

presuming the
expected type for
X’Access is the
general access type
<A> with designated

type <D>:
25
o If <A> is an
access—to—variable
type, then the
view shall be
a variable;
on the other
hand, if <A> is an
access—to—constant
type, the view
may be either
a constant or a
variable.
26/2
e The view
shall not be a
subcomponent

that depends on



27/2

27.1/2

discriminants of
a variable whose
nominal subtype
is unconstrained,

unless this
subtype is
indefinite, or

the wvariable is
constrained by
its initial value.

If <A> is a
named access
type and <D> is
a tagged type,
then the type of
the view shall
be covered by
<D>; if <A> is
anonymous and
<D> is tagged,
then the type of
the view shall be
either <D>’Class
or a type covered
by <D>; if <D>
is untagged, then
the type of the
view shall be
<D>, and either:

e the
des-
ig-
nated
sub-
type
of
<A>
shall
stat-

cally
match



the
nom-

nal
sub-
type
of
the
view;
or

27.2/2

e <D>
shall
be
dis-
crim-
i-
nated
in
its
full
view
and
un-
con-
strained
in
any
par-
tial
view,
and
the
des-
ig-
nated
sub-
type
of
<A>
shall
be
un-
con-
strained.



28

29

30

e The accessibility
level of the view
shall not be
statically deeper
than that of the
access type <A>.
In addition to
the places where
Legality =~ Rules
normally  apply
(see Section 13.3
[12.3], page 454),
this rule applies
also in the
private part of
an instance of a
generic unit.

A check is made
that the accessibility
level of X is not
deeper than that of
the access type <A>.
If this check fails,

Program_Error is
raised.
If the nominal

subtype of X does
not statically match
the designated
subtype of <A>, a
view conversion of
X to the designated
subtype is evaluated
(which might raise
Constraint_Error ——
see Section 5.6 [4.6],
page 219) and the
value of X’Access
designates that view.



31
The following attribute is defined for a prefix P that denotes a subprogram:

32/2
P’Access

P’Access yields
an access value
that designates the
subprogram denoted
by P. The type
of P’Access is an
access—to—subprogram
type (<S>), as de-
termined by  the
expected type. The

accessibility level
of P shall not be
statically deeper

than that of <S>.
In addition to the
places where Legality
Rules normally apply
(see  Section  13.3
[12.3], page 454),
this rule applies also
in the private part
of an instance of a
generic unit. The
profile of P shall be
subtype—conformant
with the designated
profile of <S>, and
shall not be Intrinsic.
If the subprogram
denoted by P is
declared  within a
generic unit, and the
expression  P’Access
occurs within  the
body of that generic
unit or within the
body of a generic unit
declared within the
declarative region of
the generic unit, then
the ultimate ancestor
of <S> shall be either



33

34/2

35

36

37/2

a mnon—formal type
declared within the
generic unit or an

anonymous access
type of an access
parameter.

NOTES

84 The Unchecked_Access attribute yields the same result as
the Access attribute for objects, but has fewer restrictions (see
Section 14.10 [13.10], page 525). There are other predefined
operations that yield access values: an allocator can be used to
create an object, and return an access value that designates it (see
Section 5.8 [4.8], page 230); evaluating the literal null yields a null
access value that designates no entity at all (see Section 5.2 [4.2],
page 189).

85 The predefined operations of an access type also include the
assignment operation, qualification, and membership tests. Explicit
conversion is allowed between general access types with matching
designated subtypes; explicit conversion is allowed between
access—to—subprogram types with subtype conformant profiles (see
Section 5.6 [4.6], page 219). Named access types have predefined
equality operators; anonymous access types do not, but they can
use the predefined equality operators for <universal_access> (see
Section 5.5.2 [4.5.2], page 206).

86 The object or subprogram designated by an access value can be
named with a dereference, either an explicit_dereference (see [S0094],
page 179) or an implicit_dereference. See Section 5.1 [4.1], page 179.

87 A call through the dereference of an access—to—subprogram
value is never a dispatching call.

88 The Access attribute for subprograms and parameters of an
anonymous access—to—subprogram type may together be used to
implement "downward closures" —— that is, to pass a more—nested
subprogram as a parameter to a less—nested subprogram, as
might be appropriate for an iterator abstraction or numerical



integration. Downward closures can also be implemented using
generic formal subprograms (see Section 13.6 [12.6], page 470).
Note that Unchecked_Access is not allowed for subprograms.

38

89 Note that using an access—to—class—wide tagged type with a
dispatching operation is a potentially more structured alternative to
using an access—to—subprogram type.

39

90 An implementation may consider two access—to—subprogram
values to be unequal, even though they designate the same subpro-
gram. This might be because one points directly to the subprogram,
while the other points to a special prologue that performs an Elabo-
ration_Check and then jumps to the subprogram. See Section 5.5.2
[4.5.2], page 206.

Ezamples

40
<Example of use of the Access attribute:>

41

Martha : Person_Name := new Person(F); ——< see Section 4.10.1
[3.10.1], page 160>
Cars : array (1..2) of aliased Car;

Martha.Vehicle := Cars(l)’Access;
George.Vehicle := Cars(2)’Access;

4.11 3.11 Declarative Parts

1
A declarative_part contains declarative_items (possibly none).
Syntax

2

declarative_part ::= {declarative_item}
3

declarative_item ::=

basic_declarative_item | body

4/1

basic_declarative_item ::=
basic_declaration | aspect_clause | use_clause



body ::= proper_body | body_stub

proper_body ::=
subprogram_body | package_body | task_body | protected_body
Static Semantics
6.1/2
The list of declarative_items of a declarative_part is called the <declaration list> of the
declarative_part.
Dynamic Semantics

7

The elaboration of a declarative_part consists of the elaboration of the declarative_items, if
any, in the order in which they are given in the declarative_part.

8

An elaborable construct is in the <elaborated> state after the normal completion of its
elaboration. Prior to that, it is <not yet elaborated>.

9
For a construct that attempts to use a body, a check (Elaboration_Check) is performed, as
follows:

10/1

e For a call to a (non—protected) subprogram that has an explicit body, a check is made
that the body is already elaborated. This check and the evaluations of any actual
parameters of the call are done in an arbitrary order.

11

e For a call to a protected operation of a protected type (that has a body —— no check
is performed if a pragma Import applies to the protected type), a check is made that
the protected_body is already elaborated. This check and the evaluations of any actual
parameters of the call are done in an arbitrary order.

12

e For the activation of a task, a check is made by the activator that the task_body is
already elaborated. If two or more tasks are being activated together (see Section 10.2
[9.2], page 333), as the result of the elaboration of a declarative_part or the initialization
for the object created by an allocator, this check is done for all of them before activating
any of them.

13

e For the instantiation of a generic unit that has a body, a check is made
that this body is already elaborated. This check and the evaluation of any
explicit_generic_actual_parameters of the instantiation are done in an arbitrary order.



14
The exception Program_Error is raised if any of these checks fails.

4.11.1 3.11.1 Completions of Declarations

1/1

Declarations sometimes come in two parts. A declaration that requires a second part is said

to <require completion>. The second part is called the <completion> of the declaration (and

of the entity declared), and is either another declaration, a body, or a pragma. A <body>

is a body, an entry_body, or a renaming—as—body (see Section 9.5.4 [8.5.4], page 319).
Name Resolution Rules

2
A construct that can be a completion is interpreted as the completion of a prior declaration
only if:

3

e The declaration and the completion occur immediately within the same declarative
region;

e The defining name or defining_program_unit_name in the completion is the same as in
the declaration, or in the case of a pragma, the pragma applies to the declaration;

e If the declaration is overloadable, then the completion either has a type—conformant
profile, or is a pragma.

Legality Rules
6
An implicit declaration shall not have a completion. For any explicit declaration that is
specified to <require completion>, there shall be a corresponding explicit completion.
7

At most one completion is allowed for a given declaration. Additional requirements on
completions appear where each kind of completion is defined.

8

A type is <completely defined> at a place that is after its full type definition (if it has
one) and after all of its subcomponent types are completely defined. A type shall be
completely defined before it is frozen (see Section 14.14 [13.14], page 550, and Section 8.3
[7.3], page 283).

NOTES

91 Completions are in principle allowed for any kind of explicit dec-
laration. However, for some kinds of declaration, the only allowed



10

completion is a pragma Import, and implementations are not re-
quired to support pragma Import for every kind of entity.

92 There are rules that prevent premature uses of declarations
that have a corresponding completion. The Elaboration_Checks
of Section 4.11 [3.11], page 175, prevent such uses at run time for
subprograms, protected operations, tasks, and generic units. The
rules of Section 14.14 [13.14], page 550, "Section 14.14 [13.14],
page 550, Freezing Rules" prevent, at compile time, premature uses
of other entities such as private types and deferred constants.



5 4 Names and Expressions

1
The rules applicable to the different forms of name and expression, and to their evaluation,
are given in this section.

5.1 4.1 Names

1

Names can denote declared entities, whether declared explicitly or implicitly (see Section 4.1
[3.1], page 49). Names can also denote objects or subprograms designated by access val-
ues; the results of type_conversions or function_calls; subcomponents and slices of objects
and values; protected subprograms, single entries, entry families, and entries in families of
entries. Finally, names can denote attributes of any of the foregoing.

Syntax
2
name ::=
direct_name | explicit_dereference
| indexed_component | slice
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal
3
direct_name ::= identifier | operator_symbol
4
prefix ::= name | implicit_dereference
5
explicit_dereference ::= name.all
6
implicit_dereference ::= name
7/2

Certain forms of name (indexed_components, selected_components, slices, and

attribute_references) include a prefix that is either itself a name that denotes some related

entity, or an implicit_dereference of an access value that designates some related entity.
Name Resolution Rules

8
The name in a <dereference> (either an implicit_dereference or an explicit_dereference) is
expected to be of any access type.

Static Semantics



9

If the type of the name in a dereference is some access—to—object type <T>, then the
dereference denotes a view of an object, the <nominal subtype> of the view being the
designated subtype of <T>.

10
If the type of the name in a dereference is some access—to—subprogram type <S>, then the
dereference denotes a view of a subprogram, the <profile> of the view being the designated
profile of <S>.

Dynamic Semantics
11/2
The evaluation of a name determines the entity denoted by the name. This evaluation has
no other effect for a name that is a direct_name or a character_literal.

12

The evaluation of a name that has a prefix includes the evaluation of the prefix. The
evaluation of a prefix consists of the evaluation of the name or the implicit_dereference.
The prefix denotes the entity denoted by the name or the implicit_dereference.

13

The evaluation of a dereference consists of the evaluation of the name and the determination
of the object or subprogram that is designated by the value of the name. A check is made
that the value of the name is not the null access value. Constraint_Error is raised if this
check fails. The dereference denotes the object or subprogram designated by the value of
the name.

Examples

14

<Examples of direct names:>

15
Pi <—— the direct name of a number> (see Section 4.3.2 [3.3.2],1
page 65)
Limit <—— the direct name of a constant> (see Section 4.3.1
[3.3.1], page 61)
Count <—— the direct name of a scalar variable> (see Section 4.3.1H
[3.3.1], page 61)
Board <—— the direct name of an array variable> (see Section 4.6.1J
[3.6.1], page 117)
Matrix <—— the direct name of a type> (see Section 4.6 [3.6],
page 114)
Random <—— the direct name of a function> (see Section 7.1 [6.1],1
page 255)
Error <—— the direct name of an exception> (see Section 12.1
[11.1], page 419)

16

<Examples of dereferences:>
17



Next_Car.all ——< explicit dereference denoting the object designated by>}
——< the access variable Next_Car (see Section 4.10.1H

[3.10.1], page 160)>

Next_Car.Owner ——< selected component with implicit dereference;>}

——< same as Next_Car.all.Owner>

5.1.1 4.1.1 Indexed Components

1
An indexed_component denotes either a component of an array or an entry in a family of
entries.

Syntax
2
indexed_component ::= prefix(expression {, expression})
Name Resolution Rules
3

The prefix of an indexed_component with a given number of expressions shall resolve to
denote an array (after any implicit dereference) with the corresponding number of index
positions, or shall resolve to denote an entry family of a task or protected object (in which
case there shall be only one expression).

4
The expected type for each expression is the corresponding index type.
Static Semantics

5

When the prefix denotes an array, the indexed_component denotes the component of the
array with the specified index value(s). The nominal subtype of the indexed_component is
the component subtype of the array type.

6
When the prefix denotes an entry family, the indexed_component denotes the individual
entry of the entry family with the specified index value.

Dynamic Semantics

7

For the evaluation of an indexed_component, the prefix and the expressions are evaluated
in an arbitrary order. The value of each expression is converted to the corresponding index
type. A check is made that each index value belongs to the corresponding index range of
the array or entry family denoted by the prefix. Constraint_Error is raised if this check
fails.

Examples
8
<Examples of indexed components:>
9
My_Schedule(Sat) ——< a component of a one—dimensional array

[3.6.1], page 117)>

(see Sectio:



Page(10) ——< a component of a one—dimensional array
[3.6], page 114)>
Board(M, J + 1) ——< a component of a two—dimensional array

[3.6.1], page 117)>

(see Sectio

(see Sectio:

Page (10) (20) ——< a component of a component (see Section 4.6}

[3.6], page 114)>

Request (Medium) ——< an entry in a family of entries (see Section 10.1]

[9.1], page 329)>

Next_Frame(L) (M, N) ——< a component of a function call (see Section 7.1J

[6.1], page 255)>
NOTES
10

1 <Notes on the examples:> Distinct notations are used for compo-
nents of multidimensional arrays (such as Board) and arrays of arrays
(such as Page). The components of an array of arrays are arrays and
can therefore be indexed. Thus Page(10)(20) denotes the 20th com-
ponent of Page(10). In the last example Next_Frame(L) is a function
call returning an access value that designates a two—dimensional ar-
ray.

5.1.2 4.1.2 Slices

1
A slice denotes a one—dimensional array formed by a sequence of consecutive components
of a one—dimensional array. A slice of a variable is a variable; a slice of a constant is a
constant; a slice of a value is a value.

Syntax

slice ::= prefix(discrete_range)
Name Resolution Rules

3
The prefix of a slice shall resolve to denote a one—dimensional array (after any implicit
dereference).

4
The expected type for the discrete_range of a slice is the index type of the array type.
Static Semantics

5

A slice denotes a one—dimensional array formed by the sequence of consecutive components
of the array denoted by the prefix, corresponding to the range of values of the index given
by the discrete_range.

6

The type of the slice is that of the prefix. Its bounds are those defined by the discrete_range.
Dynamic Semantics



7

For the evaluation of a slice, the prefix and the discrete_range are evaluated in an arbitrary
order. If the slice is not a <null slice> (a slice where the discrete_range is a null range),
then a check is made that the bounds of the discrete_range belong to the index range of the
array denoted by the prefix. Constraint_Error is raised if this check fails.

NOTES
8
2 A slice is not permitted as the prefix of an Access at-
tribute_reference, even if the components or the array as a whole
are aliased. See Section 4.10.2 [3.10.2], page 164.
9
3 For a one—dimensional array A, the slice A(N .. N) denotes an
array that has only one component; its type is the type of A. On the
other hand, A(N) denotes a component of the array A and has the
corresponding component type.
Examples
10
<Examples of slices:>
11
Stars(1 .. 15) ——< a slice of 15 characters (see Section 4.6.31
[3.6.3], page 122)>
Page(10 .. 10 + Size) ——< a slice of 1 + Size components (see Section 4.6}
[3.6], page 114)>
Page(L)(A .. B) ——< a slice of the array Page(L) (see Section 4.6]
[3.6], page 114)>
Stars(1 .. 0) ——< a null slice (see Section 4.6.3 [3.6.3]1.11
page 122)>
My_Schedule(Weekday) ——< bounds given by subtype (see Section 4.6.1}
[3.6.1], page 117 and Section 4.5.1 [3.5.1], page 92)>
Stars(5 .. 15)(K) ——< same as Stars(K) (see Section 4.6.3

[3.6.3], page 122)>
——<

5.1.3 4.1.3 Selected Components
1

provided that K is in 5 .. 15>

Selected_components are used to denote components (including discriminants), entries, en-
try families, and protected subprograms; they are also used as expanded names as described

below.

Syntax

selected_component ::= prefix . selector_name



selector_name ::= identifier | character_literal | operator_symbol
Name Resolution Rules

4

A selected_component is called an <expanded name> if, according to the visibility
rules, at least one possible interpretation of its prefix denotes a package or an
enclosing named construct (directly, not through a subprogram_renaming_declaration or
generic_renaming_declaration).

5
A selected_component that is not an expanded name shall resolve to denote one of the
following:

6

e A component (including a discriminant):

7

The prefix shall resolve to denote an object or value of some
non—array composite type (after any implicit dereference). The
selector_name shall resolve to denote a discriminant_specification
of the type, or, unless the type is a protected type, a compo-
nent_declaration of the type. The selected_component denotes the
corresponding component of the object or value.

e A single entry, an entry family, or a protected subprogram:

The prefix shall resolve to denote an object or value of some
task or protected type (after any implicit dereference). The
selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within
the visible part of that type. The selected_component denotes the
corresponding entry, entry family, or protected subprogram.

9.1/2

e A view of a subprogram whose first formal parameter is of a tagged type or is an access
parameter whose designated type is tagged:

9.2/2

The prefix (after any implicit dereference) shall resolve to denote
an object or value of a specific tagged type <T> or class—wide type
<T>’Class. The selector_name shall resolve to denote a view of a



10

subprogram declared immediately within the declarative region in
which an ancestor of the type <T> is declared. The first formal
parameter of the subprogram shall be of type <T>, or a class—wide
type that covers <T>, or an access parameter designating one of
these types. The designator of the subprogram shall not be the
same as that of a component of the tagged type visible at the point
of the selected_component. The selected_component denotes a view
of this subprogram that omits the first formal parameter. This view
is called a <prefixed view> of the subprogram, and the prefix of
the selected_component (after any implicit dereference) is called the
<prefix> of the prefixed view.

An expanded name shall resolve to denote a declaration that occurs immediately within a
named declarative region, as follows:

11

e The prefix shall resolve to denote either a package (including the current instance of a

12

13

generic package, or a rename of a package), or an enclosing named construct.

The selector_name shall resolve to denote a declaration that occurs immediately within
the declarative region of the package or enclosing construct (the declaration shall be
visible at the place of the expanded name —— see Section 9.3 [8.3], page 308). The
expanded name denotes that declaration.

If the prefix does not denote a package, then it shall be a direct_name or an expanded
name, and it shall resolve to denote a program unit (other than a package), the current
instance of a type, a block_statement, a loop_statement, or an accept_statement (see
[S0201], page 347) (in the case of an accept_statement (see [S0201], page 347) or entry_-
body (see [S0203], page 348), no family index is allowed); the expanded name shall occur
within the declarative region of this construct. Further, if this construct is a callable
construct and the prefix denotes more than one such enclosing callable construct, then
the expanded name is ambiguous, independently of the selector_name.

Legality Rules

13.1/2
For a subprogram whose first parameter is an access parameter, the prefix of any prefixed
view shall denote an aliased view of an object.

13.2/2
For a subprogram whose first parameter is of mode in out or out, or of an anonymous
access—to—variable type, the prefix of any prefixed view shall denote a variable.

14

Dynamic Semantics

The evaluation of a selected_component includes the evaluation of the prefix.



15

For a selected_component that denotes a component of a variant, a check is made that the
values of the discriminants are such that the value or object denoted by the prefix has this
component. The exception Constraint_Error is raised if this check fails.

(see Section 4.8 [3.8],]]
(see Section 4.10.1

(see Section 4.10.1

——< the previous two lines involve implicit dereferences>]]

Examples
16
<Examples of selected components:>
17/2
Tomorrow.Month ——< a record component
page 130)>
Next_Car.Owner ——< a record component
[3.10.1], page 160)>
Next_Car.Owner.Age ——< a record component
[3.10.1], page 160)>
Writer.Unit ——< a record component (a discriminant) (see Section 4.¢
[3.8.1], page 134)>
Min_Cell(H).Value ——< a record component of the result (see Section 7.1
[6.1], page 255)>
——< of the function call Min_Cell(H)>
Cashier.Append ——< a prefixed view of a procedure (see Section 4.9.4]
[3.9.4], page 152)>
Control.Seize ——< an entry of a protected object (see Section 10.4]
[9.4], page 337)>
Pool(K) .Write ——< an entry of the task Pool(K) (see Section 10.4]
[9.4], page 337)>
18

<Examples of expanded names:>

19

Key_Manager."<" ——< an operator of the visible part of a package (see

[7.3.1], page 287)>

Dot_Product.Sum ——< a variable declared in a function body (see Sectic

[6.1], page 255)>

Buffer.Pool ——< a variable declared in a protected unit (see Sect]

[9.11], page 391)>

Buffer.Read ——< an entry of a protected unit (see Section 10.11]]

[9.11], page 391)>

Swap.Temp ——< a variable declared in a block statement (see Sect

[6.6], page 251)>

Standard.Boolean ——< the name of a predefined type (see Section 15.1]

[A.1], page 556)>



5.1.4 4.1.4 Attributes

1
An <attribute> is a characteristic of an entity that can be queried via an attribute_reference
(see [S0100], page 187) or a range_attribute_reference (see [S0102], page 187).

Syntax

2

attribute_reference ::= prefix’attribute_designator
3

attribute_designator ::=

identifier|[(<static_>expression)]
| Access | Delta | Digits

4

range_attribute_reference ::= prefix'range_attribute_designator
5

range_attribute_designator ::= Range[(<static_>expression)]

Name Resolution Rules

6

In an attribute_reference, if the attribute_designator is for an attribute defined for
(at least some) objects of an access type, then the prefix is never interpreted as an
implicit_dereference; otherwise (and for all range_attribute_references), if the type
of the name within the prefix is of an access type, the prefix is interpreted as an
implicit_dereference. Similarly, if the attribute_designator is for an attribute defined for (at
least some) functions, then the prefix is never interpreted as a parameterless function_call;
otherwise (and for all range_attribute_references), if the prefix consists of a name that
denotes a function, it is interpreted as a parameterless function_call.

7
The expression, if any, in an attribute_designator or range_attribute_designator is expected
to be of any integer type.
Legality Rules

8
The expression, if any, in an attribute_designator or range_attribute_designator shall be
static.

Static Semantics
9
An attribute_reference denotes a value, an object, a subprogram, or some other kind of
program entity.
10
A range_attribute_reference X’Range(N) is equivalent to the range X'First(N) .. X Last(N),
except that the prefix is only evaluated once. Similarly, X’Range is equivalent to X'First ..
X’Last, except that the prefix is only evaluated once.



11

Dynamic Semantics

The evaluation of an attribute_reference (or range_attribute_reference) consists of the eval-
uation of the prefix.

12/1

Implementation Permissions

An implementation may provide implementation—defined attributes; the identifier for an
implementation—defined attribute shall differ from those of the language—defined attributes
unless supplied for compatibility with a previous edition of this International Standard.

13

14/2

15

NOTES

4 Attributes are defined throughout this International Standard,
and are summarized in Chapter 24 [Annex K], page 1179.

5 In general, the name in a prefix of an attribute_reference (or a
range_attribute_reference) has to be resolved without using any con-
text. However, in the case of the Access attribute, the expected type
for the attribute_reference has to be a single access type, and the res-
olution of the name can use the fact that the type of the object or the
profile of the callable entity denoted by the prefix has to match the
designated type or be type conformant with the designated profile
of the access type.

<Examples of attributes:>

16

(see Sectic

(see Sect]

Examples
Color’First ——< minimum value of the enumeration type Color
[3.5.1], page 92)>
Rainbow’Base’First ——< same as Color’First (see Section 4.5.1 [3.5.1]1.1
page 92)>
Real’Digits ——< precision of the type Real (see Section 4.5.7]
[3.5.7], page 103)>
Board’Last(2) ——< upper bound of the second dimension of Board
[3.6.1], page 117)>
Board’Range (1) ——< index range of the first dimension of Board

[3.6.1], page 117)>
Pool(K)’Terminated ——< True if task Pool(K) is terminated
[9.1], page 329)>

Date’Size ——< number of bits for records of type Date

[3.8], page 130)>

Message’Address ——< address of the record variable Message

[3.7.1]1, page 127)>

(see Sectic

(see Section 10.1H

(see Section 4.

(see Section 4.7



5.2 4.2 Literals

1

A <literal> represents a value literally, that is, by means of notation suited to its kind. A

literal is either a numeric_literal, a character_literal, the literal null, or a string_literal.
Name Resolution Rules

2/2
<This paragraph was deleted.>

3

For a name that consists of a character_literal, either its expected type shall be a single
character type, in which case it is interpreted as a parameterless function_call that yields
the corresponding value of the character type, or its expected profile shall correspond to a
parameterless function with a character result type, in which case it is interpreted as the
name of the corresponding parameterless function declared as part of the character type’s
definition (see Section 4.5.1 [3.5.1], page 92). In either case, the character_literal denotes
the enumeration_literal_specification.

4
The expected type for a primary that is a string_literal shall be a single string type.
Legality Rules

5
A character_literal that is a name shall correspond to a defining_character_literal of the
expected type, or of the result type of the expected profile.

6
For each character of a string_literal with a given expected string type, there shall be a
corresponding defining_character_literal of the component type of the expected string type.

7/2
<This paragraph was deleted.>
Static Semantics

8/2
An integer literal is of type <universal_integer>. A real literal is of type <universal_real>.
The literal null is of type <universal_access>.

Dynamic Semantics

9
The evaluation of a numeric literal, or the literal null, yields the represented value.

10

The evaluation of a string_literal that is a primary yields an array value containing the value
of each character of the sequence of characters of the string_literal, as defined in Section 3.6
[2.6], page 42. The bounds of this array value are determined according to the rules for
positional_array_aggregates (see Section 5.3.3 [4.3.3], page 196), except that for a null string
literal, the upper bound is the predecessor of the lower bound.

11

For the evaluation of a string_literal of type <T>, a check is made that the value of each
character of the string_literal belongs to the component subtype of <T>. For the evaluation
of a null string literal, a check is made that its lower bound is greater than the lower bound



of the base range of the index type. The exception Constraint_Error is raised if either of
these checks fails.

NOTES

12
6 Enumeration literals that are identifiers rather than charac-
ter_literals follow the normal rules for identifiers when used in a
name (see Section 5.1 [4.1], page 179, and Section 5.1.3 [4.1.3],
page 183). Character_literals used as selector_names follow
the normal rules for expanded names (see Section 5.1.3 [4.1.3],
page 183).

Ezamples

13

<Examples of literals:>

14
3.14159_26536 ——< a real literal>
1_345 ——< an integer literal>
’A’ ——< a character literal>
"Some Text" ——< a string literal >

5.3 4.3 Aggregates

1
An <aggregate> combines component values into a composite value of an array type, record
type, or record extension.

Syntax
2
aggregate ::= record_aggregate | extension_aggregate | array_aggregate
Name Resolution Rules
3/2

The expected type for an aggregate shall be a single array type, record type, or record
extension.
Legality Rules

4
An aggregate shall not be of a class—wide type.
Dynamic Semantics

5

For the evaluation of an aggregate, an anonymous object is created and values for the
components or ancestor part are obtained (as described in the subsequent subclause for
each kind of the aggregate) and assigned into the corresponding components or ancestor
part of the anonymous object. Obtaining the values and the assignments occur in an
arbitrary order. The value of the aggregate is the value of this object.



6
If an aggregate is of a tagged type, a check is made that its value belongs to the first subtype
of the type. Constraint_Error is raised if this check fails.

5.3.1 4.3.1 Record Aggregates

1
In a record_aggregate, a value is specified for each component of the record or record
extension value, using either a named or a positional association.

Syntax
2
record_aggregate ::= (record_component_association_list)
3
record_component_association_list ::=
record_component_association {, record_component_association}
| null record
4/2
record_component_association ::=
[component_choice_list =>] expression
| component_choice_list => <>
5
component_choice_list ::=
<component_>selector_name {| <component_>selector_name}
| others
6
A record_component_association (see [S0107], page 191) is a <named
component association> if it has a component_choice_list; otherwise,
it is a <positional component association>. Any positional compo-
nent associations shall precede any named component associations.
If there is a named association with a component_choice_list of oth-
ers, it shall come last.
7
In the record_component_association_list (see [S0106], page 191) for
a record_aggregate (see [S0105], page 191), if there is only one asso-
ciation, it shall be a named association.
Name Resolution Rules
8/2

The expected type for a record_aggregate shall be a single record type or record extension.



9

For the record_component_association_list (see [S0106], page 191) of a record_aggregate
(see [S0105], page 191), all components of the composite value defined by the aggregate
are <needed>; for the association list of an extension_aggregate, only those components
not determined by the ancestor expression or subtype are needed (see Section 5.3.2 [4.3.2],
page 194). Each selector_name (see [S0099], page 184) in a record_component_association
(see [S0107], page 191) shall denote a needed component (including possibly a discriminant).

10

The expected type for the expression of a record-component_association (see [S0107],
page 191) is the type of the <associated> component(s); the associated component(s) are
as follows:

11

e For a positional association, the component (including possibly a discriminant) in the
corresponding relative position (in the declarative region of the type), counting only
the needed components;

12

e For a named association with one or more <component_>selector_names, the named
component(s);

13

e For a named association with the reserved word others, all needed components that
are not associated with some previous association.

Legality Rules

14
If the type of a record_aggregate is a record extension, then it shall be a descendant of a
record type, through one or more record extensions (and no private extensions).

15

If there are no components needed in a given record_component_association_list (see [S0106],
page 191), then the reserved words null record shall appear rather than a list of record._-
component_association (see [S0107], page 191)s.

16/2

Each record_component_association other than an others choice with a <> shall have at least
one associated component, and each needed component shall be associated with exactly one
record_component_association (see [S0107], page 191). If a record_component_association
(see [S0107], page 191) with an expression has two or more associated components, all of
them shall be of the same type.

17

If the components of a variant_part are needed, then the value of a discriminant that governs
the variant_part shall be given by a static expression.

17.1/2

A record_component_association for a discriminant without a default_expression shall have
an expression rather than <>.



Dynamic Semantics

18
The evaluation of a record_aggregate consists of the evaluation of the record_component_-
association_list (see [S0106], page 191).

19

For the evaluation of a record_component_association_list (see [S0106], page 191), any
per—object constraints (see Section 4.8 [3.8], page 130) for components specified in the
association list are elaborated and any expressions are evaluated and converted to the sub-
type of the associated component. Any constraint elaborations and expression evaluations
(and conversions) occur in an arbitrary order, except that the expression for a discriminant
is evaluated (and converted) prior to the elaboration of any per—object constraint that
depends on it, which in turn occurs prior to the evaluation and conversion of the expression
for the component with the per—object constraint.

19.1/2

For a record_component_association with an expression, the expression defines the value for
the associated component(s). For a record_component_association with <>, if the compo-
nent_declaration has a default_expression, that default_expression defines the value for the
associated component(s); otherwise, the associated component(s) are initialized by default
as for a stand—alone object of the component subtype (see Section 4.3.1 [3.3.1], page 61).

20
The expression of a record_component_association is evaluated (and converted) once for
each associated component.

NOTES

21
7 For a record_aggregate with positional associations, ex-
pressions specifying discriminant values appear first since
the known_discriminant_part is given first in the declaration
of the type; they have to be in the same order as in the
known_discriminant_part.

Examples

22

<Example of a record aggregate with positional associations:>

23
(4, July, 1776) ——< see Section 4.8
[3.8], page 130 >

24

<Examples of record aggregates with named associations:>

25

(Day => 4, Month => July, Year => 1776)
(Month => July, Day => 4, Year => 1776)



26

(Disk, Closed, Track => 5, Cylinder => 12) ——< see Section 4.8.1]
[3.8.1], page 134>
(Unit => Disk, Status => Closed, Cylinder => 9, Track => 1)

27/2
<Examples of component associations with several choices:>
28
(Value => 0, Succ|Pred => new Cell’ (0, null, null)) ——< see Section 4.10.10
[3.10.1], page 160>
29
——< The allocator is evaluated twice: Succ and Pred designate different cells>}
29.1/2
(Value => 0, Succl|Pred => <>) ——< see Section 4.10.1 [3.10.1],
page 160>
29.2/2
——< Succ and Pred will be set to null>
30

<Examples of record aggregates for tagged types (see Section 4.9 [3.9], page 136, and
Section 4.9.1 [3.9.1], page 143):>

31

Expression’ (null record)
Literal’ (Value => 0.0)
Painted_Point’ (0.0, Pi/2.0, Paint => Red)

5.3.2 4.3.2 Extension Aggregates

1
An extension_aggregate specifies a value for a type that is a record extension by specifying
a value or subtype for an ancestor of the type, followed by associations for any components
not determined by the ancestor_part.

Syntax

extension_aggregate ::=
(ancestor_part with record_component_association_list)

ancestor_part ::= expression | subtype_mark



Name Resolution Rules
4/2
The expected type for an extension_aggregate shall be a single type that is a record exten-
sion. If the ancestor_part is an expression, it is expected to be of any tagged type.
Legality Rules
5/2
If the ancestor_part is a subtype_mark, it shall denote a specific tagged subtype. If the
ancestor_part is an expression, it shall not be dynamically tagged. The type of the exten-
sion_aggregate shall be derived from the type of the ancestor_part, through one or more
record extensions (and no private extensions).
Static Semantics

6
For the record_component_association_list (see [S0106], page 191) of an extension_aggregate
(see [S0109], page 194), the only components <needed> are those of the composite value de-
fined by the aggregate that are not inherited from the type of the ancestor_part (see [S0110],
page 194), plus any inherited discriminants if the ancestor_part (see [S0110], page 194) is a
subtype_mark (see [S0028|, page 56) that denotes an unconstrained subtype.

Dynamic Semantics

7

For the evaluation of an extension_aggregate, the record_component_association_list (see
[S0106], page 191) is evaluated. If the ancestor_part is an expression, it is also evaluated;
if the ancestor_part is a subtype_mark, the components of the value of the aggregate not
given by the record_component_association_list (see [S0106], page 191) are initialized by
default as for an object of the ancestor type. Any implicit initializations or evaluations are
performed in an arbitrary order, except that the expression for a discriminant is evaluated
prior to any other evaluation or initialization that depends on it.

8

If the type of the ancestor_part has discriminants that are not inherited by the type of
the extension_aggregate, then, unless the ancestor_part is a subtype_mark that denotes an
unconstrained subtype, a check is made that each discriminant of the ancestor has the value
specified for a corresponding discriminant, either in the record_component_association_list
(see [S0106], page 191), or in the derived_type_definition for some ancestor of the type of
the extension_aggregate. Constraint_Error is raised if this check fails.

NOTES

9
8 If all components of the value of the extension_aggregate are
determined by the ancestor_part, then the record_component_-
association_list (see [S0106], page 191) is required to be simply null
record.

10

9 If the ancestor_part is a subtype_mark, then its type can be ab-
stract. If its type is controlled, then as the last step of evaluat-
ing the aggregate, the Initialize procedure of the ancestor type is



called, unless the Initialize procedure is abstract (see Section 8.6
[7.6], page 295).
Ezamples

11
<Examples of extension aggregates (for types defined in Section 4.9.1 [3.9.1], page 143):>

12

Painted_Point’ (Point with Red)
(Point’ (P) with Paint => Black)

13

(Expression with Left => 1.2, Right => 3.4)
Addition’ (Binop with null record)
——< presuming Binop is of type Binary_Operation>

5.3.3 4.3.3 Array Aggregates

1

In an array_aggregate, a value is specified for each component of an array, either posi-
tionally or by its index. For a positional_array_aggregate, the components are given in
increasing—index order, with a final others, if any, representing any remaining components.
For a named_array_aggregate, the components are identified by the values covered by the
discrete_choices.

Syntax
2
array_aggregate 1=
positional_array_aggregate | named_array_aggregate
3/2
positional_array_aggregate ::=
(expression, expression {, expression})
| (expression {, expression}, others => expression)
| (expression {, expression}, others => <>)
4
named_array_aggregate ::=
(array_component_association {, array_component_association})
5/2

array_component_association ::=
discrete_choice_list => expression
| discrete_choice_list => <>



6

An <n—dimensional> array_aggregate is one that is written as n levels of nested ar-

ray_aggregates (or at the bottom level, equivalent string_literals). For the multidimensional

case (n >= 2) the array_aggregates (or equivalent string_literals) at the n—1 lower levels are

called <subaggregate>s of the enclosing n—dimensional array_aggregate. The expressions

of the bottom level subaggregates (or of the array_aggregate itself if one—dimensional) are

called the <array component expressions> of the enclosing n—dimensional array_aggregate.
Name Resolution Rules

7/2

The expected type for an array_aggregate (that is not a subaggregate) shall be a single

array type. The component type of this array type is the expected type for each array

component expression of the array_aggregate.

8
The expected type for each discrete_choice in any discrete_choice_list of a
named_array_aggregate is the type of the <corresponding index>; the corresponding index
for an array_aggregate that is not a subaggregate is the first index of its type; for an
(n—m)—dimensional subaggregate within an array_aggregate of an n—dimensional type,
the corresponding index is the index in position m+1.

Legality Rules

9
An array_aggregate of an n—dimensional array type shall be written as an n—dimensional
array-aggregate.

10

An others choice is allowed for an array_aggregate only if an <applicable index constraint>
applies to the array_aggregate. An applicable index constraint is a constraint provided by
certain contexts where an array_aggregate is permitted that can be used to determine the
bounds of the array value specified by the aggregate. Each of the following contexts (and
none other) defines an applicable index constraint:

11/2

e For an explicit_actual_parameter, an explicit_generic_actual_parameter, the expression
of a return statement, the initialization expression in an object_declaration (see [S0032],
page 61), or a default_expression (see [S0063], page 123) (for a parameter or a com-
ponent), when the nominal subtype of the corresponding formal parameter, generic
formal parameter, function return object, object, or component is a constrained array
subtype, the applicable index constraint is the constraint of the subtype;

12

e For the expression of an assignment_statement where the name denotes an array vari-
able, the applicable index constraint is the constraint of the array variable;

13

e For the operand of a qualified_expression whose subtype_mark denotes a constrained
array subtype, the applicable index constraint is the constraint of the subtype;



14

e For a component expression in an aggregate, if the component’s nominal subtype is
a constrained array subtype, the applicable index constraint is the constraint of the
subtype;

15

e For a parenthesized expression, the applicable index constraint is that, if any, defined
for the expression.

16
The applicable index constraint <applies> to an array_aggregate that appears in such a con-
text, as well as to any subaggregates thereof. In the case of an explicit_actual_parameter (or

default_expression) for a call on a generic formal subprogram, no applicable index constraint
is defined.

17

The discrete_choice_list of an array_component_association is allowed to have a
discrete_choice that is a nonstatic expression or that is a discrete_range that defines a
nonstatic or null range, only if it is the single discrete_choice of its discrete_choice_list, and
there is only one array_component_association in the array_aggregate.

18

In a named_array_aggregate with more than one discrete_choice, no two discrete_choices
are allowed to cover the same value (see Section 4.8.1 [3.8.1], page 134); if there is no
others choice, the discrete_choices taken together shall exactly cover a contiguous sequence
of values of the corresponding index type.

19
A Dbottom level subaggregate of a multidimensional array_aggregate of a given array type
is allowed to be a string_literal only if the component type of the array type is a character
type; each character of such a string_literal shall correspond to a defining_character_literal
of the component type.
Static Semantics

20
A subaggregate that is a string_literal is equivalent to one that is a posi-
tional_array_aggregate of the same length, with each expression being the character_literal
for the corresponding character of the string_literal.

Dynamic Semantics
21
The evaluation of an array_aggregate of a given array type proceeds in two steps:

22

1. Any discrete_choices of this aggregate and of its subaggregates are evaluated in an
arbitrary order, and converted to the corresponding index type;

23



2. The array component expressions of the aggregate are evaluated in an arbitrary order
and their values are converted to the component subtype of the array type; an array
component expression is evaluated once for each associated component.

23.1/2

Each expression in an array_component_association defines the value for the associated com-
ponent(s). For an array_component_association with <>, the associated component(s) are
initialized by default as for a stand—alone object of the component subtype (see Section 4.3.1
[3.3.1], page 61).

24

The bounds of the index range of an array_aggregate (including a subaggregate) are deter-
mined as follows:

25

e For an array_aggregate with an others choice, the bounds are those of the corresponding
index range from the applicable index constraint;

26

e For a positional_array_aggregate (or equivalent string_literal) without an others choice,
the lower bound is that of the corresponding index range in the applicable index con-
straint, if defined, or that of the corresponding index subtype, if not; in either case,
the upper bound is determined from the lower bound and the number of expressions
(or the length of the string_literal);

27

e For a named_array_aggregate without an others choice, the bounds are determined by
the smallest and largest index values covered by any discrete_choice_list.

28

For an array_aggregate, a check is made that the index range defined by its bounds is
compatible with the corresponding index subtype.

29

For an array_aggregate with an others choice, a check is made that no expression is specified
for an index value outside the bounds determined by the applicable index constraint.

30
For a multidimensional array_aggregate, a check is made that all subaggregates that corre-
spond to the same index have the same bounds.

31

The exception Constraint_Error is raised if any of the above checks fail.
NOTES

32/2

10 In an array_aggregate, positional notation may only be used with
two or more expressions; a single expression in parentheses is in-
terpreted as a parenthesized expression. A named_array_aggregate,



33

such as (1 => X), may be used to specify an array with a single
component.
Ezamples

<Examples of array aggregates with positional associations:>

34

35

(r, 9, 5, 1, 3, 2, 4, 8, 6, 0)
Table’ (5, 8, 4, 1, others => 0) ——< see Section 4.6 [3.6], page 114 >}

<Examples of array aggregates with named associations:>

36

37

38

(1 ..5=(1..8=>0.0)) ——< two—dimensional>
(1 .. N => new Cell) ——< N new cells, in particular for N = 0>

Table’(2 | 4 | 10 => 1, others => 0)

Schedule’ (Mon .. Fri => True, others => False) ——< see Section 4.6j}

[3.6], page 114>

Schedule’ (Wed | Sun => False, others => True)

Vector’ (1 => 2.5) ——< single—component vector>|]

<Examples of two—dimensional array aggregates:>

39

40

41

——< Three aggregates for the same value of subtype Matrix(1l..2,1..3) (see Sectior
[3.6], page 114):>

(1.1, 1.2, 1.3), (2.1, 2.2, 2.3))
(1=> (1.1, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
1=>01=>1.1,2=>1.2,3=>1.3),2=>(1-=>2.1, 2=>2.2, 3=2.23)]1

<Examples of aggregates as initial values:>

42

43

A : Table := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); ——< A(D)=T7, A(10)=0>0
B : Table := (2 | 4 | 10 => 1, others => 0); ——< B(1)=0, B(10)=1>}
C : comstant Matrix := (1 .. 5=> (1 .. 8 =>0.0)); ——< C’Last(1)=5, C’Last(2)=8>
D : Bit_Vector(M .. N) := (M .. N => True); ——< see Section 4.6H

[3.6], page 114>



E : Bit_Vector(M .. N) := (others => True);

F : String(l1 .. 1) := (1 => ’F’); ——< a one component aggregate: same as "F">J
44/2
<Example of an array aggregate with defaulted others choice and with an applicable index
constraint provided by an enclosing record aggregate:>

45/2

Buffer’(Size => 50, Pos => 1, Value => String’(’x’, others => <>)) ——< see Secti
[3.7], page 123>

5.4 4.4 Expressions

1

An <expression> is a formula that defines the computation or retrieval of a value. In this
International Standard, the term "expression" refers to a construct of the syntactic category
expression or of any of the other five syntactic categories defined below.

Syntax
2
expression ::=
relation {and relation} | relation {and then relation}
| relation {or relation} | relation {or else relation}
| relation {xor relation}
3
relation ::=
simple_expression [relational_operator simple_expression]
| simple_expression [not] in range
| simple_expression [not| in subtype_mark
4
simple_expression ::= [unary_adding_operator| term {binary_adding_operator term} |
)
term ::= factor {multiplying_operator factor}
6
factor ::= primary [** primary| | abs primary | not primary
7

primary ::=
numeric_literal | null | string_literal | aggregate
| name | qualified_expression | allocator | (expression)
Name Resolution Rules



8
A name used as a primary shall resolve to denote an object or a value.
Static Semantics

9
Each expression has a type; it specifies the computation or retrieval of a value of that type.
Dynamic Semantics

10
The value of a primary that is a name denoting an object is the value of the object.
Implementation Permissions

11
For the evaluation of a primary that is a name denoting an object of an unconstrained

numeric subtype, if the value of the object is outside the base range of its type, the imple-
mentation may either raise Constraint_Error or return the value of the object.

Examples
12
<Examples of primaries:>
13
4.0 ——< real literal>
Pi ——< named number>
(1 .. 10 =>0) ——< array aggregate>
Sum ——< variable>
Integer’Last ——< attribute>
Sine(X) ——< function call>
Color’ (Blue) ——< qualified expression>
Real (MxN) ——< conversion>
(Line_Count + 10) ——< parenthesized expression >
14
<Examples of expressions:>
15/2
Volume ——< primary>
not Destroyed ——< factor>
2xLine_Count ——< term>

—-4.0
—4.0 + A
Bxx2 — 4. 0%xA*C

——< simple expression>
——< simple expression>
——< simple expression>

R*Sin([Unicode 952])*Cos([Unicode 966]) ——< simple expression>]]

Password(1 .. 3) = "Bwv" ——< relation>

Count in Small_Int ——< relation>

Count not in Small_Int ——< relation>

Index = 0 or Item_Hit ——< expression>

(Cold and Sunny) or Warm ——< expression (parentheses are required)>]

Ax* (B*x*C) expression (parentheses are required)>



5.5 4.5 Operators and Expression Evaluation

1

The language defines the following six categories of operators (given in order of increasing
precedence). The corresponding operator_symbols, and only those, can be used as designa-
tors in declarations of functions for user—defined operators. See Section 7.6 [6.6], page 276,
"Section 7.6 [6.6], page 276, Overloading of Operators".

Syntax
2
logical _operator ::= and | or | xor
3
relational_operator := = | /= | < | <=]>|>=
4
binary_adding_operator ::= + - 1 &
5
unary_adding_operator := + | —
6
multiplying_operator ::= * | / | mod | rem
7
highest_precedence_operator ::= ** | abs | not
Static Semantics
8

For a sequence of operators of the same precedence level, the operators are associated with
their operands in textual order from left to right. Parentheses can be used to impose specific
associations.

9
For each form of type definition, certain of the above operators are <predefined>; that is,
they are implicitly declared immediately after the type definition. For each such implicit
operator declaration, the parameters are called Left and Right for <binary> operators; the
single parameter is called Right for <unary> operators. An expression of the form X op Y,
where op is a binary operator, is equivalent to a function_call of the form "op"(X, Y). An
expression of the form op Y, where op is a unary operator, is equivalent to a function_call
of the form "op"(Y). The predefined operators and their effects are described in subclauses
Section 5.5.1 [4.5.1], page 204, through Section 5.5.6 [4.5.6], page 217.

Dynamic Semantics
10
The predefined operations on integer types either yield the mathematically correct result
or raise the exception Constraint_Error. For implementations that support the Numerics



Annex, the predefined operations on real types yield results whose accuracy is defined in
Chapter 21 [Annex G|, page 1083, or raise the exception Constraint_Error.
Implementation Requirements

11

The implementation of a predefined operator that delivers a result of an integer or fixed
point type may raise Constraint_Error only if the result is outside the base range of the
result type.

12

The implementation of a predefined operator that delivers a result of a floating point type

may raise Constraint_Error only if the result is outside the safe range of the result type.
Implementation Permissions

13

For a sequence of predefined operators of the same precedence level (and in the absence of
parentheses imposing a specific association), an implementation may impose any association
of the operators with operands so long as the result produced is an allowed result for the
left—to—right association, but ignoring the potential for failure of language—defined checks
in either the left—to—right or chosen order of association.

NOTES
14
11 The two operands of an expression of the form X op Y, where op
is a binary operator, are evaluated in an arbitrary order, as for any
function_call (see Section 7.4 [6.4], page 266).
Examples
15
<Examples of precedence:>
16
not Sunny or Warm ——< same as (not Sunny) or Warm>
X>4.0and Y > 0.0 ——< same as (X > 4.0) and (Y > 0.0)>
17
—4.0%A*x*2 ——< same as —(4.0 * (Ax*2))>
abs(1 + A) + B ——< same as (abs (1 + A)) + B>
Yk (—3) ——< parentheses are necessary>
A/B=x*xC ——< same as (A/B)*C>
A+ (B+ 0O ——< evaluate B + C before adding it to A >

5.5.1 4.5.1 Logical Operators and Short-circuit Control Forms

Name Resolution Rules

1

An expression consisting of two relations connected by and then or or else (a <short—circuit
control form>) shall resolve to be of some boolean type; the expected type for both relations
is that same boolean type.



Static Semantics
2
The following logical operators are predefined for every boolean type <T>, for every modular
type <T>, and for every one—dimensional array type <T> whose component type is a boolean
type:

3
function "and"(Left, Right : <T>) return <T>
function "or" (Left, Right : <T>) return <T>
function "xor"(Left, Right : <T>) return <T>
4

For boolean types, the predefined logical operators and, or, and xor perform the conventional
operations of conjunction, inclusive disjunction, and exclusive disjunction, respectively.

5

For modular types, the predefined logical operators are defined on a bit—by—bit basis, using
the binary representation of the value of the operands to yield a binary representation for
the result, where zero represents False and one represents True. If this result is outside the
base range of the type, a final subtraction by the modulus is performed to bring the result
into the base range of the type.

6
The logical operators on arrays are performed on a component—by—component basis on
matching components (as for equality —— see Section 5.5.2 [4.5.2], page 206), using the
predefined logical operator for the component type. The bounds of the resulting array are
those of the left operand.

Dynamic Semantics

7

The short—circuit control forms and then and or else deliver the same result as the corre-
sponding predefined and and or operators for boolean types, except that the left operand is
always evaluated first, and the right operand is not evaluated if the value of the left operand
determines the result.

8

For the logical operators on arrays, a check is made that for each component of the left
operand there is a matching component of the right operand, and vice versa. Also, a check is
made that each component of the result belongs to the component subtype. The exception
Constraint_Error is raised if either of the above checks fails.

NOTES

9
12 The conventional meaning of the logical operators is given by the
following truth table:

10

A B (A and B) (A or B) (A xor B)



True True True True False
True False False True True
False True False True True
False False False False False

Examples
11
<Examples of logical operators:>
12
Sunny or Warm
Filter(1 .. 10) and Filter(15 .. 24) ——<  see Section 4.6.1 [3.6.1],l1
page 117 >
13
<Examples of short—circuit control forms:>
14
Next_Car.Owner /= null and then Next_Car.Owner.Age > 25 ——< see Section 4.10.

[3.10.1], page 160>
N = 0 or else A(N) = Hit_Value

5.5.2 4.5.2 Relational Operators and Membership Tests

1

The <equality operators> = (equals) and /= (not equals) are predefined for nonlimited
types. The other relational_operators are the <ordering operators> < (less than), <= (less
than or equal), > (greater than), and >= (greater than or equal). The ordering operators
are predefined for scalar types, and for <discrete array types>, that is, one—dimensional
array types whose components are of a discrete type.

2
A <membership test>, using in or not in, determines whether or not a value belongs to a
given subtype or range, or has a tag that identifies a type that is covered by a given type.
Membership tests are allowed for all types.
Name Resolution Rules
3/2
The <tested type> of a membership test is the type of the range or the type determined
by the subtype_mark. If the tested type is tagged, then the simple_expression shall resolve
to be of a type that is convertible (see Section 5.6 [4.6], page 219) to the tested type; if
untagged, the expected type for the simple_expression is the tested type.
Legality Rules
4
For a membership test, if the simple_expression is of a tagged class—wide type, then the
tested type shall be (visibly) tagged.
Static Semantics

5
The result type of a membership test is the predefined type Boolean.



6
The equality operators are predefined for every specific type <T> that is not limited, and
not an anonymous access type, with the following specifications:

7

function "=" (Left, Right : <T>) return Boolean

function "/="(Left, Right : <T>) return Boolean
7.1/2
The following additional equality operators for the <universal_access> type are declared in
package Standard for use with anonymous access types:

7.2/2

function "=" (Left, Right : <universal_access>) return Boolean
function "/="(Left, Right : <universal_access>) return Boolean

8
The ordering operators are predefined for every specific scalar type <T>, and for every
discrete array type <T>, with the following specifications:

9
function "<" (Left, Right : <T>) return Boolean
function "<="(Left, Right : <T>) return Boolean
function ">" (Left, Right : <T>) return Boolean
function ">="(Left, Right : <T>) return Boolean
Name Resolution Rules
9.1/2

At least one of the operands of an equality operator for <universal_access> shall be of a
specific anonymous access type. Unless the predefined equality operator is identified using
an expanded name with prefix denoting the package Standard, neither operand shall be of
an access—to—object type whose designated type is <D> or <D>’Class, where <D> has a
user—defined primitive equality operator such that:

9.2/2

e its result type is Boolean;

9.3/2

e it is declared immediately within the same declaration list as <D>; and

9.4/2

e at least one of its operands is an access parameter with designated type <D>.
Legality Rules

9.5/2
At least one of the operands of the equality operators for <universal_access> shall be of



type <universal_access>, or both shall be of access—to—object types, or both shall be of
access—to—subprogram types. Further:

9.6/2

e When both are of access—to—object types, the designated types shall be the same or
one shall cover the other, and if the designated types are elementary or array types,
then the designated subtypes shall statically match;

9.7/2

e When both are of access—to—subprogram types, the designated profiles shall be sub-
type conformant.

Dynamic Semantics

10
For discrete types, the predefined relational operators are defined in terms of corresponding
mathematical operations on the position numbers of the values of the operands.

11
For real types, the predefined relational operators are defined in terms of the corresponding
mathematical operations on the values of the operands, subject to the accuracy of the type.

12
Two access—to—object values are equal if they designate the same object, or if both are
equal to the null value of the access type.

13

Two access—to—subprogram values are equal if they are the result of the same evaluation
of an Access attribute_reference, or if both are equal to the null value of the access type.
Two access—to—subprogram values are unequal if they designate different subprograms. It
is unspecified whether two access values that designate the same subprogram but are the
result of distinct evaluations of Access attribute_references are equal or unequal.

14

For a type extension, predefined equality is defined in terms of the primitive (possibly
user—defined) equals operator of the parent type and of any tagged components of the
extension part, and predefined equality for any other components not inherited from the
parent type.

15

For a private type, if its full type is tagged, predefined equality is defined in terms of the
primitive equals operator of the full type; if the full type is untagged, predefined equality
for the private type is that of its full type.

16

For other composite types, the predefined equality operators (and certain other predefined
operations on composite types —— see Section 5.5.1 [4.5.1], page 204, and Section 5.6 [4.6],
page 219) are defined in terms of the corresponding operation on <matching components>,
defined as follows:

17



e For two composite objects or values of the same non—array type, matching com-
ponents are those that correspond to the same component_declaration or discrimi-
nant_specification;

18

e For two one—dimensional arrays of the same type, matching components are those (if
any) whose index values match in the following sense: the lower bounds of the index
ranges are defined to match, and the successors of matching indices are defined to
match;

19

e For two multidimensional arrays of the same type, matching components are those
whose index values match in successive index positions.

20
The analogous definitions apply if the types of the two objects or values are convertible,
rather than being the same.

21

Given the above definition of matching components, the result of the predefined equals
operator for composite types (other than for those composite types covered earlier) is defined
as follows:

22

e If there are no components, the result is defined to be True;

23

e If there are unmatched components, the result is defined to be False;

24

e Otherwise, the result is defined in terms of the primitive equals operator for any match-
ing tagged components, and the predefined equals for any matching untagged compo-

nents.
24.1/1
For any composite type, the order in which "=" is called for components is unspecified.
Furthermore, if the result can be determined before calling "=" on some components, it is
unspecified whether "=" is called on those components.
25
The predefined " /=" operator gives the complementary result to the predefined "=" oper-
ator.
26

For a discrete array type, the predefined ordering operators correspond to <lexicographic
order> using the predefined order relation of the component type: A null array is lexico-
graphically less than any array having at least one component. In the case of nonnull arrays,



the left operand is lexicographically less than the right operand if the first component of
the left operand is less than that of the right; otherwise the left operand is lexicographically
less than the right operand only if their first components are equal and the tail of the left
operand is lexicographically less than that of the right (the <tail> consists of the remaining
components beyond the first and can be null).

27

For the evaluation of a membership test, the simple_expression and the range (if any) are
evaluated in an arbitrary order.

28
A membership test using in yields the result True if:

29

e The tested type is scalar, and the value of the simple_expression belongs to the given
range, or the range of the named subtype; or

30,2

e The tested type is not scalar, and the value of the simple_expression satisfies any
constraints of the named subtype, and:

30.1/2
e if the type of the simple_expression is
class—wide, the value has a tag that
identifies a type covered by the tested
type;
30.2/2
e if the tested type is an access type and
the named subtype excludes null, the
value of the simple_expression is not
null.
31
Otherwise the test yields the result False.
32

A membership test using not in gives the complementary result to the corresponding mem-
bership test using in.
Implementation Requirements

32.1/1
For all nonlimited types declared in language—defined packages, the "=" and "/=" op-
erators of the type shall behave as if they were the predefined equality operators for the
purposes of the equality of composite types and generic formal types.

NOTES

33/2



34

35

<This paragraph was deleted.>

13 If a composite type has components that depend on discrimi-
nants, two values of this type have matching components if and only
if their discriminants are equal. Two nonnull arrays have matching
components if and only if the length of each dimension is the same

for both.

Examples

<Examples of expressions involving relational operators and membership tests:>

36

37

38

39

5.5.3 4.5.3 Binary Adding Operators

1

X/=Y

nn < IIAII and IIAll < llAall __<
||Aall < IIBII and ||All < IIA n __<
My_Car = null ——<
[3.10.1], page 160)>

My_Car = Your_Car ——<
My_Car.all = Your_Car.all ——<
N not in 1 .. 10 ——<
Today in Mon .. Fri ——<
Today in Weekday ——<
[3.5.1], page 92)>

Archive in Disk_Unit ——<
[3.8.1], page 134)>

Tree.all in Addition’Class ——<

[3.9.1], page 143)>

True>
True>

true if My_Car has been set to null (see Section

true if we both share the same car>
true if the two cars are identical>

range membership test>
range membership test>
subtype membership test (see Section 4.5.1J]
subtype membership test (see Section 4.8. 1]

class membership test (see Section 4.9.1]

Static Semantics

The binary adding operators + (addition) and — (subtraction) are predefined for every
specific numeric type <T> with their conventional meaning. They have the following speci-

fications:

2

function "+"(Left, Right : <T>) return <T>



function "—"(Left, Right : <T>) return <T>

3
The concatenation operators & are predefined for every nonlimited, one—dimensional array
type <T> with component type <C>. They have the following specifications:

4

function "&"(Left : <T>; Right : <T>) return <T>

function "&"(Left : <T>; Right : <C>) return <T>

function "&"(Left : <C>; Right : <T>) return <T>

function "&"(Left : <C>; Right : <C>) return <T>
Dynamic Semantics

5

For the evaluation of a concatenation with result type <T>, if both operands are of type
<T>, the result of the concatenation is a one—dimensional array whose length is the sum
of the lengths of its operands, and whose components comprise the components of the left
operand followed by the components of the right operand. If the left operand is a null
array, the result of the concatenation is the right operand. Otherwise, the lower bound of
the result is determined as follows:

6

e If the ultimate ancestor of the array type was defined by a constrained_array_definition,
then the lower bound of the result is that of the index subtype;

e If the wultimate ancestor of the array type was defined by an uncon-
strained_array_definition, then the lower bound of the result is that of the
left operand.

8

The upper bound is determined by the lower bound and the length. A check is made
that the upper bound of the result of the concatenation belongs to the range of the index
subtype, unless the result is a null array. Constraint_Error is raised if this check fails.

9

If either operand is of the component type <C>, the result of the concatenation is given by
the above rules, using in place of such an operand an array having this operand as its only
component (converted to the component subtype) and having the lower bound of the index
subtype of the array type as its lower bound.

10
The result of a concatenation is defined in terms of an assignment to an anonymous object,
as for any function call (see Section 7.5 [6.5], page 272).

NOTES
11



14 As for all predefined operators on modular types, the binary
adding operators + and — on modular types include a final reduction
modulo the modulus if the result is outside the base range of the type.

Ezamples
12
<Examples of expressions involving binary adding operators:>
13
Z+ 0.1 ——< Z has to be of a real type >
14
"A" & "BCD" ——< concatenation of two string literals>
A’ & "BCD" ——< concatenation of a character literal and a string literal>]]
A’ & A’ ——< concatenation of two character literals >

5.5.4 4.5.4 Unary Adding Operators
Static Semantics

1
The unary adding operators + (identity) and — (negation) are predefined for every specific
numeric type <T> with their conventional meaning. They have the following specifications:

2

function "+"(Right : <T>) return <T>
function "—"(Right : <T>) return <T>

NOTES

15 For modular integer types, the unary adding operator —, when
given a nonzero operand, returns the result of subtracting the value
of the operand from the modulus; for a zero operand, the result is
zZero.

5.5.5 4.5.5 Multiplying Operators
Static Semantics

1
The multiplying operators * (multiplication), / (division), mod (modulus), and rem (re-
mainder) are predefined for every specific integer type <T>:

2

function "*" (Left, Right : <T>) return <T>
function "/" (Left, Right : <T>) return <T>
function "mod"(Left, Right : <T>) return <T>
function "rem"(Left, Right : <T>) return <T>



3

Signed integer multiplication has its conventional meaning.

4
Signed integer division and remainder are defined by the relation:
5
A = (A/B)*B + (A rem B)
6

where (A rem B) has the sign of A and an absolute value less than the absolute value of B.
Signed integer division satisfies the identity:

7

(-A)/B = —(A/B) = A/(—B)

8

The signed integer modulus operator is defined such that the result of A mod B has the sign
of B and an absolute value less than the absolute value of B; in addition, for some signed
integer value N, this result satisfies the relation:

9

A = B#N + (A mod B)

10

The multiplying operators on modular types are defined in terms of the corresponding signed
integer operators, followed by a reduction modulo the modulus if the result is outside the
base range of the type (which is only possible for the "*" operator).

11
Multiplication and division operators are predefined for every specific floating point type
<T>:

12

function "*"(Left, Right : <T>) return <T>

function "/"(Left, Right : <T>) return <T>
13
The following multiplication and division operators, with an operand of the predefined type
Integer, are predefined for every specific fixed point type <T>:

14
function "*"(Left : <T>; Right : Integer) return <T>
function "*"(Left : Integer; Right : <T>) return <T>
function "/"(Left : <T>; Right : Integer) return <T>
15

All of the above multiplying operators are usable with an operand of an appropriate uni-
versal numeric type. The following additional multiplying operators for <root_real> are



predefined, and are usable when both operands are of an appropriate universal or root nu-
meric type, and the result is allowed to be of type <root_real>, as in a number_declaration:

16

function "*"(Left, Right : <root_real>) return <root_real>
function "/"(Left, Right : <root_real>) return <root_real>

17
function "x"(Left : <root_real>; Right : <root_integer>) return <root_rea1>|
function "*"(Left : <root_integer>; Right : <root_real>) return <root_real>]]
function "/"(Left : <root_real>; Right : <root_integer>) return <root_real>]]
18

Multiplication and division between any two fixed point types are provided by the following
two predefined operators:

19

function "*"(Left, Right : <universal_fixed>) return <universal_fixed>]]
function "/"(Left, Right : <universal_fixed>) return <universal_fixed>}
Name Resolution Rules

19.1/2

The above two fixed—fixed multiplying operators shall not be used in a context where the
expected type for the result is itself <universal_fixed> —— the context has to identify some
other numeric type to which the result is to be converted, either explicitly or implicitly.
Unless the predefined universal operator is identified using an expanded name with prefix
denoting the package Standard, an explicit conversion is required on the result when us-
ing the above fixed—fixed multiplication operator if either operand is of a type having a
user—defined primitive multiplication operator such that:

19.2/2

e it is declared immediately within the same declaration list as the type; and

19.3/2

e both of its formal parameters are of a fixed—point type.

19.4/2
A corresponding requirement applies to the universal fixed—fixed division operator.
Legality Rules
20/2
<This paragraph was deleted.>
Dynamic Semantics

21
The multiplication and division operators for real types have their conventional meaning.
For floating point types, the accuracy of the result is determined by the precision of the



result type. For decimal fixed point types, the result is truncated toward zero if the math-
ematical result is between two multiples of the <small> of the specific result type (possibly
determined by context); for ordinary fixed point types, if the mathematical result is between
two multiples of the <small>, it is unspecified which of the two is the result.

22

The exception Constraint_Error is raised by integer division, rem, and mod if the right
operand is zero. Similarly, for a real type <T> with <T’>Machine_Overflows True, division
by zero raises Constraint_Error.

NOTES
23
16 For positive A and B, A/B is the quotient and A rem B is the re-
mainder when A is divided by B. The following relations are satisfied
by the rem operator:
24
A rem (—B) = A rem B
(-=A) rem B = —(A rem B)
25
17 For any signed integer K, the following identity holds:
26
A mod B = (A + K*B) mod B
27
The relations between signed integer division, remainder, and mod-
ulus are illustrated by the following table:
28
A B A/B Arem B A modB A B A/B
29
10 5 2 0 0 —10 5 -2
11 5 2 1 1 —11 5 —2
12 5 2 2 2 —12 5 —2
13 5 2 3 3 —13 5 —2
14 5 2 4 4 —14 5 -2
30
A B A/B A rem B A modB A B A/B

10 -5 -2 0 0 —10 -5 2

A rem B

A mo



11 —5 -2 1 —4 —11 -5 2 —1
12 -5 -2 2 -3 —12 —5 2 -2
13 —b -2 3 -2 —13 —5b 2 -3
14 ) -2 4 —1 —14 ) 2 —4
Examples
31
<Examples of expressions involving multiplying operators:>
32
I : Integer := 1;
J : Integer := 2;
K : Integer := 3;
33
X : Real := 1.0; ——< see Section 4.5.7 [3.5.7],1
page 103>
Y : Real := 2.0;
34
F : Fraction := 0.25; ——< see Section 4.5.9 [3.5.9],1
page 106>
G : Fraction := 0.5;
35
<Expression> <Value> <Result Type>
IxJ 2 <same as I and J, that is, Integer>
K/J 1 <same as K and J, that is, Integer>
K mod J 1 <same as K and J, that is, Integer>
X/Y 0.5 <same as X and Y, that is, Real>
F/2 0.125 <same as F, that is, Fraction>
3*F 0.75 <same as F, that is, Fraction>
0.75%G 0.375 <universal_fixed, implicitly convertible>]
<to any fixed point type>
Fraction(Fx*G) 0.125 <Fraction, as stated by the conversion>
Real (J)*Y 4.0 <Real, the type of both operands after>

<conversion of J>

5.5.6 4.5.6 Highest Precedence Operators

Static Semantics
1

The highest precedence unary operator abs (absolute value) is predefined for every specific

numeric type <T>, with the following specification:



function "abs"(Right : <T>) return <T>

3

The highest precedence unary operator not (logical negation) is predefined for every boolean
type <T>, every modular type <T>, and for every one—dimensional array type <T> whose
components are of a boolean type, with the following specification:

4

function "not"(Right : <T>) return <T>

5

The result of the operator not for a modular type is defined as the difference between the
high bound of the base range of the type and the value of the operand. For a binary
modulus, this corresponds to a bit—wise complement of the binary representation of the
value of the operand.

6

The operator not that applies to a one—dimensional array of boolean components yields
a one—dimensional boolean array with the same bounds; each component of the result is
obtained by logical negation of the corresponding component of the operand (that is, the
component that has the same index value). A check is made that each component of the

result belongs to the component subtype; the exception Constraint_Error is raised if this
check fails.

7
The highest precedence <exponentiation> operator ** is predefined for every specific integer
type <T> with the following specification:

8

function "#x"(Left : <T>; Right : Natural) return <T>

9
Exponentiation is also predefined for every specific floating point type as well as <root_real>,
with the following specification (where <T> is <root_real> or the floating point type):

10

function "*x"(Left : <T>; Right : Integer’Base) return <T>

11

The right operand of an exponentiation is the <exponent>. The expression X**N with
the value of the exponent N positive is equivalent to the expression X*X*..X (with N—1
multiplications) except that the multiplications are associated in an arbitrary order. With
N equal to zero, the result is one. With the value of N negative (only defined for a floating
point operand), the result is the reciprocal of the result using the absolute value of N as
the exponent.

Implementation Permissions

12
The implementation of exponentiation for the case of a negative exponent is allowed to



raise Constraint_Error if the intermediate result of the repeated multiplications is outside
the safe range of the type, even though the final result (after taking the reciprocal) would
not be. (The best machine approximation to the final result in this case would generally be
0.0.)

NOTES
13

18 As implied by the specification given above for exponentiation of
an integer type, a check is made that the exponent is not negative.
Constraint_Error is raised if this check fails.

5.6 4.6 Type Conversions
1

Explicit type conversions, both value conversions and view conversions, are allowed between
closely related types as defined below. This clause also defines rules for value and view
conversions to a particular subtype of a type, both explicit ones and those implicit in other
constructs.

Syntax
2
type_conversion ::=
subtype_mark(expression)
| subtype_mark(name)
3

The <target subtype> of a type_conversion is the subtype denoted by the subtype_mark.
The <operand> of a type_conversion is the expression or name within the parentheses; its
type is the <operand type>.

4

One type is <convertible> to a second type if a type_conversion with the first type as operand
type and the second type as target type is legal according to the rules of this clause. Two
types are convertible if each is convertible to the other.

5/2

A type_conversion whose operand is the name of an object is called a <view conversion>

if both its target type and operand type are tagged, or if it appears in a call as an actual

parameter of mode out or in out; other type_conversions are called <value conversions>.
Name Resolution Rules

6
The operand of a type_conversion is expected to be of any type.

7
The operand of a view conversion is interpreted only as a name; the operand of a value
conversion is interpreted as an expression.

Legality Rules



8/2

In a view conversion for an untagged type, the target type shall be convertible (back) to
the operand type.

<Paragraphs 9 through 20 were reorganized and moved below.>

21/2

If there is a type that is an ancestor of both the target type and the operand type, or both
types are class—wide types, then at least one of the following rules shall apply:

21.1/2

e The target type shall be untagged; or
22

e The operand type shall be covered by or descended from the target type; or
23/2

e The operand type shall be a class—wide type that covers the target type; or
23.1/2

e The operand and target types shall both be class—wide types and the specific type
associated with at least one of them shall be an interface type.
24/2
If there is no type that is the ancestor of both the target type and the operand type, and
they are not both class—wide types, one of the following rules shall apply:

24.1/2

e If the target type is a numeric type, then the operand type shall be a numeric type.
24.2/2

e If the target type is an array type, then the operand type shall be an array type.

Further:
24.3/2
e The types shall have the same dimen-
sionality;
24.4/2
e Corresponding index types shall be con-
vertible;
24.5/2

e The component subtypes shall statically
match;



24.6/2

e If the component types are anonymous
access types, then the accessibility level
of the operand type shall not be stati-
cally deeper than that of the target type;

24.7/2
e Neither the target type nor the operand
type shall be limited;
24.8/2
e If the target type of a view conversion
has aliased components, then so shall the
operand type; and
24.9/2
e The operand type of a view conversion
shall not have a tagged, private, or
volatile subcomponent.
24.10/2

o If the target type is <universal_access>, then the operand type shall be an access type.

24.11/2

o If the target type is a general access—to—object type, then the operand type shall be
<universal_access> or an access—to—object type. Further, if the operand type is not
<universal_access>:

24.12/2
o If the target type is an
access—to—variable type, then
the operand type shall be an
access—to—variable type;
24.13/2

e If the target designated type is tagged,
then the operand designated type shall
be convertible to the target designated

type;



24.14/2

e If the target designated type is not
tagged, then the designated types shall
be the same, and either:

24.15/2

e the designated
subtypes shall
statically match;
or

24.16/2

e the designated
type shall be
discriminated in
its full view and
unconstrained
in any partial
view, and one of
the  designated
subtypes shall be
unconstrained;

24.17/2

e The accessibility level of the operand
type shall not be statically deeper than
that of the target type. In addition
to the places where Legality Rules
normally apply (see Section 13.3 [12.3],
page 454), this rule applies also in the
private part of an instance of a generic
unit.

24.18/2

e If the target type is a pool—specific access—to—object type, then the operand type
shall be <universal_access>.

24.19/2

e If the target type is an access—to—subprogram type, then the operand type shall be
<universal_access> or an access—to—subprogram type. Further, if the operand type is
not <universal_access>:



24.20/2

e The designated profiles shall be
subtype—conformant.

24.21/2

e The accessibility level of the operand
type shall not be statically deeper than
that of the target type. In addition
to the places where Legality Rules
normally apply (see Section 13.3 [12.3],
page 454), this rule applies also in the
private part of an instance of a generic
unit. If the operand type is declared
within a generic body, the target type
shall be declared within the generic
body.

Static Semantics

25
A type_conversion that is a value conversion denotes the value that is the result of converting
the value of the operand to the target subtype.

26

A type_conversion that is a view conversion denotes a view of the object denoted by the
operand. This view is a variable of the target type if the operand denotes a variable;
otherwise it is a constant of the target type.

27
The nominal subtype of a type_conversion is its target subtype.
Dynamic Semantics

28

For the evaluation of a type_conversion that is a value conversion, the operand is evaluated,
and then the value of the operand is <converted> to a <corresponding> value of the target
type, if any. If there is no value of the target type that corresponds to the operand value,
Constraint_Error is raised; this can only happen on conversion to a modular type, and only
when the operand value is outside the base range of the modular type. Additional rules
follow:

29

e Numeric Type Conversion

30

e If the target and the operand types are
both integer types, then the result is the
value of the target type that corresponds



31

32

33

34

to the same mathematical integer as the
operand.

If the target type is a decimal fixed point
type, then the result is truncated (to-
ward 0) if the value of the operand is not
a multiple of the <small> of the target

type.

If the target type is some other real type,
then the result is within the accuracy
of the target type (see Section 21.2
[G.2], page 1103, "Section 21.2 [G.2],
page 1103, Numeric Performance
Requirements", for implementations
that support the Numerics Annex).

If the target type is an integer type and
the operand type is real, the result is
rounded to the nearest integer (away
from zero if exactly halfway between
two integers).

e Enumeration Type Conversion

35

36

e The result is the value of the target type

with the same position number as that
of the operand value.

e Array Type Conversion

37

e If the target subtype is a constrained

array subtype, then a check is made
that the length of each dimension of the
value of the operand equals the length



38

39

39.1/2

40

of the corresponding dimension of the
target subtype. The bounds of the
result are those of the target subtype.

If the target subtype is an unconstrained
array subtype, then the bounds of the
result are obtained by converting each
bound of the value of the operand to the
corresponding index type of the target
type. For each nonnull index range, a
check is made that the bounds of the
range belong to the corresponding index
subtype.

In either array case, the wvalue of
each component of the result is that
of the matching component of the
operand value (see Section 5.5.2 [4.5.2],
page 206).

If the component types of the array types
are anonymous access types, then a check
is made that the accessibility level of the
operand type is not deeper than that of
the target type.

e Composite (Non—Array) Type Conversion

41

42

e The value of each nondiscriminant com-

ponent of the result is that of the match-
ing component of the operand value.

The tag of the result is that of the
operand. If the operand type is
class—wide, a check is made that the
tag of the operand identifies a (specific)
type that is covered by or descended
from the target type.



43

44

45

46

47

e For each discriminant of the target type

that corresponds to a discriminant of the
operand type, its value is that of the cor-
responding discriminant of the operand
value; if it corresponds to more than one
discriminant of the operand type, a check
is made that all these discriminants are
equal in the operand value.

For each discriminant of the target
type that corresponds to a dis-
criminant that is specified by the
derived_type_definition for some
ancestor of the operand type (or if
class—wide, some ancestor of the
specific type identified by the tag of the
operand), its value in the result is that
specified by the derived_type_definition.

For each  discriminant of  the
operand type that corresponds to
a discriminant that is specified by
the derived_type_definition for some
ancestor of the target type, a check is
made that in the operand value it equals
the value specified for it.

For each discriminant of the result, a
check is made that its value belongs to
its subtype.

e Access Type Conversion

48

e For an access—to—object type, a check

is made that the accessibility level of the
operand type is not deeper than that of
the target type.



49/2

50

51/2

e If the operand value is null, the result
of the conversion is the null value of the
target type.

e If the operand value is not null, then the
result designates the same object (or sub-
program) as is designated by the operand
value, but viewed as being of the tar-
get designated subtype (or profile); any
checks associated with evaluating a con-
version to the target designated subtype
are performed.

After conversion of the value to the target type, if the target subtype is constrained, a
check is performed that the value satisfies this constraint. If the target subtype excludes

null,
52

then a check is made that the value is not null.

For the evaluation of a view conversion, the operand name is evaluated, and a new view of
the object denoted by the operand is created, whose type is the target type; if the target

type
53

The
54/1

55

56

is composite, checks are performed as above for a value conversion.

properties of this new view are as follows:

If the target type is composite, the bounds or discriminants (if any) of the view are
as defined above for a value conversion; each nondiscriminant component of the view
denotes the matching component of the operand object; the subtype of the view is
constrained if either the target subtype or the operand object is constrained, or if the
target subtype is indefinite, or if the operand type is a descendant of the target type
and has discriminants that were not inherited from the target type;

If the target type is tagged, then an assignment to the view assigns to the corresponding
part of the object denoted by the operand; otherwise, an assignment to the view assigns
to the object, after converting the assigned value to the subtype of the object (which
might raise Constraint_Error);

Reading the value of the view yields the result of converting the value of the operand
object to the target subtype (which might raise Constraint_Error), except if the object



is of an access type and the view conversion is passed as an out parameter; in this
latter case, the value of the operand object is used to initialize the formal parameter
without checking against any constraint of the target subtype (see Section 7.4.1 [6.4.1],
page 270).

57
If an Accessibility_Check fails, Program_Error is raised. Any other check associated with a
conversion raises Constraint_Error if it fails.

58
Conversion to a type is the same as conversion to an unconstrained subtype of the type.

NOTES
59

19 In addition to explicit type_conversions, type conversions are per-
formed implicitly in situations where the expected type and the ac-
tual type of a construct differ, as is permitted by the type resolution
rules (see Section 9.6 [8.6], page 324). For example, an integer literal
is of the type <universal_integer>, and is implicitly converted when
assigned to a target of some specific integer type. Similarly, an ac-
tual parameter of a specific tagged type is implicitly converted when
the corresponding formal parameter is of a class—wide type.

60

Even when the expected and actual types are the same, implicit
subtype conversions are performed to adjust the array bounds (if
any) of an operand to match the desired target subtype, or to raise
Constraint_Error if the (possibly adjusted) value does not satisfy the
constraints of the target subtype.

61/2

20 A ramification of the overload resolution rules is that
the operand of an (explicit) type_conversion cannot be an
allocator, an aggregate, a string_literal, a character_literal, or an
attribute_reference for an Access or Unchecked_Access attribute.
Similarly, such an expression enclosed by parentheses is not allowed.
A qualified_expression (see Section 5.7 [4.7], page 229) can be used
instead of such a type_conversion.

62

21 The constraint of the target subtype has no effect for a
type_conversion of an elementary type passed as an out parameter.
Hence, it is recommended that the first subtype be specified as the
target to minimize confusion (a similar recommendation applies to
renaming and generic formal in out objects).

Ezamples



63
<Examples of numeric type conversion:>

64
Real (2%J) <—— value is converted to floating point>
Integer(1.6) <—— value is 2>
Integer(—0.4) <—— value is 0>
65
<Example of conversion between derived types:>
66
type A_Form is new B_Form;
67
X : A_Form;
Y : B_Form;
68
X := A_Form(Y);
Y := B_Form(X); <—— the reverse conversion >
69
<Examples of conversions between array types:>
70
type Sequence is array (Integer range <>) of Integer;
subtype Dozen is Sequence(l .. 12);
Ledger : array(l .. 100) of Integer;
71
Sequence (Ledger) <—— ©bounds are those of Ledger>
Sequence(Ledger(31 .. 42)) <—— bounds are 31 and 42>
Dozen(Ledger(31 .. 42)) <—— Dbounds are those of Dozen >

5.7 4.7 Qualified Expressions

1
A qualified_expression is used to state explicitly the type, and to verify the subtype, of an
operand that is either an expression or an aggregate.

Syntax

qualified_expression ::=
subtype_mark’(expression) | subtype_mark’aggregate
Name Resolution Rules



3
The <operand> (the expression or aggregate) shall resolve to be of the type determined by
the subtype_mark (see [S0028], page 56), or a universal type that covers it.

Dynamic Semantics

4

The evaluation of a qualified_expression evaluates the operand (and if of a universal type,
converts it to the type determined by the subtype_mark) and checks that its value belongs
to the subtype denoted by the subtype_mark. The exception Constraint_Error is raised if
this check fails.

NOTES
)
22 When a given context does not uniquely identify an expected
type, a qualified_expression can be used to do so. In particular, if an
overloaded name or aggregate is passed to an overloaded subprogram,
it might be necessary to qualify the operand to resolve its type.
Ezamples
6
<Examples of disambiguating expressions using qualification:>
7
type Mask is (Fix, Dec, Exp, Signif);
type Code is (Fix, Cla, Dec, Tnz, Sub);
8
Print (Mask’(Dec)); <—— Dec is of type Mask>
Print (Code’(Dec)); <—— Dec is of type Code >
9
for J in Code’ (Fix) .. Code’(Dec) loop ... <—— qualification needed for either Fi
for J in Code range Fix .. Dec loop ... <—— qualification unnecessary>j}
for J in Code’(Fix) .. Dec loop ... <—— qualification unnecessary for Dec>
10

Dozen’(1 | 3 | 5 | 7 => 2, others => 0) <—— see Section 5.6 [4.6],
page 219 >

5.8 4.8 Allocators

1
The evaluation of an allocator creates an object and yields an access value that designates
the object.

Syntax



allocator ::=
new subtype_indication | new qualified_expression
Name Resolution Rules

3/1
The expected type for an allocator shall be a single access—to—object type with designated
type <D> such that either <D> covers the type determined by the subtype_mark of the
subtype_indication (see [S0027], page 56) or qualified_expression (see [S0128], page 229), or
the expected type is anonymous and the determined type is <D>’Class.

Legality Rules

4

An <initialized> allocator is an allocator with a qualified_expression. An <uninitialized>
allocator is one with a subtype_indication. In the subtype_indication of an uninitialized
allocator, a constraint is permitted only if the subtype_mark denotes an unconstrained
composite subtype; if there is no constraint, then the subtype_mark shall denote a definite
subtype.

5/2
If the type of the allocator is an access—to—constant type, the allocator shall be an initialized
allocator.

5.1/2

If the designated type of the type of the allocator is class—wide, the accessibility level of the
type determined by the subtype_indication or qualified_expression shall not be statically
deeper than that of the type of the allocator.

5.2/2

If the designated subtype of the type of the allocator has one or more unconstrained ac-
cess discriminants, then the accessibility level of the anonymous access type of each access
discriminant, as determined by the subtype_indication or qualified_expression of the alloca-

tor, shall not be statically deeper than that of the type of the allocator (see Section 4.10.2
[3.10.2], page 164).

5.3/2

An allocator shall not be of an access type for which the Storage_Size has been specified by
a static expression with value zero or is defined by the language to be zero. In addition to
the places where Legality Rules normally apply (see Section 13.3 [12.3], page 454), this rule
applies also in the private part of an instance of a generic unit. This rule does not apply
in the body of a generic unit or within a body declared within the declarative region of a
generic unit, if the type of the allocator is a descendant of a formal access type declared
within the formal part of the generic unit.

Static Semantics

6/2

If the designated type of the type of the allocator is elementary, then the subtype of the
created object is the designated subtype. If the designated type is composite, then the
subtype of the created object is the designated subtype when the designated subtype is
constrained or there is a partial view of the designated type that is constrained; otherwise,



the created object is constrained by its initial value (even if the designated subtype is
unconstrained with defaults).

Dynamic Semantics
7/2
For the evaluation of an initialized allocator, the evaluation of the qualified_expression is
performed first. An object of the designated type is created and the value of the quali-
fied_expression is converted to the designated subtype and assigned to the object.

8
For the evaluation of an uninitialized allocator, the elaboration of the subtype_indication is
performed first. Then:

9/2

o If the designated type is elementary, an object of the designated subtype is created and
any implicit initial value is assigned;

10/2

e If the designated type is composite, an object of the designated type is created with tag,
if any, determined by the subtype_mark of the subtype_indication. This object is then
initialized by default (see Section 4.3.1 [3.3.1], page 61) using the subtype_indication
to determine its nominal subtype. A check is made that the value of the object belongs
to the designated subtype. Constraint_Error is raised if this check fails. This check
and the initialization of the object are performed in an arbitrary order.

10.1/2

For any allocator, if the designated type of the type of the allocator is class—wide, then a
check is made that the accessibility level of the type determined by the subtype_indication,
or by the tag of the value of the qualified_expression, is not deeper than that of the type
of the allocator. If the designated subtype of the allocator has one or more unconstrained
access discriminants, then a check is made that the accessibility level of the anonymous
access type of each access discriminant is not deeper than that of the type of the allocator.
Program_FError is raised if either such check fails.

10.2/2

If the object to be created by an allocator has a controlled or protected part, and the
finalization of the collection of the type of the allocator (see Section 8.6.1 [7.6.1], page 299)
has started, Program_Error is raised.

10.3/2

If the object to be created by an allocator contains any tasks, and the master of the type
of the allocator is completed, and all of the dependent tasks of the master are terminated
(see Section 10.3 [9.3], page 335), then Program_Error is raised.

11

If the created object contains any tasks, they are activated (see Section 10.2 [9.2], page 333).

Finally, an access value that designates the created object is returned.
Bounded (Run-Time) Errors

11.1/2
It is a bounded error if the finalization of the collection of the type (see Section 8.6.1 [7.6.1],



page 299) of the allocator has started. If the error is detected, Program_Error is raised.

Otherwise, the allocation proceeds normally.

12
23 Allocators cannot create objects of an abstract type. See
Section 4.9.3 [3.9.3], page 149.
13
24 If any part of the created object is controlled, the initialization
includes calls on corresponding Initialize or Adjust procedures. See
Section 8.6 [7.6], page 295.
14
25 As explained in Section 14.11 [13.11], page 526, "Section 14.11
[13.11], page 526, Storage Management", the storage for an object
allocated by an allocator comes from a storage pool (possibly user
defined). The exception Storage_Error is raised by an allocator if
there is not enough storage. Instances of Unchecked_Deallocation
may be used to explicitly reclaim storage.
15
26 Implementations are permitted, but not required, to provide
garbage collection (see Section 14.11.3 [13.11.3], page 534).
Examples
16
<Examples of allocators:>
17
new Cell’ (0, null, null) <—— initialized explicitly, see
[3.10.1], page 160>
new Cell’(Value => 0, Succ => null, Pred => null) <—— initialized explicitly>}
new Cell <—— not initialized>ll
18
new Matrix(1 .. 10, 1 .. 20) <—— the bounds only are given>|
new Matrix’(1 .. 10 => (1 .. 20 => 0.0)) <—— initialized explicitly>}}
19
new Buffer(100) <—— the discriminant only is gi

NOTES

new Buffer’(Size => 80, Pos => 0, Value => (1 .. 80 => ’A’)) <—— initialized expl



20

Expr_Ptr’ (new Literal) <—— allocator for access—to—class—wide
[3.9.1], page 143>
Expr_Ptr’ (new Literal’ (Expression with 3.5)) <—— initialized explicitly>}}

5.9 4.9 Static Expressions and Static Subtypes

1

Certain expressions of a scalar or string type are defined to be static. Similarly, certain
discrete ranges are defined to be static, and certain scalar and string subtypes are defined
to be static subtypes. <Static> means determinable at compile time, using the declared
properties or values of the program entities.

2

A static expression is a scalar or string expression that is one of the following:

3

e a numeric_literal;

e a string_literal of a static string subtype;

e a name that denotes the declaration of a named number or a static constant;

e a function_call whose <function_>name or <function_>prefix statically denotes a static
function, and whose actual parameters, if any (whether given explicitly or by default),
are all static expressions;

e an attribute_reference that denotes a scalar value, and whose prefix denotes a static
scalar subtype;

e an attribute_reference whose prefix statically denotes a statically constrained array
object or array subtype, and whose attribute_designator is First, Last, or Length, with
an optional dimension;

e a type_conversion whose subtype_mark denotes a static scalar subtype, and whose
operand is a static expression;



10

11

12

13

14

a qualified_expression whose subtype_mark denotes a static (scalar or string) subtype,
and whose operand is a static expression;

a membership test whose simple_expression is a static expression, and whose range is
a static range or whose subtype_mark denotes a static (scalar or string) subtype;

a short—circuit control form both of whose relations are static expressions;

a static expression enclosed in parentheses.

A name <statically denotes> an entity if it denotes the entity and:

15

16

17

18

It is a direct_name, expanded name, or character_literal, and it denotes a declaration
other than a renaming_declaration; or

It is an attribute_reference whose prefix statically denotes some entity; or

It denotes a renaming_declaration with a name that statically denotes the renamed
entity.

A <static function> is one of the following:

19

20

21

a predefined operator whose parameter and result types are all scalar types none of
which are descendants of formal scalar types;

a predefined concatenation operator whose result type is a string type;

an enumeration literal;



22

e a language—defined attribute that is a function, if the prefix denotes a static scalar
subtype, and if the parameter and result types are scalar.

23
In any case, a generic formal subprogram is not a static function.

24

A <static constant> is a constant view declared by a full constant declaration or an object_-
renaming_declaration (see [S0183], page 317) with a static nominal subtype, having a value
defined by a static scalar expression or by a static string expression whose value has a
length not exceeding the maximum length of a string_literal (see [S0016], page 42) in the
implementation.

25

A <static range> is a range whose bounds are static expressions, or a range_attribute._-
reference (see [S0102], page 187) that is equivalent to such a range. A <static discrete_range
(see [S0058], page 117)> is one that is a static range or is a subtype_indication (see [S0027],
page 56) that defines a static scalar subtype. The base range of a scalar type is a static
range, unless the type is a descendant of a formal scalar type.

26/2

A <static subtype> is either a <static scalar subtype> or a <static string subtype>. A static
scalar subtype is an unconstrained scalar subtype whose type is not a descendant of a formal
type, or a constrained scalar subtype formed by imposing a compatible static constraint on
a static scalar subtype. A static string subtype is an unconstrained string subtype whose
index subtype and component subtype are static, or a constrained string subtype formed
by imposing a compatible static constraint on a static string subtype. In any case, the
subtype of a generic formal object of mode in out, and the result subtype of a generic
formal function, are not static.

27

The different kinds of <static constraint> are defined as follows:
28

e A null constraint is always static;

29

e A scalar constraint is static if it has no range_constraint, or one with a static range;

30

e An index constraint is static if each discrete_range is static, and each index subtype of
the corresponding array type is static;

31

e A discriminant constraint is static if each expression of the constraint is static, and the
subtype of each discriminant is static.



31.1/2
In any case, the constraint of the first subtype of a scalar formal type is neither static nor
null.

32
A subtype is <statically constrained> if it is constrained, and its constraint is static. An
object is <statically constrained> if its nominal subtype is statically constrained, or if it is
a static string constant.

Legality Rules

33

A static expression is evaluated at compile time except when it is part of the right operand of
a static short—circuit control form whose value is determined by its left operand. This eval-
uation is performed exactly, without performing Overflow_Checks. For a static expression
that is evaluated:

34

e The expression is illegal if its evaluation fails a language—defined check other than
Overflow_Check.

35/2

e If the expression is not part of a larger static expression and the expression is expected
to be of a single specific type, then its value shall be within the base range of its
expected type. Otherwise, the value may be arbitrarily large or small.

36,2

o If the expression is of type <universal_real> and its expected type is a decimal fixed
point type, then its value shall be a multiple of the <small> of the decimal type. This
restriction does not apply if the expected type is a descendant of a formal scalar type
(or a corresponding actual type in an instance).

37/2

In addition to the places where Legality Rules normally apply (see Section 13.3 [12.3],
page 454), the above restrictions also apply in the private part of an instance of a generic
unit.

Implementation Requirements

38/2

For a real static expression that is not part of a larger static expression, and whose expected
type is not a descendant of a formal type, the implementation shall round or truncate the
value (according to the Machine_Rounds attribute of the expected type) to the nearest
machine number of the expected type; if the value is exactly half—way between two machine
numbers, the rounding performed is implementation—defined. If the expected type is a
descendant of a formal type, or if the static expression appears in the body of an instance
of a generic unit and the corresponding expression is nonstatic in the corresponding generic
body, then no special rounding or truncating is required —— normal accuracy rules apply
(see Chapter 21 [Annex G|, page 1083).

Implementation Advice



38.1/2

For a real static expression that is not part of a larger static expression, and whose expected
type is not a descendant of a formal type, the rounding should be the same as the default
rounding for the target system.

NOTES
39
27 An expression can be static even if it occurs in a context where
staticness is not required.
40
28 A static (or run—time) type_conversion from a real type to an
integer type performs rounding. If the operand value is exactly
half—way between two integers, the rounding is performed away from
Zero.
Examples
41
<Examples of static expressions:>
42
1+ 1 <—— 2>
abs(—10)*3 <—— 30>
43
Kilo : constant := 1000;
Mega : constant := Kilo*Kilo; <—— 1_000_000>
Long : constant := Float’Digits*2;
44
Half_Pi : constant := Pi/2; <—— see Section 4.3.2 [3.3.2].1
page 65>
Deg_To_Rad : constant := Half_Pi/90;

Rad_To_Deg : constant :

5.9.1 4.9.1 Statically Matching Constraints and Subtypes

Static Semantics

1.0/Deg_To_Rad; <—— equivalent to 1.0/((3.14159_26536/2)

1/2
A constraint <statically matches> another constraint if:
1.1/2

e both are null constraints;
1.2/2

e both are static and have equal corresponding bounds or discriminant values;



1.3/2

e both are nonstatic and result from the same elaboration of a constraint of a subtype_-
indication (see [S0027], page 56) or the same evaluation of a range of a discrete_-
subtype_definition (see [S0055], page 114); or

1.4/2

e both are nonstatic and come from the same formal_type_declaration.

2/2

A subtype <statically matches> another subtype of the same type if they have statically
matching constraints, and, for access subtypes, either both or neither exclude null. Two
anonymous access—to—object subtypes statically match if their designated subtypes stat-
ically match, and either both or neither exclude null, and either both or neither are
access—to—constant. Two anonymous access—to—subprogram subtypes statically match
if their designated profiles are subtype conformant, and either both or neither exclude null.

3
Two ranges of the same type <statically match> if both result from the same evaluation of
a range, or if both are static and have equal corresponding bounds.

4

A constraint is <statically compatible> with a scalar subtype if it statically matches the
constraint of the subtype, or if both are static and the constraint is compatible with the
subtype. A constraint is <statically compatible> with an access or composite subtype if it
statically matches the constraint of the subtype, or if the subtype is unconstrained. One
subtype is <statically compatible> with a second subtype if the constraint of the first is
statically compatible with the second subtype.



6 5 Statements

1

A statement defines an action to be performed upon its execution.

2/2

This section describes the general rules applicable to all statements. Some statements are
discussed in later sections: Procedure_call_statement (see [S0163], page 267)s and return
statements are described in Chapter 7 [6], page 255, "Chapter 7 [6], page 255, Subprograms".
Entry_call_statement (see [S0207], page 352)s, requeue_statement (see [S0208], page 356)s,
delay_statement (see [S0209], page 359)s, accept_statement (see [S0201], page 347)s, se-
lect_statement (see [S0212], page 377)s, and abort_statement (see [S0227], page 385)s are
described in Chapter 10 [9], page 328, "Chapter 10 [9], page 328, Tasks and Synchroniza-
tion". Raise_statement (see [S0251], page 421)s are described in Chapter 12 [11], page 419,
"Chapter 12 [11], page 419, Exceptions", and code_statement (see [S0294], page 518)s in
Chapter 14 [13], page 481. The remaining forms of statements are presented in this section.

6.1 5.1 Simple and Compound Statements - Sequences of
Statements

1

A statement is either simple or compound. A simple_statement encloses no other statement.

A compound_statement can enclose simple_statements and other compound_statements.
Syntazx

sequence_of_statements ::= statement {statement}

statement ::=
{label} simple_statement | {label} compound_statement

4/2

simple_statement ::= null_statement
| assignment_statement | exit_statement
| goto_statement | procedure_call_statement
| simple_return_statement | entry_call_statement
| requeue_statement | delay_statement
| abort_statement | raise_statement
| code_statement

5/2

compound_statement ::=
if_statement | case_statement
| loop_statement | block_statement



| extended_return_statement
| accept_statement | select_statement

6
null_statement ::= null;
7
label ::= <<<label_>statement_identifier>>
8
statement_identifier ::= direct_name
9
The direct_name of a statement_identifier shall be an identifier (not
an operator_symbol).
Name Resolution Rules
10

The direct_name of a statement_identifier shall resolve to denote its corresponding implicit
declaration (see below).
Legality Rules

11
Distinct identifiers shall be used for all statement_identifiers that appear in the same body,
including inner block_statements but excluding inner program units.

Static Semantics

12

For each statement_identifier, there is an implicit declaration (with the specified identi-
fier) at the end of the declarative_part of the innermost block_statement or body that
encloses the statement_identifier. The implicit declarations occur in the same order as the
statement_identifiers occur in the source text. If a usage name denotes such an implicit
declaration, the entity it denotes is the label, loop_statement, or block_statement with the
given statement_identifier.

Dynamic Semantics

13

The execution of a null_statement has no effect.

14/2

A <transfer of control> is the run—time action of an exit_statement, return statement,
goto_statement, or requeue_statement, selection of a terminate_alternative, raising of an
exception, or an abort, which causes the next action performed to be one other than
what would normally be expected from the other rules of the language. As explained
in Section 8.6.1 [7.6.1], page 299, a transfer of control can cause the execution of constructs
to be completed and then left, which may trigger finalization.

15
The execution of a sequence_of_statements consists of the execution of the individual state-
ments in succession until the sequence_ is completed.



NOTES

16
1 A statement_identifier that appears immediately within
the declarative region of a named loop_statement or an
accept_statement is nevertheless implicitly declared immediately
within the declarative region of the innermost enclosing body or
block_statement; in other words, the expanded name for a named
statement is not affected by whether the statement occurs inside
or outside a named loop or an accept_statement —— only nesting
within block_statements is relevant to the form of its expanded
name.

Examples

17

<Examples of labeled statements:>

18
<<Here>> <<Ici>> <<Aqui>> <<Hier>> null;

19

<<KAfter>> X := 1;

6.2 5.2 Assignment Statements

1
An assignment_statement replaces the current value of a variable with the result of evalu-
ating an expression.

Syntax

assignment_statement ::=
<variable_>name := expression;

3
The execution of an assignment_statement includes the evaluation of the expression and the
<assignment> of the value of the expression into the <target>. An assignment operation (as
opposed to an assignment_statement (see [S0137], page 242)) is performed in other contexts
as well, including object initialization and by—copy parameter passing. The <target> of
an assignment operation is the view of the object to which a value is being assigned; the
target of an assignment_statement (see [S0137], page 242) is the variable denoted by the
<variable_>name.

Name Resolution Rules
4/2
The <variable_>name of an assignment_statement is expected to be of any type. The ex-
pected type for the expression is the type of the target.

Legality Rules



5/2
The target denoted by the <variable_>name shall be a variable of a nonlimited type.
6
If the target is of a tagged class—wide type <T>’Class, then the expression shall either
be dynamically tagged, or of type <T> and tag—indeterminate (see Section 4.9.2 [3.9.2],
page 145).

Dynamic Semantics
7
For the execution of an assignment_statement, the <variable_>name and the expression are
first evaluated in an arbitrary order.

8
When the type of the target is class—wide:

9

e If the expression is tag—indeterminate (see Section 4.9.2 [3.9.2], page 145), then the
controlling tag value for the expression is the tag of the target;

10

e Otherwise (the expression is dynamically tagged), a check is made that the tag of
the value of the expression is the same as that of the target; if this check fails, Con-
straint_Error is raised.

11
The value of the expression is converted to the subtype of the target. The conversion might
raise an exception (see Section 5.6 [4.6], page 219).

12

In cases involving controlled types, the target is finalized, and an anonymous object might
be used as an intermediate in the assignment, as described in Section 8.6.1 [7.6.1], page 299,
"Section 8.6.1 [7.6.1], page 299, Completion and Finalization". In any case, the converted
value of the expression is then <assigned> to the target, which consists of the following two
steps:

13

e The value of the target becomes the converted value.

14

e If any part of the target is controlled, its value is adjusted as explained in clause
Section 8.6 [7.6], page 295.

NOTES
15

2 The tag of an object never changes; in particular, an assign-
ment_statement does not change the tag of the target.



16/2

<This paragraph was deleted.>

Ezamples
17
<Examples of assignment statements:>
18
Value := Max_Value — 1;
Shade := Blue;
19
Next_Frame(F) (M, N) := 2.5; ——< see Section 5.1.1 [4.1.1],
page 181>
U := Dot_Product(V, W); ——< see Section 7.3 [6.3], page 261>}
20
Writer := (Status => Open, Unit => Printer, Line_Count => 60); ——< see Section 4
[3.8.1], page 134>
Next_Car.all := (72074, null); ——< see Section 4.10.1 [3.10.1],
page 160>
21
<Examples involving scalar subtype conversions:>
22
I, J : Integer range 1 .. 10 := 5;
K : Integer range 1 .. 20 := 15;
23
I :=J; ——< Jidentical ranges>
K J; ——< compatible ranges>
J := K; ——< will raise Constraint_Error if K > 10>
24
<Examples involving array subtype conversions:>
25
A : String(1 .. 31);
B : String(3 .. 33);
26

A :=B; ——< same number of components>



27

ACL .. 9) = "tar sauce";
AC4 .. 12) = A1 .. 9); ——< Al .. 12) = "tartar sauce">
NOTES

28

3 <Notes on the examples:> Assignment_statements are allowed
even in the case of overlapping slices of the same array, because
the <variable_.>name and expression are both evaluated before
copying the value into the variable. In the above example, an
implementation yielding A(1 .. 12) = "tartartartar" would be
incorrect.

6.3 5.3 If Statements

1
An if_statement selects for execution at most one of the enclosed sequences_of_statements,
depending on the (truth) value of one or more corresponding conditions.

Syntax

if_statement ::=

if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

condition ::= <boolean_>expression
Name Resolution Rules

4
A condition is expected to be of any boolean type.
Dynamic Semantics

5
For the execution of an if_statement, the condition specified after if, and any conditions
specified after elsif, are evaluated in succession (treating a final else as elsif True then),
until one evaluates to True or all conditions are evaluated and yield False. If a condition
evaluates to True, then the corresponding sequence_of_statements is executed; otherwise
none of them is executed.

Ezamples



6
<Examples of if statements:>

7

if Month = December and Day = 31 then
Month := January;
Day = 1;
Year Year + 1;

end if;

if Line_Too_Short then
raise Layout_Error;

elsif Line_Full then
New_Line;
Put(Item);

else
Put (Item) ;

end if;

if My_Car.Owner.Vehicle /= My_Car then ——< see Section 4.10.1]
[3.10.1], page 160>

Report ("Incorrect data");
end if;

6.4 5.4 Case Statements

1
A case_statement selects for execution one of a number of alternative se-
quences_of_statements; the chosen alternative is defined by the value of an expression.

Syntax
2
case_statement ::=
case expression is
case_statement_alternative
{case_statement_alternative}
end case;
3

case_statement_alternative ::=
when discrete_choice_list =>
sequence_of_statements
Name Resolution Rules



4
The expression is expected to be of any discrete type. The expected type for each dis-
crete_choice is the type of the expression.

Legality Rules

5

The expressions and discrete_ranges given as discrete_choices of a case_statement shall
be static. A discrete_choice others, if present, shall appear alone and in the last dis-
crete_choice_list.

6
The possible values of the expression shall be covered as follows:

7

e If the expression is a name (including a type_conversion or a function_call) having
a static and constrained nominal subtype, or is a qualified_expression whose sub-
type_-mark denotes a static and constrained scalar subtype, then each non—others
discrete_choice shall cover only values in that subtype, and each value of that sub-
type shall be covered by some discrete_choice (either explicitly or by others).

e If the type of the expression is <root_integer>, <universal_integer>, or a descendant of
a formal scalar type, then the case_statement shall have an others discrete_choice.

e Otherwise, each value of the base range of the type of the expression shall be covered
(either explicitly or by others).

10
Two distinct discrete_choices of a case_statement shall not cover the same value.
Dynamic Semantics

11
For the execution of a case_statement the expression is first evaluated.
12
If the value of the expression is covered by the discrete_choice_list (see [S0073], page 134) of
some case_statement_alternative (see [S0141], page 246), then the sequence_of_statements
(see [S0130], page 240) of the _alternative is executed.
13
Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being outside
the base range), Constraint_Error is raised.

NOTES

14

4 The execution of a case_statement chooses one and only one al-
ternative. Qualification of the expression of a case_statement by a



static subtype can often be used to limit the number of choices that
need be given explicitly.

Ezamples
15
<Examples of case statements:>
16
case Sensor is
when Elevation  => Record_Elevation(Sensor_Value);
when Azimuth  => Record_Azimuth (Sensor_Value);
when Distance => Record_Distance (Sensor_Value);
when others => null;
end case;
17
case Today is
when Mon  => Compute_Initial_Balance;
when Fri => Compute_Closing_Balance;
when Tue .. Thu => Generate_Report(Today) ;
when Sat .. Sun => null;
end case;
18

case Bin_Number (Count) is
when 1  => Update_Bin(1);
when 2 => Update_Bin(2);
when 3 | 4 =>
Empty_Bin(1);
Empty_Bin(2);
when others => raise Error;
end case;

6.5 5.5 Loop Statements

1
A loop_statement includes a sequence_of_statements that is to be executed repeatedly, zero
or more times.

Syntax

loop_statement ::=
[<loop_>statement_identifier:]
[iteration_scheme] loop
sequence_of_statements
end loop [<loop_>identifier];



iteration_scheme ::= while condition
| for loop_parameter_specification

4
loop_parameter_specification ::=
defining_identifier in [reverse] discrete_subtype_definition
5
If a loop_statement has a <loop_>statement_identifier, then the iden-
tifier shall be repeated after the end loop; otherwise, there shall not
be an identifier after the end loop.
Static Semantics
6

A loop_parameter_specification declares a <loop parameter>, which is an object whose sub-
type is that defined by the discrete_subtype_definition.
Dynamic Semantics

7

For the execution of a loop_statement, the sequence_of_statements is executed repeatedly,
zero or more times, until the loop_statement is complete. The loop_statement is complete
when a transfer of control occurs that transfers control out of the loop, or, in the case of
an iteration_scheme, as specified below.

8

For the execution of a loop_statement with a while iteration_scheme, the condition is evalu-
ated before each execution of the sequence_of_statements (see [S0130], page 240); if the value
of the condition is True, the sequence_of_statements (see [S0130], page 240) is executed; if
False, the execution of the loop_statement (see [S0142], page 248) is complete.

9

For the execution of a loop_statement with a for iteration_scheme, the loop_parameter_-
specification (see [S0144], page 249) is first elaborated. This elaboration creates the loop
parameter and elaborates the discrete_subtype_definition (see [S0055], page 114). If the
discrete_subtype_definition (see [S0055], page 114) defines a subtype with a null range,
the execution of the loop_statement is complete. Otherwise, the sequence_of_statements
(see [S0130], page 240) is executed once for each value of the discrete subtype defined
by the discrete_subtype_definition (see [S0055], page 114) (or until the loop is left as a
consequence of a transfer of control). Prior to each such iteration, the corresponding value
of the discrete subtype is assigned to the loop parameter. These values are assigned in
increasing order unless the reserved word reverse is present, in which case the values are
assigned in decreasing order.

NOTES
10

5 A loop parameter is a constant; it cannot be updated within the
sequence_of_statements of the loop (see Section 4.3 [3.3], page 58).



11

6 An object_declaration should not be given for a loop parameter,
since the loop parameter is automatically declared by the
loop_parameter_specification. = The scope of a loop parameter
extends from the loop_parameter_specification to the end of the
loop_statement, and the visibility rules are such that a loop
parameter is only visible within the sequence_of_statements of the

loop.
12
7 The discrete_subtype_definition of a for loop is elaborated just
once. Use of the reserved word reverse does not alter the discrete sub-
type defined, so that the following iteration_schemes are not equiv-
alent; the first has a null range.
13
for J in reverse 1 .. O
for Jin 0 .. 1
Examples
14
<Example of a loop statement without an iteration scheme:>
15
loop
Get (Current_Character) ;
exit when Current_Character = ’x’;
end loop;
16
<Example of a loop statement with a while iteration scheme:>
17
while Bid(N) .Price < Cut_0ff.Price loop
Record_Bid(Bid(N) .Price);
N :=N+ 1;
end loop;
18
<Example of a loop statement with a for iteration scheme:>
19
for J in Buffer’Range loop ——< works even with a null range>
if Buffer(J) /= Space then
Put (Buffer(J));

end if;



end loop;

20
<Example of a loop statement with a name:>
21
Summation:
while Next /= Head loop ——< see Section 4.10.1 [3.10.1],
page 160>
Sum = Sum + Next.Value;

Next := Next.Succ;
end loop Summation;

6.6 5.6 Block Statements

1
A block_statement encloses a handled_sequence_of_statements optionally preceded by a
declarative_part.

Syntazx

block_statement ::=
[<block_>statement_identifier:]
[declare
declarative_part|
begin
handled_sequence_of_statements
end [<block_>identifier];

If a block_statement has a <block_>statement_identifier, then the
identifier shall be repeated after the end; otherwise, there shall not
be an identifier after the end.

Static Semantics

4
A Dblock_statement that has no explicit declarative_part has an implicit empty declara-
tive_part.

Dynamic Semantics

5
The execution of a block_statement consists of the elaboration of its declarative_part fol-
lowed by the execution of its handled_sequence_of_statements.

Examples

6
<Example of a block statement with a local variable:>

7



Swap:

declare

Temp : Integer;
begin

Temp :=V; V :=U; U := Temp;
end Swap;

6.7 5.7 Exit Statements

1
An exit_statement is used to complete the execution of an enclosing loop_statement; the
completion is conditional if the exit_statement includes a condition.

Syntax
2
exit_statement ::=
exit [<loop_>name] [when condition];
Name Resolution Rules
3

The <loop_>name, if any, in an exit_statement shall resolve to denote a loop_statement.
Legality Rules

4

Each exit_statement (see [S0146], page 252) <applies to> a loop_statement (see [S0142],
page 248); this is the loop_statement (see [S0142], page 248) being exited. An exit_-
statement (see [S0146], page 252) with a name is only allowed within the loop_statement (see
[S0142], page 248) denoted by the name, and applies to that loop_statement (see [S0142],
page 248). An exit_statement (see [S0146], page 252) without a name is only allowed within
a loop_statement (see [S0142], page 248), and applies to the innermost enclosing one. An
exit_statement (see [S0146], page 252) that applies to a given loop_statement (see [S0142],
page 248) shall not appear within a body or accept_statement (see [S0201], page 347), if
this construct is itself enclosed by the given loop_statement.

Dynamic Semantics

5

For the execution of an exit_statement, the condition, if present, is first evaluated. If the
value of the condition is True, or if there is no condition, a transfer of control is done to
complete the loop_statement (see [S0142], page 248). If the value of the condition is False,
no transfer of control takes place.

NOTES
6
8 Several nested loops can be exited by an exit_statement that
names the outer loop.
Examples
7

<Examples of loops with exit statements:>



for N in 1 .. Max_Num_Items loop
Get_New_Item(New_Item);
Merge_Item(New_Item, Storage_File);
exit when New_Item = Terminal_Item;
end loop;

Main_Cycle:
loop
——< initial statements>
exit Main_Cycle when Found;
——< final statements>
end loop Main_Cycle;

6.8 5.8 Goto Statements

1
A goto_statement specifies an explicit transfer of control from this statement to a target
statement with a given label.

Syntax
2
goto_statement ::= goto <label_>name;
Name Resolution Rules
3

The <label_>name shall resolve to denote a label; the statement with that label is the <target
statement>.
Legality Rules

4

The innermost sequence_of_statements that encloses the target statement shall also enclose

the goto_statement. Furthermore, if a goto_statement is enclosed by an accept_statement

or a body, then the target statement shall not be outside this enclosing construct.
Dynamic Semantics

5

The execution of a goto_statement transfers control to the target statement, completing
the execution of any compound_statement that encloses the goto_statement but does not
enclose the target.

NOTES

9 The above rules allow transfer of control to a statement
of an enclosing sequence_of_statements but not the reverse.
Similarly, they prohibit transfers of control such as between



alternatives of a case_statement, if_statement, or select_statement;
between exception_handlers; or from an exception_handler of a
handled_sequence_of_statements back to its sequence_of_statements.

Ezamples
7
<Example of a loop containing a goto statement:>
8

<<Sort>>
for T in 1 .. N—1 loop
if A(I) > A(I+1) then
Exchange (A(I), A(I+1));
goto Sort;
end if;
end loop;



7 6 Subprograms

1

A subprogram is a program unit or intrinsic operation whose execution is invoked by a sub-
program call. There are two forms of subprogram: procedures and functions. A procedure
call is a statement; a function call is an expression and returns a value. The definition of a
subprogram can be given in two parts: a subprogram declaration defining its interface, and a
subprogram_body defining its execution. Operators and enumeration literals are functions.

2

A <callable entity> is a subprogram or entry (see Section 9). A callable entity is invoked
by a <call>; that is, a subprogram call or entry call. A <callable construct> is a construct
that defines the action of a call upon a callable entity: a subprogram_body, entry_body, or
accept_statement.

7.1 6.1 Subprogram Declarations

1
A subprogram_declaration declares a procedure or function.
Syntax
2/2
subprogram_declaration ::=
[overriding_indicator]
subprogram_specification;
3/2
<This paragraph was deleted.>
4/2
subprogram_specification ::=
procedure_specification
| function_specification
4.1/2
procedure_specification ::= procedure defining_program_unit_name parameter_profile
4.2/2
function_specification ::= function defining_designator parameter_and_result_profile
5
designator ::= [parent_unit_name . ]Jidentifier | operator_symbol
6

defining_designator ::= defining_program_unit_name | defining_operator_symbol



10/2

11

12

13/2

14

15/2

16

defining_program_unit_name ::= [parent_unit_name . |defining_identifier |

The optional parent_unit_name is only allowed for library units (see
Section 11.1.1 [10.1.1], page 394).

operator_symbol ::= string_literal

The sequence of characters in an operator_symbol shall form a re-
served word, a delimiter, or compound delimiter that corresponds
to an operator belonging to one of the six categories of operators
defined in clause Section 5.5 [4.5], page 203.

defining_operator_symbol ::= operator_symbol

parameter_profile ::= [formal_part]

parameter_and_result_profile ::=
[formal_part] return [null_exclusion] subtype_mark
| [formal_part] return access_definition

formal_part ::=
(parameter_specification {; parameter_specification})

parameter_specification ::=
defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression]

| defining_identifier_list : access_definition [:= default_expression]

mode ::= [in] | in out | out
Name Resolution Rules



17
A <formal parameter> is an object directly visible within a subprogram_body that repre-
sents the actual parameter passed to the subprogram in a call; it is declared by a param-
eter_specification. For a formal parameter, the expected type for its default_expression, if
any, is that of the formal parameter.

Legality Rules

18

The <parameter mode> of a formal parameter conveys the direction of information transfer
with the actual parameter: in, in out, or out. Mode in is the default, and is the mode of
a parameter defined by an access_definition. The formal parameters of a function, if any,
shall have the mode in.

19

A default_expression is only allowed in a parameter_specification for a formal parameter of
mode in.

20,2

A subprogram_declaration or a generic_subprogram_declaration requires a com-
pletion: a body, a renaming declaration (see Section 9.5 [8.5], page 316), or a
pragma Import (see Section 16.1 [B.1], page 894). A completion is not allowed
for an abstract_subprogram_declaration (see Section 4.9.3 [3.9.3], page 149) or a
null_procedure_declaration (see Section 7.7 [6.7], page 277).

21

A name that denotes a formal parameter is not allowed within the formal_part in which it

is declared, nor within the formal_part of a corresponding body or accept_statement.
Static Semantics

22

The <profile> of (a view of) a callable entity is either a parameter_profile or parame-
ter_and_result_profile; it embodies information about the interface to that entity —— for
example, the profile includes information about parameters passed to the callable entity. All
callable entities have a profile —— enumeration literals, other subprograms, and entries. An
access—to—subprogram type has a designated profile. Associated with a profile is a calling
convention. A subprogram_declaration declares a procedure or a function, as indicated by
the initial reserved word, with name and profile as given by its specification.

23/2

The nominal subtype of a formal parameter is the subtype determined by the optional
null_exclusion and the subtype_mark, or defined by the access_definition, in the parame-
ter_specification. The nominal subtype of a function result is the subtype determined by
the optional null_exclusion and the subtype_mark, or defined by the access_definition, in
the parameter_and_result_profile.

24/2

An <access parameter> is a formal in parameter specified by an access_definition. An <access
result type> is a function result type specified by an access_definition. An access parameter
or result type is of an anonymous access type (see Section 4.10 [3.10], page 156). Access
parameters of an access—to—object type allow dispatching calls to be controlled by access
values. Access parameters of an access—to—subprogram type permit calls to subprograms
passed as parameters irrespective of their accessibility level.



25
The <subtypes of a profile> are:

26

e For any non—access parameters, the nominal subtype of the parameter.

27/2

e For any access parameters of an access—to—object type, the designated subtype of the
parameter type.

27.1/2

e For any access parameters of an access—to—subprogram type, the subtypes of the
profile of the parameter type.

28/2

e For any non—access result, the nominal subtype of the function result.

28.1/2

e For any access result type of an access—to—object type, the designated subtype of the
result type.

28.2/2

e For any access result type of an access—to—subprogram type, the subtypes of the profile
of the result type.

29

The <types of a profile> are the types of those subtypes.

30/2

A subprogram declared by an abstract_subprogram_declaration is abstract; a subprogram
declared by a subprogram_declaration is not. See Section 4.9.3 [3.9.3], page 149,
"Section 4.9.3 [3.9.3], page 149, Abstract Types and Subprograms". Similarly, a procedure
defined by a null_procedure_declaration is a null procedure; a procedure declared by a
subprogram_declaration is not. See Section 7.7 [6.7], page 277, "Section 7.7 [6.7], page 277,
Null Procedures".

30.1/2
An overriding_indicator is used to indicate whether overriding is intended. See Section 9.3.1
[8.3.1], page 312, "Section 9.3.1 [8.3.1], page 312, Overriding Indicators".

Dynamic Semantics

31/2

The elaboration of a subprogram_declaration has no effect.
NOTES

32



33

34

35

36

1 A parameter_specification with several identifiers is equivalent
to a sequence of single parameter_specifications, as explained in

Section 4.3 [3.3], page 58.

2 Abstract subprograms do not have bodies, and cannot be used in a
nondispatching call (see Section 4.9.3 [3.9.3], page 149, "Section 4.9.3

[3.9.3], page 149, Abstract Types and Subprograms").

3 The evaluation of default_expressions is caused by certain calls, as
described in Section 7.4.1 [6.4.1], page 270. They are not evaluated

during the elaboration of the subprogram declaration.

4 Subprograms can be called recursively and can be called concur-

rently from multiple tasks.
Ezamples

<Examples of subprogram declarations:>

37

38

39

40

procedure Traverse_Tree;

procedure Increment(X : in out Integer);
procedure Right_Indent(Margin : out Line_Size);
[3.5.4], page 95>

procedure Switch(From, To : in out Link);
[3.10.1], page 160>

function Random return Probability;
[3.5.7], page 103>

function Min_Cell(X : Link) return Cell;

[3.10.1], page 160>

function Next_Frame(K : Positive) return Frame;

[3.10], page 156>

function Dot_Product(Left, Right : Vector) return Real;
[3.6], page 114>

function "*"(Left, Right : Matrix) return Matrix;
[3.6], page 114>

see

see

see

see

see

see

see

Section

Section

Section

Section

Section

Section

Section

4

.5.4]

.10. 1]

.5.71

.10. 10

.100

i |

i |



41
<Examples of in parameters with default expressions:>

42
procedure Print_Header(Pages : in Natural;
Header : in Line := (1 .. Line’Last => ? ?); ——<
[3.6], page 114>
Center : in Boolean := True);

7.2 6.2 Formal Parameter Modes

1
A parameter_specification declares a formal parameter of mode in, in out, or out.
Static Semantics

2

A parameter is passed either <by copy> or <by reference>. When a parameter is passed by
copy, the formal parameter denotes a separate object from the actual parameter, and any
information transfer between the two occurs only before and after executing the subprogram.
When a parameter is passed by reference, the formal parameter denotes (a view of) the
object denoted by the actual parameter; reads and updates of the formal parameter directly
reference the actual parameter object.

3
A type is a <by—copy type> if it is an elementary type, or if it is a descendant of a private
type whose full type is a by—copy type. A parameter of a by—copy type is passed by copy.

4
A type is a <by—reference type> if it is a descendant of one of the following;:

5

e a tagged type;

e a task or protected type;

e a nonprivate type with the reserved word limited in its declaration;

e a composite type with a subcomponent of a by—reference type;

e a private type whose full type is a by—reference type.

see Section 4.



10

A parameter of a by—reference type is passed by reference. Each value of a by—reference
type has an associated object. For a parenthesized expression, qualified_expression, or
type_conversion, this object is the one associated with the operand.

11
For parameters of other types, it is unspecified whether the parameter is passed by copy or
by reference.

Bounded (Run-Time) Errors

12

If one name denotes a part of a formal parameter, and a second name denotes a part of
a distinct formal parameter or an object that is not part of a formal parameter, then the
two names are considered <distinct access paths>. If an object is of a type for which the
parameter passing mechanism is not specified, then it is a bounded error to assign to the
object via one access path, and then read the value of the object via a distinct access path,
unless the first access path denotes a part of a formal parameter that no longer exists at
the point of the second access (due to leaving the corresponding callable construct). The
possible consequences are that Program_Error is raised, or the newly assigned value is read,
or some old value of the object is read.

NOTES
13

5 A formal parameter of mode in is a constant view (see Section 4.3
[3.3], page 58); it cannot be updated within the subprogram_body.

7.3 6.3 Subprogram Bodies

1
A subprogram_body specifies the execution of a subprogram.
Syntax
2/2
subprogram_body ::=
[overriding_indicator]
subprogram_specification is
declarative_part
begin
handled_sequence_of_statements
end [designator];
3
If a designator appears at the end of a subprogram_body, it shall
repeat the defining_designator of the subprogram_specification.
Legality Rules
4

In contrast to other bodies, a subprogram_body need not be the completion of a previous



declaration, in which case the body declares the subprogram. If the body is a completion,
it shall be the completion of a subprogram_declaration or generic_subprogram_declaration.
The profile of a subprogram_body that completes a declaration shall conform fully to that
of the declaration.

Static Semantics

5
A subprogram_body is considered a declaration. It can either complete a previous declara-
tion, or itself be the initial declaration of the subprogram.

Dynamic Semantics

6
The elaboration of a non—generic subprogram_body has no other effect than to establish
that the subprogram can from then on be called without failing the Elaboration_Check.

7
The execution of a subprogram_body is invoked by a subprogram call. For this execution the
declarative_part is elaborated, and the handled_sequence_of_statements is then executed.

Ezamples
8
<Example of procedure body:>
9
procedure Push(E : in Element_Type; S : in out Stack) is
begin
if S.Index = S.Size then
raise Stack_0Overflow;
else
S.Index := S.Index + 1;
S.Space(S.Index) := E;
end if;
end Push;
10
<Example of a function body:>
11

function Dot_Product(Left, Right : Vector) return Real is
Sum : Real := 0.0;
begin
Check(Left’First = Right’First and Left’Last = Right’Last);
for J in Left’Range loop
Sum := Sum + Left(J)*Right(J);
end loop;
return Sum;
end Dot_Product;



7.3.1 6.3.1 Conformance Rules

1
When subprogram profiles are given in more than one place, they are required to conform
in one of four ways: type conformance, mode conformance, subtype conformance, or full
conformance.

Static Semantics
2/1
As explained in Section 16.1 [B.1], page 894, "Section 16.1 [B.1], page 894, Interfacing
Pragmas", a <convention> can be specified for an entity. Unless this International Stan-
dard states otherwise, the default convention of an entity is Ada. For a callable entity
or access—to—subprogram type, the convention is called the <calling convention>. The
following conventions are defined by the language:

3

e The default calling convention for any subprogram not listed below is <Ada>. A pragma
Convention, Import, or Export may be used to override the default calling convention
(see Section 16.1 [B.1], page 894).

e The <Intrinsic> calling convention represents subprograms that are "built in" to the
compiler. The default calling convention is Intrinsic for the following:

5
e an enumeration literal;
6
e a "/=" operator declared implicitly due
to the declaration of "=" (see Section 7.6
[6.6], page 276);
7
e any other implicitly declared subpro-
gram unless it is a dispatching operation
of a tagged type;
8
e an inherited subprogram of a generic for-
mal tagged type with unknown discrim-
inants;
9

e an attribute that is a subprogram;



10/2

e a subprogram declared immediately
within a protected_body;

10.1/2
e any prefixed view of a subprogram (see
Section 5.1.3 [4.1.3], page 183).
11
The Access attribute is not allowed for Intrinsic subprograms.
12

e The default calling convention is <protected> for a protected subprogram, and for an
access—to—subprogram type with the reserved word protected in its definition.

13

e The default calling convention is <entry> for an entry.

13.1/2

e The calling convention for an anonymous access—to—subprogram parameter or anony-
mous access—to—subprogram result is <protected> if the reserved word protected ap-
pears in its definition and otherwise is the convention of the subprogram that contains
the parameter.

13.2/1

e If not specified above as Intrinsic, the calling convention for any inherited or overriding
dispatching operation of a tagged type is that of the corresponding subprogram of the
parent type. The default calling convention for a new dispatching operation of a tagged
type is the convention of the type.

14

Of these four conventions, only Ada and Intrinsic are allowed as a <convention_>identifier
in a pragma Convention, Import, or Export.

15/2

Two profiles are <type conformant> if they have the same number of parameters, and both
have a result if either does, and corresponding parameter and result types are the same,
or, for access parameters or access results, corresponding designated types are the same, or
corresponding designated profiles are type conformant.

16/2

Two profiles are <mode conformant> if they are type—conformant, and corresponding pa-
rameters have identical modes, and, for access parameters or access result types, the desig-
nated subtypes statically match, or the designated profiles are subtype conformant.



17

Two profiles are <subtype conformant> if they are mode—conformant, corresponding sub-
types of the profile statically match, and the associated calling conventions are the same.
The profile of a generic formal subprogram is not subtype—conformant with any other
profile.

18

Two profiles are <fully conformant> if they are subtype—conformant, and corresponding
parameters have the same names and have default_expressions that are fully conformant
with one another.

19
Two expressions are <fully conformant> if, after replacing each use of an operator with the
equivalent function_call:

20

e each constituent construct of one corresponds to an instance of the same syntactic
category in the other, except that an expanded name may correspond to a direct_name
(or character_literal) or to a different expanded name in the other; and

21

e cach direct_name, character_literal, and selector_name that is not part of the prefix
of an expanded name in one denotes the same declaration as the corresponding di-
rect_name, character_literal, or selector_name in the other; and

21.1/1

e cach attribute_designator in one must be the same as the corresponding
attribute_designator in the other; and

22

e cach primary that is a literal in one has the same value as the corresponding literal in
the other.

23

Two known_discriminant_parts are <fully conformant> if they have the same number of
discriminants, and discriminants in the same positions have the same names, statically
matching subtypes, and default_expressions that are fully conformant with one another.

24

Two discrete_subtype_definitions are <fully conformant> if they are both sub-
type_indications or are both ranges, the subtype_marks (if any) denote the same subtype,
and the corresponding simple_expressions of the ranges (if any) fully conform.

24.1/2

The <prefixed view profile> of a subprogram is the profile obtained by omitting the first
parameter of that subprogram. There is no prefixed view profile for a parameterless sub-
program. For the purposes of defining subtype and mode conformance, the convention of a
prefixed view profile is considered to match that of either an entry or a protected operation.



Implementation Permissions

25
An implementation may declare an operator declared in a language—defined library unit to
be intrinsic.

7.3.2 6.3.2 Inline Expansion of Subprograms

1
Subprograms may be expanded in line at the call site.
Syntax

2

The form of a pragma Inline, which is a program unit pragma (see

Section 11.1.5 [10.1.5], page 407), is as follows:
3

pragma Inline(name {, name});
Legality Rules

4

The pragma shall apply to one or more callable entities or generic subprograms.
Static Semantics

5

If a pragma Inline applies to a callable entity, this indicates that inline expansion is desired

for all calls to that entity. If a pragma Inline applies to a generic subprogram, this indicates

that inline expansion is desired for all calls to all instances of that generic subprogram.
Implementation Permissions

6

For each call, an implementation is free to follow or to ignore the recommendation expressed
by the pragma.

6.1/2

An implementation may allow a pragma Inline that has an argument which is a direct_name
denoting a subprogram_body of the same declarative_part.

NOTES

6 The name in a pragma Inline can denote more than one entity in
the case of overloading. Such a pragma applies to all of the denoted
entities.

7.4 6.4 Subprogram Calls

1

A <subprogram call> is either a procedure_call_statement or a function_call; it invokes
the execution of the subprogram_body. The call specifies the association of the actual
parameters, if any, with formal parameters of the subprogram.



Syntax

2
procedure_call_statement ::=
<procedure_>name;
| <procedure_>prefix actual_parameter_part;
3
function_call ::=
<function_>name
| <function_>prefix actual_parameter_part
4
actual_parameter_part ::=
(parameter_association {, parameter_association})
5
parameter_association ::=
[<formal_parameter_>selector_name =>] explicit_actual_parameter
6
explicit_actual_parameter ::= expression | <variable_>name
7
A parameter_association is <named> or <positional> according to
whether or not the <formal_parameter_>selector_name (see [S0099],
page 184) is specified. Any positional associations shall precede any
named associations. Named associations are not allowed if the prefix
in a subprogram call is an attribute_reference (see [S0100], page 187).
Name Resolution Rules
8/2

The name or prefix given in a procedure_call_statement shall resolve to denote a callable
entity that is a procedure, or an entry renamed as (viewed as) a procedure. The name or
prefix given in a function_call shall resolve to denote a callable entity that is a function.
The name or prefix shall not resolve to denote an abstract subprogram unless it is also a dis-
patching subprogram. When there is an actual_parameter_part (see [S0165], page 267), the
prefix can be an implicit_dereference (see [S0095], page 179) of an access—to—subprogram
value.

9
A subprogram call shall contain at most one association for each formal parameter. Each
formal parameter without an association shall have a default_expression (in the profile of
the view denoted by the name or prefix). This rule is an overloading rule (see Section 9.6
[8.6], page 324).

Dynamic Semantics



10/2

For the execution of a subprogram call, the name or prefix of the call is evaluated, and
each parameter_association (see [S0166], page 267) is evaluated (see Section 7.4.1 [6.4.1],
page 270). If a default_expression (see [S0063], page 123) is used, an implicit parameter_-
association (see [S0166], page 267) is assumed for this rule. These evaluations are done in
an arbitrary order. The subprogram_body (see [S0162], page 261) is then executed, or a
call on an entry or protected subprogram is performed (see Section 4.9.2 [3.9.2], page 145).
Finally, if the subprogram completes normally, then after it is left, any necessary assigning
back of formal to actual parameters occurs (see Section 7.4.1 [6.4.1], page 270).

10.1/2

If the name or prefix of a subprogram call denotes a prefixed view (see Section 5.1.3 [4.1.3],
page 183), the subprogram call is equivalent to a call on the underlying subprogram, with
the first actual parameter being provided by the prefix of the prefixed view (or the Ac-
cess attribute of this prefix if the first formal parameter is an access parameter), and the
remaining actual parameters given by the actual_parameter_part, if any.

11/2

The exception Program_Error is raised at the point of a function_call if the function com-
pletes normally without executing a return statement.

12/2

A function_call denotes a constant, as defined in Section 7.5 [6.5], page 272; the nominal
subtype of the constant is given by the nominal subtype of the function result.

Ezamples

13

<Examples of procedure calls:>

14
Traverse_Tree; ——< see Section
[6.1], page 255>
Print_Header (128, Title, True); ——< see Section
[6.1], page 255>

15
Switch(From => X, To => Next); ——< see Section
[6.1], page 255>
Print_Header (128, Header => Title, Center => True); ——< see Section
[6.1], page 255>
Print_Header (Header => Title, Center => True, Pages => 128); ——< see Section
[6.1], page 255>

16

<Examples of function calls:>

17
Dot_Product (U, V) ——< see Section 7.1 [6.1], page 255 and Section 7.3J

[6.3], page 261>



Clock ——< see Section 10.6 [9.6], page 358>
F.all ——< presuming F is of an access—to—subprogram type —— see
[3.10], page 156>
18
<Examples of procedures with default expressions:>
19
procedure Activate(Process : in Process_Name;
After in Process_Name := No_Process;
Wait in Duration := 0.0;
Prior in Boolean := False);
20
procedure Pair(Left, Right in Person_Name := new Person); ——< see Section 4.
[3.10.1], page 160>
21
<Examples of their calls:>
22
Activate (X);
Activate(X, After => Y);
Activate(X, Wait => 60.0, Prior => True);
Activate(X, Y, 10.0, False);
23
Pair;
Pair(Left => new Person, Right => new Person);
NOTES
24
7 If a default_expression is used for two or more parameters in a
multiple parameter_specification (see [S0160], page 256), the de-
fault_expression (see [S0063], page 123) is evaluated once for each
omitted parameter. Hence in the above examples, the two calls of
Pair are equivalent.
Ezamples
25

<Examples of overloaded subprograms:>
26

procedure Put(X :
procedure Put(X :

in Integer);
in String);



27

procedure Set(Tint : in Color);
procedure Set(Signal : in Light);
28
<Examples of their calls:>
29
Put (28) ;
Put("no possible ambiguity here");
30
Set(Tint  => Red);
Set (Signal => Red);
Set (Color’ (Red));
31

——< Set(Red) would be ambiguous since Red may>
——< denote a value either of type Color or of type Light>

7.4.1 6.4.1 Parameter Associations

1
A parameter association defines the association between an actual parameter and a formal
parameter.

Name Resolution Rules

2
The <formal_parameter_>selector_name of a parameter_association (see [S0166], page 267)

shall resolve to denote a parameter_specification (see [S0160], page 256) of the view being
called.

3

The <actual parameter> is either the explicit_actual_parameter given in a parame-
ter_association for a given formal parameter, or the corresponding default_expression if no
parameter_association is given for the formal parameter. The expected type for an actual
parameter is the type of the corresponding formal parameter.

4
If the mode is in, the actual is interpreted as an expression; otherwise, the actual is inter-
preted only as a name, if possible.
Legality Rules
5
If the mode is in out or out, the actual shall be a name that denotes a variable.

6
The type of the actual parameter associated with an access parameter shall be convertible
(see Section 5.6 [4.6], page 219) to its anonymous access type.

Dynamic Semantics



7
For the evaluation of a parameter_association:

8

e The actual parameter is first evaluated.

e For an access parameter, the access_definition is elaborated, which creates the anony-
mous access type.

10

e For a parameter (of any mode) that is passed by reference (see Section 7.2 [6.2],
page 260), a view conversion of the actual parameter to the nominal subtype of the
formal parameter is evaluated, and the formal parameter denotes that conversion.

11

e For an in or in out parameter that is passed by copy (see Section 7.2 [6.2], page 260), the
formal parameter object is created, and the value of the actual parameter is converted
to the nominal subtype of the formal parameter and assigned to the formal.

12

e For an out parameter that is passed by copy, the formal parameter object is created,

and:
13
e For an access type, the formal parameter is initialized from the
value of the actual, without a constraint check;
14
e For a composite type with discriminants or that has implicit
initial values for any subcomponents (see Section 4.3.1 [3.3.1],
page 61), the behavior is as for an in out parameter passed by
copy.
15

e For any other type, the formal parameter is uninitialized. If
composite, a view conversion of the actual parameter to the
nominal subtype of the formal is evaluated (which might raise
Constraint_Error), and the actual subtype of the formal is that
of the view conversion. If elementary, the actual subtype of the
formal is given by its nominal subtype.



16
A formal parameter of mode in out or out with discriminants is constrained if either its
nominal subtype or the actual parameter is constrained.

17

After normal completion and leaving of a subprogram, for each in out or out parameter
that is passed by copy, the value of the formal parameter is converted to the subtype
of the variable given as the actual parameter and assigned to it. These conversions and
assignments occur in an arbitrary order.

7.5 6.5 Return Statements

1/2

A simple_return_statement (see [S0168|, page 272) or extended_return_statement (see
[S0170], page 272) (collectively called a <return statement>) is used to complete the
execution of the innermost enclosing subprogram_body (see [S0162], page 261), entry_body
(see [S0203], page 348), or accept_statement (see [S0201], page 347).

Syntax
2/2
simple_return_statement ::= return [expression];
2.1/2
extended_return_statement ::=
return defining_identifier : [aliased] return_subtype_indication [:= expression] [do
handled_sequence_of_statements
end return];
2.2/2
return_subtype_indication ::= subtype_indication | access_definition [ |
Name Resolution Rules
3/2

The <result subtype> of a function is the subtype denoted by the subtype_mark, or defined
by the access_definition, after the reserved word return in the profile of the function. The
expected type for the expression, if any, of a simple_return_statement (see [S0168], page 272)
is the result type of the corresponding function. The expected type for the expression of an
extended_return_statement is that of the return_subtype_indication (see [S0171], page 272).
Legality Rules

4/2

A return statement shall be within a callable construct, and it <applies to> the innermost
callable construct or extended_return_statement that contains it. A return statement shall
not be within a body that is within the construct to which the return statement applies.
5/2

A function body shall contain at least one return statement that applies to the func-
tion body, unless the function contains code_statements. A simple_return_statement (see



[S0168], page 272) shall include an expression if and only if it applies to a function body.
An extended_return_statement shall apply to a function body.

5.1/2

For an extended_return_statement (see [S0170], page 272) that applies to a function body:
5.2/2

e If the result subtype of the function is defined by a subtype_mark, the return_subtype_-
indication (see [S0171], page 272) shall be a subtype_indication. The type of the sub-
type-indication shall be the result type of the function. If the result subtype of the
function is constrained, then the subtype defined by the subtype_indication shall also
be constrained and shall statically match this result subtype. If the result subtype of
the function is unconstrained, then the subtype defined by the subtype_indication shall
be a definite subtype, or there shall be an expression.

5.3/2

e If the result subtype of the function is defined by an access_definition, the return_-
subtype_indication (see [S0171], page 272) shall be an access_definition. The subtype
defined by the access_definition shall statically match the result subtype of the function.
The accessibility level of this anonymous access subtype is that of the result subtype.

5.4/2
For any return statement that applies to a function body:

5.5/2

e If the result subtype of the function is limited, then the expression of the return state-
ment (if any) shall be an aggregate, a function call (or equivalent use of an operator),
or a qualified_expression or parenthesized expression whose operand is one of these.

5.6/2

e If the result subtype of the function is class—wide, the accessibility level of the type
of the expression of the return statement shall not be statically deeper than that
of the master that elaborated the function body. If the result subtype has one or
more unconstrained access discriminants, the accessibility level of the anonymous ac-
cess type of each access discriminant, as determined by the expression of the simple_-
return_statement (see [S0168], page 272) or the return_subtype_indication (see [S0171],
page 272), shall not be statically deeper than that of the master that elaborated the
function body.

Static Semantics

5.7/2

Within an extended_return_statement, the <return object> is declared with the given defin-
ing_identifier, with the nominal subtype defined by the return_subtype_indication (see
[S0171], page 272).

Dynamic Semantics

5.8/2

For the execution of an extended_return_statement, the subtype_indication or



access_definition is elaborated. This creates the nominal subtype of the return object. If
there is an expression, it is evaluated and converted to the nominal subtype (which might
raise Constraint_Error —— see Section 5.6 [4.6], page 219); the return object is created
and the converted value is assigned to the return object. Otherwise, the return object is
created and initialized by default as for a stand—alone object of its nominal subtype (see
Section 4.3.1 [3.3.1], page 61). If the nominal subtype is indefinite, the return object is
constrained by its initial value.

6/2

For the execution of a simple_return_statement (see [S0168|, page 272), the expression
(if any) is first evaluated, converted to the result subtype, and then is assigned to the
anonymous <return object>.

7/2
If the return object has any parts that are tasks, the activation of those tasks does not
occur until after the function returns (see Section 10.2 [9.2], page 333).

8/2

If the result type of a function is a specific tagged type, the tag of the return object is that
of the result type. If the result type is class—wide, the tag of the return object is that of the
value of the expression. A check is made that the accessibility level of the type identified
by the tag of the result is not deeper than that of the master that elaborated the function
body. If this check fails, Program_Error is raised.

<Paragraphs 9 through 20 were deleted.>

21/2

If the result subtype of a function has one or more unconstrained access discriminants,
a check is made that the accessibility level of the anonymous access type of each access
discriminant, as determined by the expression or the return_subtype_indication (see [S0171],
page 272) of the function, is not deeper than that of the master that elaborated the function
body. If this check fails, Program_Error is raised.

22/2

For the execution of an extended_return_statement (see [S0170], page 272), the handled._-
sequence_of_statements (see [S0247], page 420) is executed. Within this handled_sequence_-
of_statements (see [S0247], page 420), the execution of a simple_return_statement (see
[S0168], page 272) that applies to the extended_return_statement (see [S0170], page 272)
causes a transfer of control that completes the extended_return_statement (see [S0170],
page 272). Upon completion of a return statement that applies to a callable construct, a
transfer of control is performed which completes the execution of the callable construct,
and returns to the caller.

23/2
In the case of a function, the function_call denotes a constant view of the return object.
Implementation Permissions

24/2

If the result subtype of a function is unconstrained, and a call on the function is used to
provide the initial value of an object with a constrained nominal subtype, Constraint_Error
may be raised at the point of the call (after abandoning the execution of the function body)
if, while elaborating the return_subtype_indication (see [S0171], page 272) or evaluating the



expression of a return statement that applies to the function body, it is determined that
the value of the result will violate the constraint of the subtype of this object.

Ezamples

25
<Examples of return statements:>
26/2

return; ——< in a procedure body, >entry_body<,>}

—— accept_statement<, or >extended_return_stateme

27

return Key_Value(Last_Index); ——< in a function body>
28/2

return Node : Cell do ——< in a function body, see Section 4.10.1J

[3.10.1], page 160 for Cell>
Node.Value := Result;
Node.Succ := Next_Node;

end return;

7.5.1 6.5.1 Pragma No_Return

1/2
A pragma No_Return indicates that a procedure cannot return normally; it may propagate
an exception or loop forever.

Syntax

2/2

The form of a pragma No_Return, which is a representation pragma

(see Section 14.1 [13.1], page 481), is as follows:
3/2

pragma No_Return(<procedure_>local_namef{, <proce-
dure_>local_name});
Legality Rules

4/2

Each <procedure_>local_name shall denote one or more procedures or generic procedures;
the denoted entities are <non—returning>. The <procedure_>local_name shall not denote a
null procedure nor an instance of a generic unit.

5/2

A return statement shall not apply to a non—returning procedure or generic procedure.
6/2

A procedure shall be non—returning if it overrides a dispatching non—returning procedure.
In addition to the places where Legality Rules normally apply (see Section 13.3 [12.3],
page 454), this rule applies also in the private part of an instance of a generic unit.



7/2
If a renaming—as—body completes a non—returning procedure declaration, then the re-
named procedure shall be non—returning.
Static Semantics
8/2
If a generic procedure is non—returning, then so are its instances. If a procedure declared
within a generic unit is non—returning, then so are the corresponding copies of that proce-
dure in instances.
Dynamic Semantics
9/2
If the body of a non—returning procedure completes normally, Program_Error is raised at
the point of the call.
Examples

10/2

procedure Fail(Msg : String); ——< raises Fatal_Error exception>
pragma No_Return(Fail);
——< Inform compiler and reader that procedure never returns normally>}

7.6 6.6 Overloading of Operators

1
An <operator> is a function whose designator is an operator_symbol. Operators, like other
functions, may be overloaded.

Name Resolution Rules

2
Each use of a unary or binary operator is equivalent to a function_call with <function_>prefix
being the corresponding operator_symbol, and with (respectively) one or two positional
actual parameters being the operand(s) of the operator (in order).

Legality Rules

3

The subprogram_specification of a unary or binary operator shall have one or two parame-

ters, respectively. A generic function instantiation whose designator is an operator_symbol

is only allowed if the specification of the generic function has the corresponding number of

parameters.

4

Default_expressions are not allowed for the parameters of an operator (whether the operator

is declared with an explicit subprogram_specification or by a generic_instantiation).

5

An explicit declaration of " /=" shall not have a result type of the predefined type Boolean.
Static Semantics

6
A declaration of "=" whose result type is Boolean implicitly declares a declaration of " /="
that gives the complementary result.

NOTES



8 The operators "+" and "—" are both unary and binary operators,
and hence may be overloaded with both one— and two—parameter
functions.
Examples
8
<Examples of user—defined operators:>
9

function "+" (Left, Right : Matrix) return Matrix;
function "+" (Left, Right : Vector) return Vector;

——< assuming that A, B, and C are of the type Vector>
——< the following two statements are equivalent:>

A :=B + C;
A := "+"(B, C);

7.7 6.7 Null Procedures

1/2
A null_procedure_declaration provides a shorthand to declare a procedure with an empty
body.

Syntax
2/2
null_procedure_declaration ::=
[overriding_indicator]
procedure_specification is null;
Static Semantics
3/2

A null_procedure_declaration declares a <null procedure>. A completion is not allowed for
a null_procedure_declaration.

Dynamic Semantics
4/2
The execution of a null procedure is invoked by a subprogram call. For the execution of a
subprogram call on a null procedure, the execution of the subprogram_body has no effect.

5/2
The elaboration of a null_procedure_declaration has no effect.
Examples
6/2
procedure Simplify(Expr : in out Expression) is null; ——< see Section 4.9]

[3.9], page 136>



——< By default, Simplify does nothing, but it may be overridden in extensions of



8 7 Packages

1

Packages are program units that allow the specification of groups of logically related entities.
Typically, a package contains the declaration of a type (often a private type or private
extension) along with the declarations of primitive subprograms of the type, which can be
called from outside the package, while their inner workings remain hidden from outside
users.

8.1 7.1 Package Specifications and Declarations

1

A package is generally provided in two parts: a package_specification and a package_body.

Every package has a package_specification, but not all packages have a package_body.
Syntax

package_declaration ::= package_specification;

package_specification ::=
package defining_program_unit_name is
{basic_declarative_item}
[private
{basic_declarative_item}]
end [[parent_unit_name.|identifier]

If an identifier or parent_unit_name.identifier appears at the end of

a package_specification, then this sequence of lexical elements shall

repeat the defining_program_unit_name.

Legality Rules
5/2
A package_declaration or generic_package_declaration requires a completion (a body) if it
contains any basic_declarative_item that requires a completion, but whose completion is
not in its package_specification.
Static Semantics

6/2
The first list of basic_declarative_items of a package_specification of a package other than
a generic formal package is called the <visible part> of the package. The optional list of
basic_declarative_items after the reserved word private (of any package_specification) is
called the <private part> of the package. If the reserved word private does not appear,
the package has an implicit empty private part. Each list of basic_declarative_items of a
package_specification forms a <declaration list> of the package.



7

An entity declared in the private part of a package is visible only within the declarative re-

gion of the package itself (including any child units —— see Section 11.1.1 [10.1.1], page 394).

In contrast, expanded names denoting entities declared in the visible part can be used even

outside the package; furthermore, direct visibility of such entities can be achieved by means

of use_clauses (see Section 5.1.3 [4.1.3], page 183, and Section 9.4 [8.4], page 314).
Dynamic Semantics

8
The elaboration of a package_declaration consists of the elaboration of its
basic_declarative_items in the given order.

NOTES
9
1 The visible part of a package contains all the information that
another program unit is able to know about the package.
10
2 If a declaration occurs immediately within the specification of a
package, and the declaration has a corresponding completion that is
a body, then that body has to occur immediately within the body
of the package.
Examples
11
<Example of a package declaration:>
12
package Rational_Numbers is
13
type Rational is
record
Numerator : Integer;
Denominator : Positive;
end record;
14
function "="(X,Y : Rational) return Boolean;
15
function "/" (X,Y : Integer) return Rational; ——< to construct a rational
16

function "+" (X,Y : Rational) return Rational;



function "—" (X,Y : Rational) return Rational;

function "#" (X,Y : Rational) return Rational;

function "/" (X,Y : Rational) return Rational;
end Rational_Numbers;

17
There are also many examples of package declarations in the predefined language environ-

ment (see Chapter 15 [Annex A], page 553).

8.2 7.2 Package Bodies

1
In contrast to the entities declared in the visible part of a package, the entities declared
in the package_body are visible only within the package_body itself. As a consequence,
a package with a package_body can be used for the construction of a group of related
subprograms in which the logical operations available to clients are clearly isolated from
the internal entities.

Syntax

package_body ::=
package body defining_program_unit_name is
declarative_part
[begin
handled_sequence_of_statements]
end [[parent_unit_name.|identifier];

If an identifier or parent_unit_name.identifier appears at the end of
a package_body, then this sequence of lexical elements shall repeat
the defining_program_unit_name.

Legality Rules

4

A package_body shall be the completion of a previous package_declaration (see [S0173],
page 279) or generic_package_declaration (see [S0254], page 450). A library package_-
declaration (see [S0173], page 279) or library generic_package_declaration (see [S0254],
page 450) shall not have a body unless it requires a body; pragma Elaborate_Body can
be used to require a library_unit_declaration (see [S0231], page 395) to have a body (see
Section 11.2.1 [10.2.1], page 413) if it would not otherwise require one.

Static Semantics

5

In any package_body without statements there is an implicit null_statement (see [S0134],
page 241). For any package_declaration (see [S0173], page 279) without an explicit com-
pletion, there is an implicit package_body (see [S0175], page 281) containing a single
null_statement. For a noninstance, nonlibrary package, this body occurs at the end of
the declarative_part (see [S0086], page 175) of the innermost enclosing program unit or
block_statement (see [S0145], page 251); if there are several such packages, the order of



the implicit package_bodies is unspecified. (For an instance, the implicit package_body (see
[S0175], page 281) occurs at the place of the instantiation (see Section 13.3 [12.3], page 454).
For a library package, the place is partially determined by the elaboration dependences (see
Section 10).)

Dynamic Semantics

6

For the elaboration of a nongeneric package_body, its declarative_part (see [S0086],
page 175) is first elaborated, and its handled_sequence_of_statements (see [S0247],
page 420) is then executed.

NOTES

3 A variable declared in the body of a package is only visible within
this body and, consequently, its value can only be changed within
the package_body. In the absence of local tasks, the value of such
a variable remains unchanged between calls issued from outside the
package to subprograms declared in the visible part. The properties
of such a variable are similar to those of a "static" variable of C.

4 The elaboration of the body of a subprogram explicitly declared in
the visible part of a package is caused by the elaboration of the body
of the package. Hence a call of such a subprogram by an outside
program unit raises the exception Program_Error if the call takes
place before the elaboration of the package_body (see Section 4.11
[3.11], page 175).
Examples
9
<Example of a package body (see Section 8.1 [7.1], page 279):>

10

package body Rational_Numbers is
11

procedure Same_Denominator (X,Y : in out Rational) is
begin
——< reduces X and Y to the same denominator:>

end Same_Denominator;
12

function "="(X,Y : Rational) return Boolean is
U : Rational := X;
V : Rational := Y;



begin
Same_Denominator (U,V);
return U.Numerator = V.Numerator;

end ||=ll;
13
function "/" (X,Y : Integer) return Rational is
begin
if Y > 0 then
return (Numerator => X, Denominator => Y);
else
return (Numerator => —X, Denominator => —Y);
end if;
end II/II .
14
function "+" (X,Y : Rational) return Rational is ... end "+";
function "—" (X,Y : Rational) return Rational is ... end "—";
function "*" (X,Y : Rational) return Rational is ... end "x";
function "/" (X,Y : Rational) return Rational is ... end "/";
15

end Rational_Numbers;

8.3 7.3 Private Types and Private Extensions

1
The declaration (in the visible part of a package) of a type as a private type or private
extension serves to separate the characteristics that can be used directly by outside program
units (that is, the logical properties) from other characteristics whose direct use is confined
to the package (the details of the definition of the type itself). See Section 4.9.1 [3.9.1],
page 143, for an overview of type extensions.

Syntax

private_type_declaration ::=
type defining_identifier [discriminant_part] is [[abstract] tagged] [limited| private;

3/2

private_extension_declaration ::=
type defining_identifier [discriminant_part] is
[abstract] [limited | synchronized] new <ancestor_>subtype_indication

[and interface_list] with private;
Legality Rules



4

A private_type_declaration or private_extension_declaration declares a <partial view> of
the type; such a declaration is allowed only as a declarative_item of the visible part of a
package, and it requires a completion, which shall be a full_type_declaration that occurs as
a declarative_item of the private part of the package. The view of the type declared by the
full_type_declaration is called the <full view>. A generic formal private type or a generic
formal private extension is also a partial view.

5

A type shall be completely defined before it is frozen (see Section 4.11.1 [3.11.1], page 177,
and Section 14.14 [13.14], page 550). Thus, neither the declaration of a variable of a partial
view of a type, nor the creation by an allocator of an object of the partial view are allowed
before the full declaration of the type. Similarly, before the full declaration, the name of
the partial view cannot be used in a generic_instantiation or in a representation item.

6/2

A private type is limited if its declaration includes the reserved word limited; a private
extension is limited if its ancestor type is a limited type that is not an interface type, or if
the reserved word limited or synchronized appears in its definition. If the partial view is
nonlimited, then the full view shall be nonlimited. If a tagged partial view is limited, then
the full view shall be limited. On the other hand, if an untagged partial view is limited,
the full view may be limited or nonlimited.

7

If the partial view is tagged, then the full view shall be tagged. On the other hand, if the
partial view is untagged, then the full view may be tagged or untagged. In the case where
the partial view is untagged and the full view is tagged, no derivatives of the partial view
are allowed within the immediate scope of the partial view; derivatives of the full view are
allowed.

7.1/2

If a full type has a partial view that is tagged, then:

7.2/2

e the partial view shall be a synchronized tagged type (see Section 4.9.4 [3.9.4], page 152)
if and only if the full type is a synchronized tagged type;

7.3/2

e the partial view shall be a descendant of an interface type (see 3.9.4) if and only if the
full type is a descendant of the interface type.

8

The <ancestor subtype> of a private_extension_declaration is the subtype defined by the
<ancestor_>subtype_indication (see [S0027], page 56); the ancestor type shall be a specific
tagged type. The full view of a private extension shall be derived (directly or indirectly)
from the ancestor type. In addition to the places where Legality Rules normally apply (see
Section 13.3 [12.3], page 454), the requirement that the ancestor be specific applies also in
the private part of an instance of a generic unit.

8.1/2

If the reserved word limited appears in a private_extension_declaration, the ancestor



type shall be a limited type. If the reserved word synchronized appears in a
private_extension_declaration, the ancestor type shall be a limited interface.

9

If the declaration of a partial view includes a known_discriminant_part, then the
full_type_declaration shall have a fully conforming (explicit) known_discriminant_part (see
Section 7.3.1 [6.3.1], page 263, "Section 7.3.1 [6.3.1], page 263, Conformance Rules"). The
ancestor subtype may be unconstrained; the parent subtype of the full view is required to
be constrained (see Section 4.7 [3.7], page 123).

10

If a private extension inherits known discriminants from the ancestor subtype, then the full
view shall also inherit its discriminants from the ancestor subtype, and the parent subtype
of the full view shall be constrained if and only if the ancestor subtype is constrained.

10.1/2

If the full_type_declaration for a private extension is defined by a derived_type_definition,
then the reserved word limited shall appear in the full_type_declaration if and only if it also
appears in the private_extension_declaration.

11
If a partial view has unknown discriminants, then the full_type_declaration may define a
definite or an indefinite subtype, with or without discriminants.

12
If a partial view has neither known nor unknown discriminants, then the
full_type_declaration shall define a definite subtype.

13
If the ancestor subtype of a private extension has constrained discriminants, then the parent
subtype of the full view shall impose a statically matching constraint on those discriminants.

Static Semantics

14

A private_type_declaration declares a private type and its first subtype. Similarly, a pri-
vate_extension_declaration (see [S0177], page 283) declares a private extension and its first
subtype.

15

A declaration of a partial view and the corresponding full_type_declaration define two views
of a single type. The declaration of a partial view together with the visible part define the
operations that are available to outside program units; the declaration of the full view to-
gether with the private part define other operations whose direct use is possible only within
the declarative region of the package itself. Moreover, within the scope of the declaration of
the full view, the <characteristics> of the type are determined by the full view; in particular,
within its scope, the full view determines the classes that include the type, which compo-
nents, entries, and protected subprograms are visible, what attributes and other predefined
operations are allowed, and whether the first subtype is static. See Section 8.3.1 [7.3.1],
page 287.

16/2

A private extension inherits components (including discriminants unless there is a new dis-
criminant_part specified) and user—defined primitive subprograms from its ancestor type



and its progenitor types (if any), in the same way that a record extension inherits com-
ponents and user—defined primitive subprograms from its parent type and its progenitor
types (see Section 4.4 [3.4], page 66).

Dynamic Semantics

17

The elaboration of a private_type_declaration creates a partial view of a type. The elabora-
tion of a private_extension_declaration elaborates the <ancestor_>subtype_indication, and
creates a partial view of a type.

NOTES
18

5 The partial view of a type as declared by a pri-
vate_type_declaration is defined to be a composite view (in
Section 4.2 [3.2], page 50). The full view of the type might or might
not be composite. A private extension is also composite, as is its
full view.

19/2

6 Declaring a private type with an unknown_discriminant_part is a
way of preventing clients from creating uninitialized objects of the
type; they are then forced to initialize each object by calling some
operation declared in the visible part of the package.

20/2

7 The ancestor type specified in a private_extension_declaration and
the parent type specified in the corresponding declaration of a record
extension given in the private part need not be the same. If the an-
cestor type is not an interface type, the parent type of the full view
can be any descendant of the ancestor type. In this case, for a
primitive subprogram that is inherited from the ancestor type and
not overridden, the formal parameter names and default expressions
(if any) come from the corresponding primitive subprogram of the
specified ancestor type, while the body comes from the correspond-
ing primitive subprogram of the parent type of the full view. See
Section 4.9.2 [3.9.2], page 145.

20.1/2

8 If the ancestor type specified in a private_extension_declaration
is an interface type, the parent type can be any type so long as the
full view is a descendant of the ancestor type. The progenitor types
specified in a private_extension_declaration and the progenitor types
specified in the corresponding declaration of a record extension given
in the private part need not be the same —— the only requirement
is that the private extension and the record extension be descended
from the same set of interfaces.



Examples

21
<Examples of private type declarations:>
22
type Key is private;
type File_Name is limited private;
23
<Example of a private extension declaration:>
24

type List is new Ada.Finalization.Controlled with private;

8.3.1 7.3.1 Private Operations

1
For a type declared in the visible part of a package or generic package, certain operations
on the type do not become visible until later in the package —— either in the private part

or the body. Such <private operations> are available only inside the declarative region of
the package or generic package.
Static Semantics

2

The predefined operators that exist for a given type are determined by the classes to which
the type belongs. For example, an integer type has a predefined "+" operator. In most
cases, the predefined operators of a type are declared immediately after the definition of
the type; the exceptions are explained below. Inherited subprograms are also implicitly
declared immediately after the definition of the type, except as stated below.

3/1

For a composite type, the characteristics (see Section 8.3 [7.3], page 283) of the type are
determined in part by the characteristics of its component types. At the place where the
composite type is declared, the only characteristics of component types used are those
characteristics visible at that place. If later immediately within the declarative region
in which the composite type is declared additional characteristics become visible for a
component type, then any corresponding characteristics become visible for the composite
type. Any additional predefined operators are implicitly declared at that place.

4/1

The corresponding rule applies to a type defined by a derived_type_definition, if there
is a place immediately within the declarative region in which the type is declared where
additional characteristics of its parent type become visible.

5/1

For example, an array type whose component type is limited private becomes nonlimited if
the full view of the component type is nonlimited and visible at some later place immediately
within the declarative region in which the array type is declared. In such a case, the
predefined "=" operator is implicitly declared at that place, and assignment is allowed
after that place.



6/1

Inherited primitive subprograms follow a different rule. For a derived_type_definition, each
inherited primitive subprogram is implicitly declared at the earliest place, if any, imme-
diately within the declarative region in which the type_declaration occurs, but after the
type_declaration, where the corresponding declaration from the parent is visible. If there is
no such place, then the inherited subprogram is not declared at all. An inherited subpro-
gram that is not declared at all cannot be named in a call and cannot be overridden, but
for a tagged type, it is possible to dispatch to it.

7

For a private_extension_declaration, each inherited subprogram is declared immediately
after the private_extension_declaration if the corresponding declaration from the ancestor
is visible at that place. Otherwise, the inherited subprogram is not declared for the private
extension, though it might be for the full type.

8

The Class attribute is defined for tagged subtypes in Section 4.9 [3.9], page 136. In addition,
for every subtype S of an untagged private type whose full view is tagged, the following
attribute is defined:

9
S’Class

Denotes the
class—wide subtype
corresponding to
the full view of S.
This  attribute is
allowed only from
the  beginning  of
the private part in
which the full view
is declared, until the
declaration of the
full view. After the
full view, the Class
attribute of the full
view can be used.

NOTES
10

9 Because a partial view and a full view are two different views of one
and the same type, outside of the defining package the characteristics
of the type are those defined by the visible part. Within these outside
program units the type is just a private type or private extension,
and any language rule that applies only to another class of types
does not apply. The fact that the full declaration might implement
a private type with a type of a particular class (for example, as



an array type) is relevant only within the declarative region of the
package itself including any child units.

11
The consequences of this actual implementation are, however, valid
everywhere. For example: any default initialization of components
takes place; the attribute Size provides the size of the full view;
finalization is still done for controlled components of the full view;
task dependence rules still apply to components that are task objects.
12/2
10 Partial views provide initialization, membership tests, selected
components for the selection of discriminants and inherited com-
ponents, qualification, and explicit conversion. Nonlimited partial
views also allow use of assignment_statements.
13
11 For a subtype S of a partial view, S’Size is defined (see
Section 14.3 [13.3], page 486). For an object A of a partial view,
the attributes A’Size and A’Address are defined (see Section 14.3
[13.3], page 486). The Position, First_Bit, and Last_Bit attributes
are also defined for discriminants and inherited components.
Examples
14
<Example of a type with private operations:>
15
package Key_Manager is
type Key is private;
Null _Key : constant Key; ——< a deferred constant declaration (see Section 8.4f
[7.4], page 290)>
procedure Get_Key(K : out Key);
function "<" (X, Y : Key) return Boolean;
private
type Key is new Natural;
Null_Key : constant Key := Key’First;
end Key_Manager;
16

package body Key_Manager is
Last_Key : Key := Null_Key;
procedure Get_Key(K : out Key) is
begin
Last_Key := Last_Key + 1;



17

18

19

20

K := Last_Key;
end Get_Key;

function "<" (X, Y : Key) return Boolean is
begin
return Natural(X) < Natural(Y);
end ||<u;
end Key_Manager;
NOTES

12 <Notes on the example:> Outside of the package Key_Manager,
the operations available for objects of type Key include assignment,
the comparison for equality or inequality, the procedure Get_Key
and the operator "<"; they do not include other relational operators
such as ">=", or arithmetic operators.

The explicitly declared operator "<" hides the predefined operator
"<" implicitly declared by the full_type_declaration. Within the
body of the function, an explicit conversion of X and Y to the sub-
type Natural is necessary to invoke the "<" operator of the parent
type. Alternatively, the result of the function could be written as
not (X >=Y), since the operator ">=" is not redefined.

The value of the variable Last_Key, declared in the package body,
remains unchanged between calls of the procedure Get_Key. (See
also the NOTES of Section 8.2 [7.2], page 281.)

8.4 7.4 Deferred Constants

1

Deferred constant declarations may be used to declare constants in the visible part of a
package, but with the value of the constant given in the private part.
be used to declare constants imported from other languages (see Chapter 16 [Annex B],
page 894).

2

A <deferred constant declaration> is an object_declaration with the reserved word constant
but no initialization expression. The constant declared by a deferred constant declaration is
called a <deferred constant>. A deferred constant declaration requires a completion, which
shall be a full constant declaration (called the <full declaration> of the deferred constant),

Legality Rules

or a pragma Import (see Chapter 16 [Annex B], page 894).

They may also



3

A deferred constant declaration that is completed by a full constant declaration shall occur
immediately within the visible part of a package_specification. For this case, the following
additional rules apply to the corresponding full declaration:

4

e The full declaration shall occur immediately within the private part of the same pack-
age;

5/2

e The deferred and full constants shall have the same type, or shall have statically match-
ing anonymous access subtypes;

6/2

e If the deferred constant declaration includes a subtype_indication that defines a con-
strained subtype, then the subtype defined by the subtype_indication in the full declara-
tion shall match it statically. On the other hand, if the subtype of the deferred constant
is unconstrained, then the full declaration is still allowed to impose a constraint. The
constant itself will be constrained, like all constants;

7/2

e If the deferred constant declaration includes the reserved word aliased, then the full
declaration shall also;

7.1/2

e If the subtype of the deferred constant declaration excludes null, the subtype of the
full declaration shall also exclude null.

8
A deferred constant declaration that is completed by a pragma Import need not appear in
the visible part of a package_specification, and has no full constant declaration.
9/2
The completion of a deferred constant declaration shall occur before the constant is frozen
(see Section 14.14 [13.14], page 550).

Dynamic Semantics
10
The elaboration of a deferred constant declaration elaborates the subtype_indication or
(only allowed in the case of an imported constant) the array_type_definition.

NOTES
11

13 The full constant declaration for a deferred constant that is of
a given private type or private extension is not allowed before the



corresponding full_type_declaration. This is a consequence of the
freezing rules for types (see Section 14.14 [13.14], page 550).

Ezamples
12
<Examples of deferred constant declarations:>
13
Null_Key : constant Key; ——< see Section 8.3.1 [7.3.1], page 287>}
14

CPU_Identifier : constant String(1..8);
pragma Import(Assembler, CPU_Identifier, Link_Name => "CPU_ID");
——< see Section 16.1 [B.1], page 894>

8.5 7.5 Limited Types

1/2

A limited type is (a view of) a type for which copying (such as for an assignment_statement)
is not allowed. A nonlimited type is a (view of a) type for which copying is allowed.

Legality Rules

2/2

If a tagged record type has any limited components, then the reserved word limited shall
appear in its record_type_definition. If the reserved word limited appears in the definition
of a derived_type_definition, its parent type and any progenitor interfaces shall be limited.

2.1/2

In the following contexts, an expression of a limited type is not permitted unless it is
an aggregate, a function_call, or a parenthesized expression or qualified_expression whose
operand is permitted by this rule:

2.2/2

e the initialization expression of an object_declaration (see Section 4.3.1 [3.3.1], page 61)

2.3/2

e the default_expression of a component_declaration (see Section 4.8 [3.8], page 130)

2.4/2

e the expression of a record_component_association (see Section 5.3.1 [4.3.1], page 191)

2.5/2

e the expression for an ancestor_part of an extension_aggregate (see Section 5.3.2 [4.3.2],
page 194)



2.6/2

e an expression of a positional_array_aggregate or the expression of an ar-
ray_component_association (see Section 5.3.3 [4.3.3], page 196)

2.7/2

e the qualified_expression of an initialized allocator (see Section 5.8 [4.8], page 230)

2.8/2

e the expression of a return statement (see Section 7.5 [6.5], page 272)

2.9/2

e the default_expression or actual parameter for a formal object of mode in (see
Section 13.4 [12.4], page 458)

Static Semantics
3/2
A type is <limited> if it is one of the following:
4/2

e a type with the reserved word limited, synchronized, task, or protected in its definition;

5/2

e <This paragraph was deleted.>
6/2

e a composite type with a limited component;

6.1/2

e a derived type whose parent is limited and is not an interface.

7
Otherwise, the type is nonlimited.

8
There are no predefined equality operators for a limited type.

Implementation Requirements
8.1/2
For an aggregate of a limited type used to initialize an object as allowed above, the im-
plementation shall not create a separate anonymous object for the aggregate. For a func-
tion_call of a type with a part that is of a task, protected, or explicitly limited record type
that is used to initialize an object as allowed above, the implementation shall not create a
separate return object (see 6.5) for the function_call. The aggregate or function_call shall
be constructed directly in the new object.



NOTES

9/2
14 While it is allowed to write initializations of limited objects, such
initializations never copy a limited object. The source of such an as-
signment operation must be an aggregate or function_call, and such
aggregates and function_calls must be built directly in the target
object.
<Paragraphs 10 through 15 were deleted.>
16
15 As illustrated in Section 8.3.1 [7.3.1], page 287, an untagged
limited type can become nonlimited under certain circumstances.
Examples
17
<Example of a package with a limited type:>
18
package I0_Package is
type File_Name is limited private;
19
procedure Open (F : in out File_Name);
procedure Close(F : in out File_Name);
procedure Read (F : in File_Name; Item : out Integer);
procedure Write(F : in File_Name; Item : in Integer);
private
type File_Name is
limited record
Internal_Name : Integer := O;
end record;
end I0_Package;
20

package body IO0_Package is
Limit : constant := 200;

type File_Descriptor is record ... end record;

Directory : array (1 .. Limit) of File_Descriptor;

procedure Open (F : in out File_Name) is ... end;

procedure Close(F : in out File_Name) is ... end;

procedure Read (F : in File_Name; Item : out Integer) is ... end;]]
procedure Write(F : in File_Name; Item : in Integer) is ... end;]]

begin



end I0_Package;
NOTES
21

16 <Notes on the example:> In the example above, an outside sub-
program making use of IO_Package may obtain a file name by calling
Open and later use it in calls to Read and Write. Thus, outside the
package, a file name obtained from Open acts as a kind of pass-
word; its internal properties (such as containing a numeric value)
are not known and no other operations (such as addition or com-
parison of internal names) can be performed on a file name. Most
importantly, clients of the package cannot make copies of objects of
type File_Name.

22

This example is characteristic of any case where complete control
over the operations of a type is desired. Such packages serve a dual
purpose. They prevent a user from making use of the internal struc-
ture of the type. They also implement the notion of an encapsulated
data type where the only operations on the type are those given in
the package specification.

23/2

The fact that the full view of File_Name is explicitly declared lim-
ited means that parameter passing will always be by reference and
function results will always be built directly in the result object (see
Section 7.2 [6.2], page 260, and Section 7.5 [6.5], page 272).

8.6 7.6 User-Defined Assignment and Finalization

1

Three kinds of actions are fundamental to the manipulation of objects: initialization, fi-
nalization, and assignment. Every object is initialized, either explicitly or by default, after
being created (for example, by an object_declaration or allocator). Every object is final-
ized before being destroyed (for example, by leaving a subprogram_body containing an
object_declaration, or by a call to an instance of Unchecked_Deallocation). An assign-
ment operation is used as part of assignment_statements, explicit initialization, parameter
passing, and other operations.

2

Default definitions for these three fundamental operations are provided by the language,
but a <controlled> type gives the user additional control over parts of these operations.
In particular, the user can define, for a controlled type, an Initialize procedure which is
invoked immediately after the normal default initialization of a controlled object, a Finalize
procedure which is invoked immediately before finalization of any of the components of a



controlled object, and an Adjust procedure which is invoked as the last step of an assignment
to a (nonlimited) controlled object.

3

Static Semantics

The following language—defined library package exists:

4/1

5/2

6/2

7/2

8/2

9/2

package Ada.Finalization is

pragma Preelaborate(Finalization);
pragma Remote_Types(Finalization) ;

type
Controlled is abstract tagged private;
pragma Preelaborable_Initialization(Controlled) ;

procedure

Initialize (Object : in out Controlled) is null;
procedure

Adjust (Object : in out Controlled) is null;
procedure

Finalize (Object : in out Controlled) is null;

type
Limited_Controlled is abstract tagged limited private;
pragma Preelaborable_Initialization(Limited_Controlled);

procedure
Initialize (Object : in out Limited_Controlled) is null;
procedure
Finalize (Object : in out Limited_Controlled) is null;
private
—— <not specified by the language>
end Ada.Finalization;

A controlled type is a descendant of Controlled or Limited_Controlled. The predefined "="
operator of type Controlled always returns True, since this operator is incorporated into
the implementation of the predefined equality operator of types derived from Controlled, as



explained in Section 5.5.2 [4.5.2], page 206. The type Limited_Controlled is like Controlled,
except that it is limited and it lacks the primitive subprogram Adjust.

9.1/2

A type is said to <need finalization> if:

9.2/2

e it is a controlled type, a task type or a protected type; or
9.3/2

e it has a component that needs finalization; or

9.4/2

e it is a limited type that has an access discriminant whose designated type needs final-
ization; or

9.5/2

e it is one of a number of language—defined types that are explicitly defined to need
finalization.
Dynamic Semantics

10/2
During the elaboration or evaluation of a construct that causes an object to be initialized
by default, for every controlled subcomponent of the object that is not assigned an initial
value (as defined in Section 4.3.1 [3.3.1], page 61), Initialize is called on that subcomponent.
Similarly, if the object that is initialized by default as a whole is controlled, Initialize is called
on the object.
11/2
For an extension_aggregate whose ancestor_part is a subtype_mark denoting a controlled
subtype, the Initialize procedure of the ancestor type is called, unless that Initialize proce-
dure is abstract.

12

Initialize and other initialization operations are done in an arbitrary order, except as follows.
Initialize is applied to an object after initialization of its subcomponents, if any (including
both implicit initialization and Initialize calls). If an object has a component with an
access discriminant constrained by a per—object expression, Initialize is applied to this
component after any components that do not have such discriminants. For an object with
several components with such a discriminant, Initialize is applied to them in order of their
component_declarations. For an allocator, any task activations follow all calls on Initialize.

13
When a target object with any controlled parts is assigned a value, either when created or
in a subsequent assignment_statement, the <assignment operation> proceeds as follows:

14

e The value of the target becomes the assigned value.



15

e The value of the target is <adjusted.>

16

To adjust the value of a (nonlimited) composite object, the values of the components of the
object are first adjusted in an arbitrary order, and then, if the object is controlled, Adjust
is called. Adjusting the value of an elementary object has no effect, nor does adjusting the
value of a composite object with no controlled parts.

17

For an assignment_statement, after the name and expression have been evaluated, and any
conversion (including constraint checking) has been done, an anonymous object is created,
and the value is assigned into it; that is, the assignment operation is applied. (Assignment
includes value adjustment.) The target of the assignment_statement is then finalized. The
value of the anonymous object is then assigned into the target of the assignment_statement.
Finally, the anonymous object is finalized. As explained below, the implementation may
eliminate the intermediate anonymous object, so this description subsumes the one given
in Section 6.2 [5.2], page 242, "Section 6.2 [5.2], page 242, Assignment Statements".

Implementation Requirements

17.1/2
For an aggregate of a controlled type whose value is assigned, other than by an assign-
ment_statement, the implementation shall not create a separate anonymous object for the
aggregate. The aggregate value shall be constructed directly in the target of the assignment
operation and Adjust is not called on the target object.

Implementation Permissions

18
An implementation is allowed to relax the above rules (for nonlimited controlled types) in
the following ways:

19

e For an assignment_statement that assigns to an object the value of that same object,
the implementation need not do anything.

20

e For an assignment_statement for a noncontrolled type, the implementation may finalize
and assign each component of the variable separately (rather than finalizing the entire
variable and assigning the entire new value) unless a discriminant of the variable is
changed by the assignment.

21/2

e For an aggregate or function call whose value is assigned into a target object, the
implementation need not create a separate anonymous object if it can safely create
the value of the aggregate or function call directly in the target object. Similarly, for
an assignment_statement (see [S0137], page 242), the implementation need not create
an anonymous object if the value being assigned is the result of evaluating a name



denoting an object (the source object) whose storage cannot overlap with the target.
If the source object might overlap with the target object, then the implementation can
avoid the need for an intermediary anonymous object by exercising one of the above
permissions and perform the assignment one component at a time (for an overlapping
array assignment), or not at all (for an assignment where the target and the source of
the assignment are the same object).

22/2

Furthermore, an implementation is permitted to omit implicit Initialize, Adjust, and Final-
ize calls and associated assignment operations on an object of a nonlimited controlled type
provided that:

23/2

e any omitted Initialize call is not a call on a user—defined Initialize procedure, and

24/2

e any usage of the value of the object after the implicit Initialize or Adjust call and before
any subsequent Finalize call on the object does not change the external effect of the
program, and

25/2

e after the omission of such calls and operations, any execution of the program that
executes an Initialize or Adjust call on an object or initializes an object by an aggregate
will also later execute a Finalize call on the object and will always do so prior to
assigning a new value to the object, and

26/2

e the assignment operations associated with omitted Adjust calls are also omitted.

27/2
This permission applies to Adjust and Finalize calls even if the implicit calls have additional
external effects.

8.6.1 7.6.1 Completion and Finalization

1

This subclause defines <completion> and <leaving> of the execution of constructs and enti-

ties. A <master> is the execution of a construct that includes finalization of local objects

after it is complete (and after waiting for any local tasks —— see Section 10.3 [9.3], page 335),

but before leaving. Other constructs and entities are left immediately upon completion.
Dynamic Semantics

2/2

The execution of a construct or entity is <complete> when the end of that execution has

been reached, or when a transfer of control (see Section 6.1 [5.1], page 240) causes it to

be abandoned. Completion due to reaching the end of execution, or due to the transfer of

control of an exit_statement, return statement, goto_statement, or requeue_statement or of



the selection of a terminate_alternative is <normal completion>. Completion is <abnormal>
otherwise —— when control is transferred out of a construct due to abort or the raising of
an exception.

3/2

After execution of a construct or entity is complete, it is <left>, meaning that execution
continues with the next action, as defined for the execution that is taking place. Leaving
an execution happens immediately after its completion, except in the case of a <master>:
the execution of a body other than a package_body; the execution of a statement; or the
evaluation of an expression, function_call, or range that is not part of an enclosing ex-
pression, function_call, range, or simple_statement (see [S0132], page 240) other than a
simple_return_statement (see [S0168], page 272). A master is finalized after it is complete,
and before it is left.

4

For the <finalization> of a master, dependent tasks are first awaited, as explained in
Section 10.3 [9.3], page 335. Then each object whose accessibility level is the same as that
of the master is finalized if the object was successfully initialized and still exists. These
actions are performed whether the master is left by reaching the last statement or via a
transfer of control. When a transfer of control causes completion of an execution, each
included master is finalized in order, from innermost outward.

5

For the <finalization> of an object:

6

e If the object is of an elementary type, finalization has no effect;

7

e If the object is of a controlled type, the Finalize procedure is called;

e If the object is of a protected type, the actions defined in Section 10.4 [9.4], page 337,
are performed;

9/2

e If the object is of a composite type, then after performing the above actions, if any,
every component of the object is finalized in an arbitrary order, except as follows: if
the object has a component with an access discriminant constrained by a per—object
expression, this component is finalized before any components that do not have such
discriminants; for an object with several components with such a discriminant, they
are finalized in the reverse of the order of their component_declarations;

9.1/2

e If the object has coextensions (see Section 4.10.2 [3.10.2], page 164), each coextension
is finalized after the object whose access discriminant designates it.



10

Immediately before an instance of Unchecked_Deallocation reclaims the storage of an object,
the object is finalized. If an instance of Unchecked_Deallocation is never applied to an object
created by an allocator, the object will still exist when the corresponding master completes,
and it will be finalized then.

11/2

The order in which the finalization of a master performs finalization of objects is as follows:
Objects created by declarations in the master are finalized in the reverse order of their
creation. For objects that were created by allocators for an access type whose ultimate
ancestor is declared in the master, this rule is applied as though each such object that still
exists had been created in an arbitrary order at the first freezing point (see Section 14.14
[13.14], page 550) of the ultimate ancestor type; the finalization of these objects is called the
<finalization of the collection>. After the finalization of a master is complete, the objects
finalized as part of its finalization cease to <exist>, as do any types and subtypes defined
and created within the master.

12/2
The target of an assignment_statement is finalized before copying in the new value, as
explained in Section 8.6 [7.6], page 295.

13/2
The master of an object is the master enclosing its creation whose accessibility level (see
Section 4.10.2 [3.10.2], page 164) is equal to that of the object.

13.1/2
In the case of an expression that is a master, finalization of any (anonymous) objects occurs
as the final part of evaluation of the expression.

Bounded (Run-Time) Errors

14/1

It is a bounded error for a call on Finalize or Adjust that occurs as part of object finalization
or assignment to propagate an exception. The possible consequences depend on what action
invoked the Finalize or Adjust operation:

15

e For a Finalize invoked as part of an assignment_statement, Program_Error is raised at
that point.

16/2

e For an Adjust invoked as part of assignment operations other than those invoked as part
of an assignment_statement, other adjustments due to be performed might or might not
be performed, and then Program_Error is raised. During its propagation, finalization
might or might not be applied to objects whose Adjust failed. For an Adjust invoked
as part of an assignment_statement, any other adjustments due to be performed are
performed, and then Program_Error is raised.

17



e For a Finalize invoked as part of a call on an instance of Unchecked_Deallocation,

any other finalizations due to be performed are performed, and then Program_Error is
raised.

17.1/1

e For a Finalize invoked as part of the finalization of the anonymous object created by a

function call or aggregate, any other finalizations due to be performed are performed,
and then Program_Error is raised.

17.2/1

e For a Finalize invoked due to reaching the end of the execution of a master, any other

18/2

finalizations associated with the master are performed, and Program_Error is raised
immediately after leaving the master.

e For a Finalize invoked by the transfer of control of an exit_statement, return statement,

19

20

21

22

goto_statement, or requeue_statement (see [S0208], page 356), Program_Error is raised
no earlier than after the finalization of the master being finalized when the exception
occurred, and no later than the point where normal execution would have continued.
Any other finalizations due to be performed up to that point are performed before
raising Program_Error.

For a Finalize invoked by a transfer of control that is due to raising an exception,
any other finalizations due to be performed for the same master are performed; Pro-
gram_Error is raised immediately after leaving the master.

For a Finalize invoked by a transfer of control due to an abort or selection of a terminate
alternative, the exception is ignored; any other finalizations due to be performed are
performed.

NOTES

17 The rules of Section 10 imply that immediately prior to partition
termination, Finalize operations are applied to library—level con-
trolled objects (including those created by allocators of library—level
access types, except those already finalized). This occurs after wait-
ing for library—level tasks to terminate.



23

24

18 A constant is only constant between its initialization and final-
ization. Both initialization and finalization are allowed to change
the value of a constant.

19 Abort is deferred during certain operations related to controlled
types, as explained in Section 10.8 [9.8], page 385. Those rules
prevent an abort from causing a controlled object to be left in an
ill—defined state.

20 The Finalize procedure is called upon finalization of a controlled
object, even if Finalize was called earlier, either explicitly or as part
of an assignment; hence, if a controlled type is visibly controlled
(implying that its Finalize primitive is directly callable), or is non-
limited (implying that assignment is allowed), its Finalize procedure
should be designed to have no ill effect if it is applied a second time
to the same object.



9 8 Visibility Rules

1

The rules defining the scope of declarations and the rules defining which identifiers, charac-
ter_literals, and operator_symbols are visible at (or from) various places in the text of the
program are described in this section. The formulation of these rules uses the notion of a
declarative region.

2

As explained in Section 3, a declaration declares a view of an entity and associates a
defining name with that view. The view comprises an identification of the viewed entity,
and possibly additional properties. A usage name denotes a declaration. It also denotes the
view declared by that declaration, and denotes the entity of that view. Thus, two different
usage names might denote two different views of the same entity; in this case they denote
the same entity.

9.1 8.1 Declarative Region

Static Semantics

1
For each of the following constructs, there is a portion of the program text called its <declar-
ative region>, within which nested declarations can occur:

2

e any declaration, other than that of an enumeration type, that is not a completion of a
previous declaration;

e a block_statement;

4

e a loop_statement;

4.1/2

e an extended_return_statement;

e an accept_statement;

e an exception_handler.

7
The declarative region includes the text of the construct together with additional text
determined (recursively), as follows:



e If a declaration is included, so is its completion, if any.

e If the declaration of a library unit (including Standard —— see Section 11.1.1 [10.1.1],
page 394) is included, so are the declarations of any child units (and their completions,
by the previous rule). The child declarations occur after the declaration.

10

e If a body_stub is included, so is the corresponding subunit.

11

e Ifatype_declaration is included, then so is a corresponding record_representation_clause, ||
if any.

12
The declarative region of a declaration is also called the <declarative region> of any view
or entity declared by the declaration.

13

A declaration occurs <immediately within> a declarative region if this region is the innermost
declarative region that encloses the declaration (the <immediately enclosing> declarative
region), not counting the declarative region (if any) associated with the declaration itself.

14
A declaration is <local> to a declarative region if the declaration occurs immediately within
the declarative region. An entity is <local> to a declarative region if the entity is declared
by a declaration that is local to the declarative region.
15
A declaration is <global> to a declarative region if the declaration occurs immediately within
another declarative region that encloses the declarative region. An entity is <global> to a
declarative region if the entity is declared by a declaration that is global to the declarative
region.

NOTES
16

1 The children of a parent library unit are inside the parent’s declar-
ative region, even though they do not occur inside the parent’s dec-
laration or body. This implies that one can use (for example) "P.Q"
to refer to a child of P whose defining name is Q, and that after "use
P;" Q can refer (directly) to that child.

17

2 As explained above and in Section 11.1.1 [10.1.1], page 394,
"Section 11.1.1 [10.1.1], page 394, Compilation Units - Library



Units", all library units are descendants of Standard, and so are
contained in the declarative region of Standard. They are <not>
inside the declaration or body of Standard, but they <are> inside
its declarative region.

18

3 For a declarative region that comes in multiple parts, the text of
the declarative region does not contain any text that might appear
between the parts. Thus, when a portion of a declarative region is
said to extend from one place to another in the declarative region,
the portion does not contain any text that might appear between
the parts of the declarative region.

9.2 8.2 Scope of Declarations

1
For each declaration, the language rules define a certain portion of the program text called
the <scope> of the declaration. The scope of a declaration is also called the scope of any
view or entity declared by the declaration. Within the scope of an entity, and only there,
there are places where it is legal to refer to the declared entity. These places are defined by
the rules of visibility and overloading.

Static Semantics

2

The <immediate scope> of a declaration is a portion of the declarative region immediately
enclosing the declaration. The immediate scope starts at the beginning of the declaration,
except in the case of an overloadable declaration, in which case the immediate scope starts
just after the place where the profile of the callable entity is determined (which is at the
end of the _specification for the callable entity, or at the end of the generic_instantiation if
an instance). The immediate scope extends to the end of the declarative region, with the
following exceptions:

3

e The immediate scope of a library_item includes only its semantic dependents.

e The immediate scope of a declaration in the private part of a library unit does not
include the visible part of any public descendant of that library unit.

5

The <visible part> of (a view of ) an entity is a portion of the text of its declaration containing
declarations that are visible from outside. The <private part> of (a view of) an entity that
has a visible part contains all declarations within the declaration of (the view of) the entity,
except those in the visible part; these are not visible from outside. Visible and private
parts are defined only for these kinds of entities: callable entities, other program units, and
composite types.



e The visible part of a view of a callable entity is its profile.

e The visible part of a composite type other than a task or protected type consists
of the declarations of all components declared (explicitly or implicitly) within the
type_declaration.

e The visible part of a generic unit includes the generic_formal_part. For a generic pack-
age, it also includes the first list of basic_declarative_items of the package_specification.
For a generic subprogram, it also includes the profile.

e The visible part of a package, task unit, or protected unit consists of declarations in
the program unit’s declaration other than those following the reserved word private,
if any; see Section 8.1 [7.1], page 279, and Section 13.7 [12.7], page 474, for packages,
Section 10.1 [9.1], page 329, for task units, and Section 10.4 [9.4], page 337, for protected
units.

10

The scope of a declaration always contains the immediate scope of the declaration. In ad-
dition, for a given declaration that occurs immediately within the visible part of an outer
declaration, or is a public child of an outer declaration, the scope of the given declara-
tion extends to the end of the scope of the outer declaration, except that the scope of a
library_item includes only its semantic dependents.

10.1/2
The scope of an attribute_definition_clause is identical to the scope of a declaration that
would occur at the point of the attribute_definition_clause.

11

The immediate scope of a declaration is also the immediate scope of the entity or view
declared by the declaration. Similarly, the scope of a declaration is also the scope of the
entity or view declared by the declaration.

NOTES
12

4 There are notations for denoting visible declarations that are not
directly visible. For example, parameter_specification (see [S0160],
page 256)s are in the visible part of a subprogram_declaration (see
[S0148], page 255) so that they can be used in named—notation calls
appearing outside the called subprogram. For another example, dec-
larations of the visible part of a package can be denoted by expanded
names appearing outside the package, and can be made directly vis-
ible by a use_clause.



9.3 8.3 Visibility

1
The <visibility rules>, given below, determine which declarations are visible and directly
visible at each place within a program. The visibility rules apply to both explicit and
implicit declarations.

Static Semantics

2

A declaration is defined to be <directly visible> at places where a name consisting of only
an identifier or operator_symbol is sufficient to denote the declaration; that is, no se-
lected_component notation or special context (such as preceding => in a named association)
is necessary to denote the declaration. A declaration is defined to be <visible> wherever it is
directly visible, as well as at other places where some name (such as a selected_component)
can denote the declaration.

3

The syntactic category direct_name is used to indicate contexts where direct visibility is
required. The syntactic category selector_name is used to indicate contexts where visibility,
but not direct visibility, is required.

4

There are two kinds of direct visibility: <immediate visibility> and <use—visibility>. A
declaration is immediately visible at a place if it is directly visible because the place is
within its immediate scope. A declaration is use—visible if it is directly visible because of
a use_clause (see Section 9.4 [8.4], page 314). Both conditions can apply.

5

A declaration can be <hidden>, either from direct visibility, or from all visibility, within
certain parts of its scope. Where <hidden from all visibility>, it is not visible at all (neither
using a direct_name nor a selector_name). Where <hidden from direct visibility>, only
direct visibility is lost; visibility using a selector_name is still possible.

6

Two or more declarations are <overloaded> if they all have the same defining name and
there is a place where they are all directly visible.

7

The declarations of callable entities (including enumeration literals) are <overloadable>,
meaning that overloading is allowed for them.

8

Two declarations are <homographs> if they have the same defining name, and, if both
are overloadable, their profiles are type conformant. An inner declaration hides any outer
homograph from direct visibility.

9/1

Two homographs are not generally allowed immediately within the same declarative region
unless one <overrides> the other (see Legality Rules below). The only declarations that are
<overridable> are the implicit declarations for predefined operators and inherited primitive
subprograms. A declaration overrides another homograph that occurs immediately within
the same declarative region in the following cases:

10/1



e A declaration that is not overridable overrides one that is overridable, regardless of
which declaration occurs first;

11

e The implicit declaration of an inherited operator overrides that of a predefined operator;

12

e An implicit declaration of an inherited subprogram overrides a previous implicit dec-
laration of an inherited subprogram.

12.1/2

e If two or more homographs are implicitly declared at the same place:

12.2/2

e If at least one is a subprogram that
is neither a null procedure nor an
abstract subprogram, and does not
require overriding (see Section 4.9.3
[3.9.3], page 149), then they override
those that are null procedures, abstract
subprograms, or require overriding. If
more than one such homograph remains
that is not thus overridden, then they
are all hidden from all visibility.

12.3/2

e Otherwise (all are null procedures, ab-
stract subprograms, or require overrid-
ing), then any null procedure overrides
all abstract subprograms and all subpro-
grams that require overriding; if more
than one such homograph remains that is
not thus overridden, then if they are all
fully conformant with one another, one
is chosen arbitrarily; if not, they are all
hidden from all visibility.

13

e For an implicit declaration of a primitive subprogram in a generic unit, there is a copy
of this declaration in an instance. However, a whole new set of primitive subprograms
is implicitly declared for each type declared within the visible part of the instance.
These new declarations occur immediately after the type declaration, and override the
copied ones. The copied ones can be called only from within the instance; the new ones



can be called only from outside the instance, although for tagged types, the body of a
new one can be executed by a call to an old one.

14
A declaration is visible within its scope, except where hidden from all visibility, as follows:

15

e An overridden declaration is hidden from all visibility within the scope of the overriding
declaration.

16

e A declaration is hidden from all visibility until the end of the declaration, except:

17

e For a record type or record extension, the
declaration is hidden from all visibility
only until the reserved word record;

18/2

e For a package_declaration, generic_-
package_declaration (see [S0254],
page 450), or subprogram_body (see
[S0162], page 261), the declaration is
hidden from all visibility only until the
reserved word is of the declaration;

18.1/2

e For a task declaration or protected dec-
laration, the declaration is hidden from
all visibility only until the reserved word
with of the declaration if there is one, or
the reserved word is of the declaration if
there is no with.

19

e If the completion of a declaration is a declaration, then within the scope of the com-
pletion, the first declaration is hidden from all visibility. Similarly, a discriminant_-
specification (see [S0062], page 123) or parameter_specification (see [S0160], page 256)
is hidden within the scope of a corresponding discriminant_specification (see [S0062],
page 123) or parameter_specification (see [S0160], page 256) of a corresponding com-
pletion, or of a corresponding accept_statement (see [S0201], page 347).



20/2

e The declaration of a library unit (including a library_unit_renaming_declaration) is
hidden from all visibility at places outside its declarative region that are not within
the scope of a nonlimited_with_clause that mentions it. The limited view of a library
package is hidden from all visibility at places that are not within the scope of a lim-
ited_with_clause that mentions it; in addition, the limited view is hidden from all
visibility within the declarative region of the package, as well as within the scope of
any nonlimited_with_clause that mentions the package. Where the declaration of the
limited view of a package is visible, any name that denotes the package denotes the
limited view, including those provided by a package renaming.

20.1/2

e For each declaration or renaming of a generic unit as a child of some parent generic
package, there is a corresponding declaration nested immediately within each instance
of the parent. Such a nested declaration is hidden from all visibility except at places
that are within the scope of a with_clause that mentions the child.

21

A declaration with a defining_identifier or defining_operator_symbol is immediately visible
(and hence directly visible) within its immediate scope except where hidden from direct
visibility, as follows:

22

e A declaration is hidden from direct visibility within the immediate scope of a homo-
graph of the declaration, if the homograph occurs within an inner declarative region;

23

e A declaration is also hidden from direct visibility where hidden from all visibility.

23.1/2
An attribute_definition_clause is <visible> everywhere within its scope.
Name Resolution Rules

24

A direct_name shall resolve to denote a directly visible declaration whose defining name is
the same as the direct_name. A selector_name shall resolve to denote a visible declaration
whose defining name is the same as the selector_name.

25
These rules on visibility and direct visibility do not apply in a context_clause, a par-
ent_unit_name, or a pragma that appears at the place of a compilation_unit. For those
contexts, see the rules in Section 11.1.6 [10.1.6], page 409, "Section 11.1.6 [10.1.6], page 409,
Environment-Level Visibility Rules".

Legality Rules
26/2
A non—overridable declaration is illegal if there is a homograph occurring immediately



within the same declarative region that is visible at the place of the declaration, and is not
hidden from all visibility by the non—overridable declaration. In addition, a type extension
is illegal if somewhere within its immediate scope it has two visible components with the
same name. Similarly, the context_clause for a compilation unit is illegal if it mentions (in
a with_clause) some library unit, and there is a homograph of the library unit that is visible
at the place of the compilation unit, and the homograph and the mentioned library unit
are both declared immediately within the same declarative region. These rules also apply to
dispatching operations declared in the visible part of an instance of a generic unit. However,
they do not apply to other overloadable declarations in an instance; such declarations may
have type conformant profiles in the instance, so long as the corresponding declarations in
the generic were not type conformant.

NOTES
27

5 Visibility for compilation units follows from the definition of
the environment in Section 11.1.4 [10.1.4], page 406, except that
it is necessary to apply a with_clause to obtain visibility to a
library_unit_declaration or library_unit_renaming_declaration.

28

6 In addition to the visibility rules given above, the meaning of the
occurrence of a direct_name or selector_name at a given place in
the text can depend on the overloading rules (see Section 9.6 [8.6],
page 324).

29

7 Not all contexts where an identifier, character_literal, or opera-
tor_symbol are allowed require visibility of a corresponding declara-
tion. Contexts where visibility is not required are identified by using
one of these three syntactic categories directly in a syntax rule, rather
than using direct_name or selector_name.

9.3.1 8.3.1 Overriding Indicators

1/2
An overriding_indicator is used to declare that an operation is intended to override (or not
override) an inherited operation.

Syntax
2/2
overriding_indicator ::= [not] overriding
Legality Rules
3/2

If an abstract_subprogram_declaration (see [S0076], page 150), null_procedure_declaration
(see [S0172], page 277), subprogram_body, subprogram_body_stub (see [S0241], page 403),



subprogram_renaming_declaration (see [S0186], page 320), generic_instantiation (see
[S0257], page 455) of a subprogram, or subprogram_declaration (see [S0148], page 255)
other than a protected subprogram has an overriding_indicator (see [S0178], page 312),
then:

4/2

e the operation shall be a primitive operation for some type;
5/2

e if the overriding_indicator is overriding, then the operation shall override a homograph
at the place of the declaration or bodys;

6/2

e if the overriding_indicator is not overriding, then the operation shall not override any
homograph (at any place).
7/2
In addition to the places where Legality Rules normally apply, these rules also apply in the
private part of an instance of a generic unit.

NOTES
8/2
8 Rules for overriding_indicators of task and protected entries and of
protected subprograms are found in Section 10.5.2 [9.5.2], page 347,
and Section 10.4 [9.4], page 337, respectively.
Ezamples
9/2

The use of overriding_indicators allows the detection of errors at compile—time that other-
wise might not be detected at all. For instance, we might declare a security queue derived
from the Queue interface of 3.9.4 as:

10/2
type Security_Queue is new Queue with record ...;
11/2
overriding
procedure Append(Q : in out Security_Queue; Person : in Person_Name);|Jj
12/2
overriding
procedure Remove_First(Q : in out Security_Queue; Person : in Person_Name);|j
13/2

overriding



function Cur_Count(Q : in Security_Queue) return Natural;

14/2

overriding

function Max_Count(Q : in Security_Queue) return Natural;
15/2

not overriding

procedure Arrest(Q : in out Security_Queue; Person : in Person_Name) ;||
16/2

The first four subprogram declarations guarantee that these subprograms will override the
four subprograms inherited from the Queue interface. A misspelling in one of these sub-
programs will be detected by the implementation. Conversely, the declaration of Arrest
guarantees that this is a new operation.

9.4 8.4 Use Clauses

1
A use_package_clause achieves direct visibility of declarations that appear in the visible
part of a package; a use_type_clause achieves direct visibility of the primitive operators of

a type.

Syntazx

2

use_clause ::= use_package_clause | use_type_clause
3

use_package_clause ::= use <package_>name {, <package_>name};
4

use_type_clause ::= use type subtype_mark {, subtype_mark};

Legality Rules

5/2

A <package_>name of a use_package_clause shall denote a nonlimited view of a package.
Static Semantics

6

For each use_clause, there is a certain region of text called the <scope> of the
use_clause. For a use_clause within a context_clause of a library_unit_declaration or
library_unit_renaming_declaration, the scope is the entire declarative region of the
declaration. For a use_clause within a context_clause of a body, the scope is the entire
body and any subunits (including multiply nested subunits). The scope does not include
context_clauses themselves.

7

For a use_clause immediately within a declarative region, the scope is the portion of the



declarative region starting just after the use_clause and extending to the end of the declar-
ative region. However, the scope of a use_clause in the private part of a library unit does
not include the visible part of any public descendant of that library unit.

7.1/2

A package is <named> in a use_package_clause if it is denoted by a <package_>name of that
clause. A type is <named> in a use_type_clause if it is determined by a subtype_mark of
that clause.

8/2

For each package named in a use_package_clause whose scope encloses a place, each decla-
ration that occurs immediately within the declarative region of the package is <potentially
use—visible> at this place if the declaration is visible at this place. For each type <T> or
<T>’Class named in a use_type_clause whose scope encloses a place, the declaration of each
primitive operator of type <T> is potentially use—visible at this place if its declaration is
visible at this place.

9
A declaration is <use—visible> if it is potentially use—visible, except in these
naming—conflict cases:

10

e A potentially use—visible declaration is not use—visible if the place considered is within
the immediate scope of a homograph of the declaration.

11

e Potentially use—visible declarations that have the same identifier are not use—visible
unless each of them is an overloadable declaration.

Dynamic Semantics

12
The elaboration of a use_clause has no effect.
Ezamples
13
<Example of a use clause in a context clause:>
14
with Ada.Calendar; use Ada;
15
<Example of a use type clause:>
16

use type Rational_Numbers.Rational; ——< see Section 8.1 [7.1], page 279>}
Two_Thirds: Rational_Numbers.Rational := 2/3;



9.5 8.5 Renaming Declarations

1
A renaming_declaration declares another name for an entity, such as an object,
exception, package, subprogram, entry, or generic unit.  Alternatively, a subpro-
gram_renaming_declaration can be the completion of a previous subprogram_declaration.
Syntax
2
renaming_declaration ::=

object_renaming_declaration

| exception_renaming_declaration

| package_renaming_declaration

| subprogram_renaming_declaration

| generic_renaming_declaration

Dynamic Semantics

3

The elaboration of a renaming_declaration evaluates the name that follows the reserved word
renames and thereby determines the view and entity denoted by this name (the <renamed
view> and <renamed entity>). A name that denotes the renaming_declaration denotes (a
new view of) the renamed entity.

NOTES

9 Renaming may be used to resolve name conflicts and to act as a
shorthand. Renaming with a different identifier or operator_symbol
does not hide the old name; the new name and the old name need
not be visible at the same places.

10 A task or protected object that is declared by an explicit ob-
ject_declaration can be renamed as an object. However, a single
task or protected object cannot be renamed since the corresponding
type is anonymous (meaning it has no nameable subtypes). For sim-
ilar reasons, an object of an anonymous array or access type cannot
be renamed.

11 A subtype defined without any additional constraint can be used
to achieve the effect of renaming another subtype (including a task
or protected subtype) as in

subtype Mode is Ada.Text_IO0.File_Mode;



9.5.1 8.5.1 Object Renaming Declarations

1
An object_renaming_declaration is used to rename an object.
Syntax
2/2
object_renaming_declaration ::=
defining_identifier : [null_exclusion] subtype_mark renames <object_>name;
| defining_identifier : access_definition renames <object_>name;
Name Resolution Rules
3/2

The type of the <object_>name shall resolve to the type determined by the subtype_mark, or
in the case where the type is defined by an access_definition, to an anonymous access type.
If the anonymous access type is an access—to—object type, the type of the <object_>name
shall have the same designated type as that of the access_definition. If the anonymous
access type is an access—to—subprogram type, the type of the <object_>name shall have a
designated profile that is type conformant with that of the access_definition.

Legality Rules
4
The renamed entity shall be an object.
4.1/2
In the case where the type is defined by an access_definition, the type of the renamed object
and the type defined by the access_definition:

4.2/2

e shall both be access—to—object types with statically matching designated subtypes
and with both or neither being access—to—constant types; or

4.3/2

e shall both be access—to—subprogram types with subtype conformant designated pro-
files.

4.4/2
For an object_renaming_declaration with a null_exclusion or an access_definition that has
a null_exclusion:

4.5/2

e if the <object_>name denotes a generic formal object of a generic unit <G>, and the
object_renaming_declaration occurs within the body of <G> or within the body of a
generic unit declared within the declarative region of <G>, then the declaration of the
formal object of <G> shall have a null_exclusion;

4.6/2



e otherwise, the subtype of the <object_>name shall exclude null. In addition to the
places where Legality Rules normally apply (see Section 13.3 [12.3], page 454), this
rule applies also in the private part of an instance of a generic unit.

5/2
The renamed entity shall not be a subcomponent that depends on discriminants of a variable
whose nominal subtype is unconstrained, unless this subtype is indefinite, or the variable is
constrained by its initial value. A slice of an array shall not be renamed if this restriction
disallows renaming of the array. In addition to the places where Legality Rules normally
apply, these rules apply also in the private part of an instance of a generic unit. These rules
also apply for a renaming that appears in the body of a generic unit, with the additional
requirement that even if the nominal subtype of the variable is indefinite, its type shall not
be a descendant of an untagged generic formal derived type.

Static Semantics
6/2
An object_renaming_declaration declares a new view of the renamed object whose properties
are identical to those of the renamed view. Thus, the properties of the renamed object
are not affected by the renaming_declaration. In particular, its value and whether or not
it is a constant are unaffected; similarly, the null exclusion or constraints that apply to
an object are not affected by renaming (any constraint implied by the subtype_mark or
access_definition of the object_renaming_declaration is ignored).

Ezamples
7
<Example of renaming an object:>
8
declare
L : Person renames Leftmost_Person; ——< see Section 4.10.1 [3.10.1],H1
page 160>
begin
L.Age := L.Age + 1;
end;

9.5.2 8.5.2 Exception Renaming Declarations

1
An exception_renaming_declaration is used to rename an exception.
Syntax
2
exception_renaming_declaration ::= defining_identifier : exception renames <exception_>name;
Legality Rules
3

The renamed entity shall be an exception.
Static Semantics
4
An exception_renaming_declaration declares a new view of the renamed exception.



Examples
5

<Example of renaming an exception:>

6

EOF : exception renames Ada.IO_Exceptions.End_Error; <—— see Section 15.13J
[A.13], page 752>

9.5.3 8.5.3 Package Renaming Declarations

1
A package_renaming_declaration is used to rename a package.
Syntax
2
package_renaming_declaration ::= package defining_program_unit_name renames <package_>name;
Legality Rules
3
The renamed entity shall be a package.
3.1/2

If the <package_>name of a package_renaming_declaration denotes a limited view of a pack-
age <P>, then a name that denotes the package_renaming_declaration shall occur only
within the immediate scope of the renaming or the scope of a with_clause that mentions
the package <P> or, if <P> is a nested package, the innermost library package enclosing
<P>.

Static Semantics
4
A package_renaming_declaration declares a new view of the renamed package.
4.1/2
At places where the declaration of the limited view of the renamed package is visible, a
name that denotes the package_renaming_declaration denotes a limited view of the package
(see Section 11.1.1 [10.1.1], page 394).

Examples

5
<Example of renaming a package:>

6

package TM renames Table_Manager;

9.5.4 8.5.4 Subprogram Renaming Declarations

1

A subprogram_renaming_declaration can serve as the completion of a subpro-
gram_declaration; such a renaming declaration is called a <renaming—as—body>.
A subprogram_renaming_declaration that is not a completion is called a



<renaming—as—declaration>, and is used to rename a subprogram (possibly an
enumeration literal) or an entry.

Syntax
2/2
subprogram_renaming_declaration ::=
[overriding_indicator]
subprogram_specification renames <callable_entity_>name;
Name Resolution Rules
3

The expected profile for the <callable_entity_>name is the profile given in the subpro-
gram_specification.

Legality Rules
4
The profile of a renaming—as—declaration shall be mode—conformant with that of the
renamed callable entity.
4.1/2
For a parameter or result subtype of the subprogram_specification that has an explicit
null_exclusion:

4.2/2

e if the <callable_entity_>name denotes a generic formal subprogram of a generic unit
<G>, and the subprogram_renaming_declaration occurs within the body of a generic
unit <G> or within the body of a generic unit declared within the declarative region of
the generic unit <G>, then the corresponding parameter or result subtype of the formal
subprogram of <G> shall have a null_exclusion;

4.3/2

e otherwise, the subtype of the corresponding parameter or result type of the renamed
callable entity shall exclude null. In addition to the places where Legality Rules nor-
mally apply (see Section 13.3 [12.3], page 454), this rule applies also in the private part
of an instance of a generic unit.

5/1

The profile of a renaming—as—body shall conform fully to that of the declaration it com-
pletes. If the renaming—as—body completes that declaration before the subprogram it
declares is frozen, the profile shall be mode—conformant with that of the renamed callable
entity and the subprogram it declares takes its convention from the renamed subprogram;
otherwise, the profile shall be subtype—conformant with that of the renamed callable entity
and the convention of the renamed subprogram shall not be Intrinsic. A renaming—as—body
is illegal if the declaration occurs before the subprogram whose declaration it completes is
frozen, and the renaming renames the subprogram itself, through one or more subprogram
renaming declarations, none of whose subprograms has been frozen.

5.1/2

The <callable_entity_>name of a renaming shall not denote a subprogram that requires
overriding (see Section 4.9.3 [3.9.3], page 149).



5.2/2
The <callable_entity_>name of a renaming—as—body shall not denote an abstract subpro-
gram.

6
A name that denotes a formal parameter of the subprogram_specification is not allowed
within the <callable_entity _>name.

Static Semantics

7
A renaming—as—declaration declares a new view of the renamed entity. The profile of this
new view takes its subtypes, parameter modes, and calling convention from the original pro-
file of the callable entity, while taking the formal parameter names and default_expressions
from the profile given in the subprogram_renaming_declaration. The new view is a function
or procedure, never an entry.

Dynamic Semantics

7.1/1

For a call to a subprogram whose body is given as a renaming—as—body, the execution of
the renaming—as—body is equivalent to the execution of a subprogram_body that simply
calls the renamed subprogram with its formal parameters as the actual parameters and, if
it is a function, returns the value of the call.

8
For a call on a renaming of a dispatching subprogram that is overridden, if the overriding
occurred before the renaming, then the body executed is that of the overriding declaration,
even if the overriding declaration is not visible at the place of the renaming; otherwise, the
inherited or predefined subprogram is called.

Bounded (Run-Time) Errors

8.1/1

If a subprogram directly or indirectly renames itself, then it is a bounded error to call that
subprogram. Possible consequences are that Program_Error or Storage_Error is raised, or
that the call results in infinite recursion.

NOTES

12 A procedure can only be renamed as a procedure. A func-
tion whose defining_designator is either an identifier or an opera-
tor_symbol can be renamed with either an identifier or an opera-
tor_symbol; for renaming as an operator, the subprogram specifica-
tion given in the renaming_declaration is subject to the rules given in
Section 7.6 [6.6], page 276, for operator declarations. Enumeration
literals can be renamed as functions; similarly, attribute_references
that denote functions (such as references to Succ and Pred) can be
renamed as functions. An entry can only be renamed as a proce-
dure; the new name is only allowed to appear in contexts that allow
a procedure name. An entry of a family can be renamed, but an
entry family cannot be renamed as a whole.



10

13 The operators of the root numeric types cannot be renamed be-
cause the types in the profile are anonymous, so the correspond-
ing specifications cannot be written; the same holds for certain at-
tributes, such as Pos.

11

14 Calls with the new name of a renamed entry are proce-
dure_call_statements and are not allowed at places where the
syntax requires an entry_call_statement in conditional. and
timed_entry_calls, nor in an asynchronous_select; similarly, the
Count attribute is not available for the new name.

12

15 The primitiveness of a renaming—as—declaration is determined
by its profile, and by where it occurs, as for any declaration of (a view
of) a subprogram; primitiveness is not determined by the renamed
view. In order to perform a dispatching call, the subprogram name
has to denote a primitive subprogram, not a non—primitive renaming
of a primitive subprogram.

Ezamples

13
<Examples of subprogram renaming declarations:>

14

procedure My_Write(C : in Character) renames Pool(K).Write; ——< see Section 5.1.
[4.1.3], page 183>

15

function Real Plus(Left, Right : Real ) return Real renames "+";J]
function Int_Plus (Left, Right : Integer) return Integer renames "+";|]

16

function Rouge return Color renames Red; ——< see Section 4.5.1 [3.5.1],]}
page 92>

function Rot return Color renames Red;

function Rosso return Color renames Rouge;

17

function Next(X : Color) return Color renames Color’Succ; ——< see Section 4.5.10
[3.5.1], page 92>

18
<Example of a subprogram renaming declaration with new parameter names:>



19

function "*" (X,Y : Vector) return Real renames Dot_Product; ——< see Section 7.1]
[6.1], page 255>

20
<Example of a subprogram renaming declaration with a new default expression:>

21

function Minimum(L : Link := Head) return Cell renames Min_Cell; ——< see Section
[6.1], page 255>

9.5.5 8.5.5 Generic Renaming Declarations

1
A generic_renaming_declaration is used to rename a generic unit.
Syntax
2
generic_renaming_declaration ::=
generic package defining_program_unit_name renames <generic_package_>name; [ |
| generic procedure defining_program_unit_name renames <generic_procedure_>name;
| generic function defining_program_unit_name renames <generic_function_>name; [ |
Legality Rules

3

The renamed entity shall be a generic unit of the corresponding kind.
Static Semantics

4

A generic_renaming_declaration declares a new view of the renamed generic unit.
NOTES

5
16 Although the properties of the new view are the same as those of
the renamed view, the place where the generic_renaming_declaration
occurs may affect the legality of subsequent renamings and instanti-
ations that denote the generic_renaming_declaration, in particular if
the renamed generic unit is a library unit (see Section 11.1.1 [10.1.1],
page 394).

Ezamples
6

<Example of renaming a generic unit:>
7



generic package Enum_I0 renames Ada.Text_I0.Enumeration_IO; <—— see Section 15.1
[A.10.10], page 736>

9.6 8.6 The Context of Overload Resolution

1

Because declarations can be overloaded, it is possible for an occurrence of a usage name to
have more than one possible interpretation; in most cases, ambiguity is disallowed. This
clause describes how the possible interpretations resolve to the actual interpretation.

2

Certain rules of the language (the Name Resolution Rules) are considered "overloading
rules". If a possible interpretation violates an overloading rule, it is assumed not to be
the intended interpretation; some other possible interpretation is assumed to be the actual
interpretation. On the other hand, violations of non—overloading rules do not affect which
interpretation is chosen; instead, they cause the construct to be illegal. To be legal, there
usually has to be exactly one acceptable interpretation of a construct that is a "complete
context", not counting any nested complete contexts.

3
The syntax rules of the language and the visibility rules given in Section 9.3 [8.3], page 308,
determine the possible interpretations. Most type checking rules (rules that require a par-
ticular type, or a particular class of types, for example) are overloading rules. Various rules
for the matching of formal and actual parameters are overloading rules.

Name Resolution Rules

4
Overload resolution is applied separately to each <complete context>, not counting inner
complete contexts. Each of the following constructs is a <complete context>:

5

e A context_item.

e A declarative_item or declaration.

e A statement.

e A pragma_argument_association.

e The expression of a case_statement.

10
An (overall) <interpretation> of a complete context embodies its meaning, and includes



the following information about the constituents of the complete context, not including
constituents of inner complete contexts:

11

e for each constituent of the complete context, to which syntactic categories it belongs,
and by which syntax rules; and

12

e for each usage name, which declaration it denotes (and, therefore, which view and
which entity it denotes); and

13

e for a complete context that is a declarative_item, whether or not it is a completion of
a declaration, and (if so) which declaration it completes.

14

A <possible interpretation> is one that obeys the syntax rules and the visibility rules. An
<acceptable interpretation> is a possible interpretation that obeys the <overloading rules>,
that is, those rules that specify an expected type or expected profile, or specify how a
construct shall <resolve> or be <interpreted>.

15

The <interpretation> of a constituent of a complete context is determined from the overall
interpretation of the complete context as a whole. Thus, for example, "interpreted as a
function_call," means that the construct’s interpretation says that it belongs to the syntactic
category function_call.

16
Each occurrence of a usage name <denotes> the declaration determined by its interpretation.
It also denotes the view declared by its denoted declaration, except in the following cases:

17/2

e If a usage name appears within the declarative region of a type_declaration and denotes
that same type_declaration, then it denotes the <current instance> of the type (rather
than the type itself); the current instance of a type is the object or value of the type
that is associated with the execution that evaluates the usage name. This rule does
not apply if the usage name appears within the subtype_mark of an access_definition
for an access—to—object type, or within the subtype of a parameter or result of an
access—to—subprogram type.

18

e If a usage name appears within the declarative region of a generic_declaration (but not
within its generic_formal_part) and it denotes that same generic_declaration, then it
denotes the <current instance> of the generic unit (rather than the generic unit itself).
See also Section 13.3 [12.3], page 454.



19

A usage name that denotes a view also denotes the entity of that view.

20/2

The <expected type> for a given expression, name, or other construct determines, according
to the <type resolution rules> given below, the types considered for the construct during
overload resolution. The type resolution rules provide support for class—wide programming,
universal literals, dispatching operations, and anonymous access types:

21

e If a construct is expected to be of any type in a class of types, or of the universal or
class—wide type for a class, then the type of the construct shall resolve to a type in
that class or to a universal type that covers the class.

22

e If the expected type for a construct is a specific type <T>, then the type of the construct
shall resolve either to <T>, or:

23

e to <T>’Class; or

24

e to a universal type that covers <T>; or

25/2

e when <T> is a specific anonymous
access—to—object type (see Section 4.10
[3.10], page 156) with designated type
<D>, to an access—to—object type
whose designated type is <D>’Class or
is covered by <D>; or

25.1/2

e when <T> is an anonymous
access—to—subprogram type (see
Section 4.10 [3.10], page 156), to an
access—to—subprogram type whose
designated profile is type—conformant
with that of <T>.

26

In certain contexts, such as in a subprogram_renaming_declaration, the Name Resolution
Rules define an <expected profile> for a given name; in such cases, the name shall resolve
to the name of a callable entity whose profile is type conformant with the expected profile.



Legality Rules
27/2
When a construct is one that requires that its expected type be a <single> type in a given
class, the type of the construct shall be determinable solely from the context in which the
construct appears, excluding the construct itself, but using the requirement that it be in
the given class. Furthermore, the context shall not be one that expects any type in some
class that contains types of the given class; in particular, the construct shall not be the
operand of a type_conversion.
28
A complete context shall have at least one acceptable interpretation; if there is exactly one,
then that one is chosen.
29
There is a <preference> for the primitive operators (and ranges) of the root numeric types
<root_integer> and <root_real>. In particular, if two acceptable interpretations of a con-
stituent of a complete context differ only in that one is for a primitive operator (or range)
of the type <root_integer> or <root_real>, and the other is not, the interpretation using the
primitive operator (or range) of the root numeric type is <preferred>.

30

For a complete context, if there is exactly one overall acceptable interpretation where each
constituent’s interpretation is the same as or preferred (in the above sense) over those in
all other overall acceptable interpretations, then that one overall acceptable interpretation
is chosen. Otherwise, the complete context is <ambiguous>.

31

A complete context other than a pragma_argument_association shall not be ambiguous.
32

A complete context that is a pragma_argument_association is allowed to be ambiguous
(unless otherwise specified for the particular pragma), but only if every acceptable interpre-
tation of the pragma argument is as a name that statically denotes a callable entity. Such a
name denotes all of the declarations determined by its interpretations, and all of the views
declared by these declarations.

NOTES
33

17 If a usage name has only one acceptable interpretation, then it
denotes the corresponding entity. However, this does not mean that
the usage name is necessarily legal since other requirements exist
which are not considered for overload resolution; for example, the
fact that an expression is static, whether an object is constant, mode
and subtype conformance rules, freezing rules, order of elaboration,
and so on.

34

Similarly, subtypes are not considered for overload resolution (the
violation of a constraint does not make a program illegal but raises
an exception during program execution).



10 9 Tasks and Synchronization

1

The execution of an Ada program consists of the execution of one or more <tasks>. Each
task represents a separate thread of control that proceeds independently and concurrently
between the points where it <interacts> with other tasks. The various forms of task inter-
action are described in this section, and include:

2

e the activation and termination of a task;

e a call on a protected subprogram of a <protected object>, providing exclusive
read—write access, or concurrent read—only access to shared data;

e a call on an entry, either of another task, allowing for synchronous communication with
that task, or of a protected object, allowing for asynchronous communication with one
or more other tasks using that same protected object;

e a timed operation, including a simple delay statement, a timed entry call or accept, or
a timed asynchronous select statement (see next item);

e an asynchronous transfer of control as part of an asynchronous select statement, where
a task stops what it is doing and begins execution at a different point in response to
the completion of an entry call or the expiration of a delay;

e an abort statement, allowing one task to cause the termination of another task.

8
In addition, tasks can communicate indirectly by reading and updating (unprotected) shared
variables, presuming the access is properly synchronized through some other kind of task
interaction.

Static Semantics

9
The properties of a task are defined by a corresponding task declaration and task_body,
which together define a program unit called a <task unit>.

Dynamic Semantics

10
Over time, tasks proceed through various <states>. A task is initially <inactive>; upon



activation, and prior to its <termination> it is either <blocked> (as part of some task in-
teraction) or <ready> to run. While ready, a task competes for the available <execution
resources> that it requires to run.

NOTES
11

1 Concurrent task execution may be implemented on multicomput-
ers, multiprocessors, or with interleaved execution on a single phys-
ical processor. On the other hand, whenever an implementation can
determine that the required semantic effects can be achieved when
parts of the execution of a given task are performed by different phys-
ical processors acting in parallel, it may choose to perform them in
this way.

10.1 9.1 Task Units and Task Objects

1
A task unit is declared by a <task declaration>, which has a corresponding task_body. A task
declaration may be a task_type_declaration, in which case it declares a named task type;
alternatively, it may be a single_task_declaration, in which case it defines an anonymous
task type, as well as declaring a named task object of that type.

Syntax

2/2

task_type_declaration ::=
task type defining_identifier [known_discriminant_part] [is
[new interface_list with]
task_definition];

3/2

single_task_declaration ::=

task defining_identifier [i

[new interface_list with
task_definition];

]

task_definition ::=
{task_item}
[ private
{task_item}]
end [<task_>identifier]

5/1

task_item ::= entry_declaration | aspect_clause



task_body ::=
task body defining_identifier is
declarative_part
begin
handled_sequence_of_statements
end [<task_>identifier];

7
If a <task_>identifier appears at the end of a task_definition or
task_body, it shall repeat the defining_identifier.
Legality Rules
8/2

<This paragraph was deleted.>
Static Semantics

9

A task_definition defines a task type and its first subtype. The first list of task_items of
a task_definition (see [S0190], page 329), together with the known_discriminant_part (see
[S0061], page 123), if any, is called the visible part of the task unit. The optional list of
task_items after the reserved word private is called the private part of the task unit.

9.1/1
For a task declaration without a task_definition, a task_definition without task_items is
assumed.

9.2/2

For a task declaration with an interface_list, the task type inherits user—defined primitive

subprograms from each progenitor type (see Section 4.9.4 [3.9.4], page 152), in the same

way that a derived type inherits user—defined primitive subprograms from its progenitor

types (see Section 4.4 [3.4], page 66). If the first parameter of a primitive inherited sub-

program is of the task type or an access parameter designating the task type, and there is

an entry_declaration for a single entry with the same identifier within the task declaration,

whose profile is type conformant with the prefixed view profile of the inherited subprogram,

the inherited subprogram is said to be <implemented> by the conforming task entry.
Legality Rules

9.3/2

A task declaration requires a completion, which shall be a task_body, and every task_body

shall be the completion of some task declaration.

9.4/2

Each <interface_>subtype_mark of an interface_list appearing within a task declaration shall

denote a limited interface type that is not a protected interface.

9.5/2

The prefixed view profile of an explicitly declared primitive subprogram of a tagged task

type shall not be type conformant with any entry of the task type, if the first parameter of

the subprogram is of the task type or is an access parameter designating the task type.



9.6/2
For each primitive subprogram inherited by the type declared by a task declaration, at most
one of the following shall apply:

9.7/2

e the inherited subprogram is overridden with a primitive subprogram of the task type, in
which case the overriding subprogram shall be subtype conformant with the inherited
subprogram and not abstract; or

9.8/2

e the inherited subprogram is implemented by a single entry of the task type; in which
case its prefixed view profile shall be subtype conformant with that of the task entry.

9.9/2
If neither applies, the inherited subprogram shall be a null procedure. In addition to the
places where Legality Rules normally apply (see Section 13.3 [12.3], page 454), these rules
also apply in the private part of an instance of a generic unit.

Dynamic Semantics
10
The elaboration of a task declaration elaborates the task_definition. The elaboration of a
single_task_declaration (see [S0189], page 329) also creates an object of an (anonymous)
task type.
11
The elaboration of a task_definition creates the task type and its first subtype; it also
includes the elaboration of the entry_declarations in the given order.
12/1
As part of the initialization of a task object, any aspect_clauses and any per—object con-
straints associated with entry_declaration (see [S0200], page 347)s of the corresponding
task_definition (see [S0190], page 329) are elaborated in the given order.
13
The elaboration of a task_body has no effect other than to establish that tasks of the type
can from then on be activated without failing the Elaboration_Check.
14
The execution of a task_body is invoked by the activation of a task of the corresponding
type (see Section 10.2 [9.2], page 333).
15
The content of a task object of a given task type includes:

16

e The values of the discriminants of the task object, if any;

17

e An entry queue for each entry of the task object;



18

e A representation of the state of the associated task.

NOTES
19/2

2 Other than in an access_definition, the name of a task unit within
the declaration or body of the task unit denotes the current instance
of the unit (see Section 9.6 [8.6], page 324), rather than the first
subtype of the corresponding task type (and thus the name cannot
be used as a subtype_mark).

20

3 The notation of a selected_component can be used to denote a
discriminant of a task (see Section 5.1.3 [4.1.3], page 183). Within
a task unit, the name of a discriminant of the task type denotes the
corresponding discriminant of the current instance of the unit.

21/2

4 A task type is a limited type (see Section 8.5 [7.5], page 292), and
hence precludes use of assignment_statements and predefined equal-
ity operators. If an application needs to store and exchange task
identities, it can do so by defining an access type designating the
corresponding task objects and by using access values for identifica-
tion purposes. Assignment is available for such an access type as for
any access type. Alternatively, if the implementation supports the
Systems Programming Annex, the Identity attribute can be used for
task identification (see Section 17.7.1 [C.7.1], page 965).
Examples

22
<Examples of declarations of task types:>

23

task type Server is
entry Next_Work_Item(WI : in Work_Item);
entry Shut_Down;

end Server;

24/2

task type Keyboard Driver(ID : Keyboard_ID := New_ID) is
new Serial _Device with ——< see Section 4.9.4 [3.9.4], page 152>}
entry Read (C : out Character);
entry Write(C : in Character);
end Keyboard_Driver;



25
<Examples of declarations of single tasks:>

26
task Controller is
entry Request(Level) (D : Item); ——< a family of entries>
end Controller;
27
task Parser is
entry Next_Lexeme(L : in Lexical_Element);
entry Next_Action(A : out Parser_Action);
end;
28
task User; ——< has no entries>
29
<Examples of task objects:>
30
Agent : Server;
Teletype : Keyboard_Driver(TTY_ID);
Pool : array(l .. 10) of Keyboard_Driver;
31
<Example of access type designating task objects:>
32

type Keyboard is access Keyboard_Driver;
Terminal : Keyboard := new Keyboard_Driver(Term_ID);

10.2 9.2 Task Execution - Task Activation

Dynamic Semantics

1

The execution of a task of a given task type consists of the execution of the corresponding
task_body. The initial part of this execution is called the <activation> of the task; it
consists of the elaboration of the declarative_part of the task_body. Should an exception be
propagated by the elaboration of its declarative_part, the activation of the task is defined
to have <failed>, and it becomes a completed task.

2/2

A task object (which represents one task) can be a part of a stand—alone object, of an object
created by an allocator, or of an anonymous object of a limited type, or a coextension of one
of these. All tasks that are part or coextensions of any of the stand—alone objects created
by the elaboration of object_declaration (see [S0032], page 61)s (or generic_associations of



formal objects of mode in) of a single declarative region are activated together. All tasks
that are part or coextensions of a single object that is not a stand—alone object are activated
together.

3/2

For the tasks of a given declarative region, the activations are initiated within the context of
the handled_sequence_of_statements (see [S0247], page 420) (and its associated exception_-
handler (see [S0248], page 420)s if any —— see Section 12.2 [11.2], page 420), just prior to
executing the statements of the handled_sequence_of_statements. For a package without
an explicit body or an explicit handled_sequence_of_statements (see [S0247], page 420), an
implicit body or an implicit null_statement (see [S0134], page 241) is assumed, as defined
in Section 8.2 [7.2], page 281.

4/2

For tasks that are part or coextensions of a single object that is not a stand—alone object,
activations are initiated after completing any initialization of the outermost object enclosing
these tasks, prior to performing any other operation on the outermost object. In particular,
for tasks that are part or coextensions of the object created by the evaluation of an allocator,
the activations are initiated as the last step of evaluating the allocator, prior to returning
the new access value. For tasks that are part or coextensions of an object that is the result
of a function call, the activations are not initiated until after the function returns.

5

The task that created the new tasks and initiated their activations (the <activator>) is
blocked until all of these activations complete (successfully or not). Once all of these acti-
vations are complete, if the activation of any of the tasks has failed (due to the propagation
of an exception), Tasking_Error is raised in the activator, at the place at which it initiated
the activations. Otherwise, the activator proceeds with its execution normally. Any tasks
that are aborted prior to completing their activation are ignored when determining whether
to raise Tasking_Error.

6

Should the task that created the new tasks never reach the point where it would initiate
the activations (due to an abort or the raising of an exception), the newly created tasks
become terminated and are never activated.

NOTES
7
5 An entry of a task can be called before the task has been activated.
8
6 If several tasks are activated together, the execution of any of
these tasks need not await the end of the activation of the other
tasks.
9

7 A task can become completed during its activation either be-
cause of an exception or because it is aborted (see Section 10.8 [9.8],
page 385).



Examples

10
<Example of task activation:>

11

procedure P is

A, B : Server; ——< elaborate the task objects A, B>
C : Server; ——< elaborate the task object C>
begin

——< the tasks A, B, C are activated together before the first statement>]

end;

10.3 9.3 Task Dependence - Termination of Tasks

Dynamic Semantics

1
Each task (other than an environment task —— see Section 11.2 [10.2], page 409) <depends>
on one or more masters (see Section 8.6.1 [7.6.1], page 299), as follows:

2

o If the task is created by the evaluation of an allocator for a given access type, it depends
on each master that includes the elaboration of the declaration of the ultimate ancestor
of the given access type.

e If the task is created by the elaboration of an object_declaration, it depends on each
master that includes this elaboration.

3.1/2

e Otherwise, the task depends on the master of the outermost object of which it is a part
(as determined by the accessibility level of that object —— see Section 4.10.2 [3.10.2],
page 164, and Section 8.6.1 [7.6.1], page 299), as well as on any master whose execution
includes that of the master of the outermost object.

4
Furthermore, if a task depends on a given master, it is defined to depend on the task that
executes the master, and (recursively) on any master of that task.

5

A task is said to be <completed> when the execution of its corresponding task_body is
completed. A task is said to be <terminated> when any finalization of the task_body has
been performed (see Section 8.6.1 [7.6.1], page 299). The first step of finalizing a master
(including a task_body) is to wait for the termination of any tasks dependent on the master.
The task executing the master is blocked until all the dependents have terminated. Any
remaining finalization is then performed and the master is left.



6/1

Completion of a task (and the corresponding task_body) can occur when the task is blocked
at a select_statement (see [S0212], page 377) with an open terminate_alternative (see
Section 10.7.1 [9.7.1], page 378); the open terminate_alternative is selected if and only
if the following conditions are satisfied:

7/2

e The task depends on some completed master; and

e FKEach task that depends on the master considered is either already terminated or simi-
larly blocked at a select_statement with an open terminate_alternative.

9
When both conditions are satisfied, the task considered becomes completed, together with
all tasks that depend on the master considered that are not yet completed.

NOTES
10

8 The full view of a limited private type can be a task type, or can
have subcomponents of a task type. Creation of an object of such a
type creates dependences according to the full type.

11

9 An object_renaming_declaration defines a new view of an existing
entity and hence creates no further dependence.

12

10 The rules given for the collective completion of a group of tasks
all blocked on select_statements with open terminate_alternatives
ensure that the collective completion can occur only when there are
no remaining active tasks that could call one of the tasks being col-
lectively completed.

13

11 If two or more tasks are blocked on select_statements with open
terminate_alternatives, and become completed collectively, their fi-
nalization actions proceed concurrently.

14

12 The completion of a task can occur due to any of the following;:
15



e the raising of an exception during the elaboration of the declar-
ative_part of the corresponding task_body;

16
e the completion of the handled_sequence_of_statements of the
corresponding task_body;
17
e the selection of an open terminate_alternative of a
select_statement in the corresponding task_body;
18
e the abort of the task.
Examples
19
<Example of task dependence:>
20
declare
type Global is access Server; ——< see Section 10.1 [9.1]1,]}
page 329>
A, B : Server;
G : Global;
begin
——< activation of A and B>
declare
type Local is access Server;
X : Global := new Server; ——< activation of X.all>
L : Local := new Server; ——< activation of L.all>
C : Server;
begin
——< activation of C>
G :=X; ——< both G and X designate the same task object>
end; ——< await termination of C and L.all (but not X.all)>
end; ——< await termination of A, B, and G.all>

10.4 9.4 Protected Units and Protected Objects

1

A <protected object> provides coordinated access to shared data, through calls on its visible
<protected operations>, which can be <protected subprograms> or <protected entries>. A
<protected unit> is declared by a <protected declaration>, which has a corresponding pro-
tected_body. A protected declaration may be a protected_type_declaration, in which case it



declares a named protected type; alternatively, it may be a single_protected_declaration, in
which case it defines an anonymous protected type, as well as declaring a named protected
object of that type.

Syntax

2/2

protected_type_declaration ::=
protected type defining_identifier [known_discriminant_part] is
[new interface_list with]
protected_definition;

3/2

single_protected_declaration ::=
protected defining_identifier is
[new interface_list with]
protected_definition;

protected_definition ::=
{ protected_operation_declaration }
[ private
{ protected_element_declaration } |
end [<protected_>identifier]

5/1

protected_operation_declaration ::= subprogram_declaration
| entry_declaration
| aspect_clause

protected_element_declaration ::= protected_operation_declaration
| component_declaration

protected_body ::=
protected body defining_identifier is
{ protected_operation_item }
end [<protected_>identifier];

8/1

protected_operation_item ::= subprogram_declaration
| subprogram_body
| entry_body
| aspect_clause



If a <protected_>identifier appears at the end of a pro-
tected_definition or protected_body, it shall repeat the
defining_identifier.

Legality Rules

10/2
<This paragraph was deleted.>

Static Semantics
11/2
A protected_definition defines a protected type and its first subtype. The list of pro-
tected_operation_declaration (see [S0196], page 338)s of a protected_definition (see [S0195],
page 338), together with the known_discriminant_part (see [S0061], page 123), if any, is
called the visible part of the protected unit. The optional list of protected_element_-
declaration (see [S0197], page 338)s after the reserved word private is called the private
part of the protected unit.

11.1/2

For a protected declaration with an interface_list, the protected type inherits user—defined
primitive subprograms from each progenitor type (see Section 4.9.4 [3.9.4], page 152), in
the same way that a derived type inherits user—defined primitive subprograms from its pro-
genitor types (see Section 4.4 [3.4], page 66). If the first parameter of a primitive inherited
subprogram is of the protected type or an access parameter designating the protected type,
and there is a protected_operation_declaration for a protected subprogram or single entry
with the same identifier within the protected declaration, whose profile is type conformant
with the prefixed view profile of the inherited subprogram, the inherited subprogram is said
to be <implemented> by the conforming protected subprogram or entry.

Legality Rules

11.2/2

A protected declaration requires a completion, which shall be a protected_body (see [S0198],
page 338), and every protected_body (see [S0198], page 338) shall be the completion of some
protected declaration.

11.3/2
Each <interface_>subtype_mark of an interface_list appearing within a protected declaration
shall denote a limited interface type that is not a task interface.

11.4/2

The prefixed view profile of an explicitly declared primitive subprogram of a tagged pro-
tected type shall not be type conformant with any protected operation of the protected type,
if the first parameter of the subprogram is of the protected type or is an access parameter
designating the protected type.

11.5/2
For each primitive subprogram inherited by the type declared by a protected declaration,
at most one of the following shall apply:

11.6/2



e the inherited subprogram is overridden with a primitive subprogram of the protected
type, in which case the overriding subprogram shall be subtype conformant with the
inherited subprogram and not abstract; or

11.7/2

e the inherited subprogram is implemented by a protected subprogram or single entry of
the protected type, in which case its prefixed view profile shall be subtype conformant
with that of the protected subprogram or entry.

11.8/2

If neither applies, the inherited subprogram shall be a null procedure. In addition to the
places where Legality Rules normally apply (see Section 13.3 [12.3], page 454), these rules
also apply in the private part of an instance of a generic unit.

11.9/2

If an inherited subprogram is implemented by a protected procedure or an entry, then
the first parameter of the inherited subprogram shall be of mode out or in out, or an
access—to—variable parameter.

11.10/2
If a protected subprogram declaration has an overriding_indicator, then at the point of the
declaration:

11.11/2

e if the overriding_indicator is overriding, then the subprogram shall implement an in-
herited subprogram;

11.12/2

e if the overriding_indicator is not overriding, then the subprogram shall not implement
any inherited subprogram.

11.13/2

In addition to the places where Legality Rules normally apply (see Section 13.3 [12.3],

page 454), these rules also apply in the private part of an instance of a generic unit.
Dynamic Semantics

12

The elaboration of a protected declaration elaborates the protected_definition. The elabo-
ration of a single_protected_declaration (see [S0194], page 338) also creates an object of an
(anonymous) protected type.

13

The elaboration of a protected_definition creates the protected type and its
first subtype; it also includes the elaboration of the component_declarations and
protected_operation_declarations in the given order.

14
As part of the initialization of a protected object, any per—object constraints (see Section 4.8
[3.8], page 130) are elaborated.



15
The elaboration of a protected_body has no other effect than to establish that protected
operations of the type can from then on be called without failing the Elaboration_Check.

16
The content of an object of a given protected type includes:

17

e The values of the components of the protected object, including (implicitly) an entry
queue for each entry declared for the protected object;

18

e A representation of the state of the execution resource <associated> with the protected
object (one such resource is associated with each protected object).

19
The execution resource associated with a protected object has to be acquired to read or
update any components of the protected object; it can be acquired (as part of a protected

action —— see Section 10.5.1 [9.5.1], page 344) either for concurrent read—only access, or
for exclusive read—write access.
20

As the first step of the <finalization> of a protected object, each call remaining on any entry
queue of the object is removed from its queue and Program_Error is raised at the place of
the corresponding entry_call_statement (see [S0207], page 352).

Bounded (Run-Time) Errors

20.1/2

It is a bounded error to call an entry or subprogram of a protected object after that object
is finalized. If the error is detected, Program_Error is raised. Otherwise, the call proceeds
normally, which may leave a task queued forever.

NOTES
21/2

13 Within the declaration or body of a protected unit other than
in an access_definition, the name of the protected unit denotes the
current instance of the unit (see Section 9.6 [8.6], page 324), rather
than the first subtype of the corresponding protected type (and thus
the name cannot be used as a subtype_mark).

22

14 A selected_component can be used to denote a discriminant of
a protected object (see Section 5.1.3 [4.1.3], page 183). Within a
protected unit, the name of a discriminant of the protected type
denotes the corresponding discriminant of the current instance of
the unit.

23/2



24

25

26

15 A protected type is a limited type (see Section 8.5 [7.5],
page 292), and hence precludes use of assignment_statements and
predefined equality operators.

16 The bodies of the protected operations given in the
protected_body define the actions that take place upon calls to the
protected operations.

17 The declarations in the private part are only visible within the
private part and the body of the protected unit.
Ezamples

<Example of declaration of protected type and corresponding body:>

27

28

29

30

protected type Resource is

entry Seize;

procedure Release;
private

Busy : Boolean := False;
end Resource;

protected body Resource is
entry Seize when not Busy is
begin
Busy := True;
end Seize;

procedure Release is
begin
Busy := False;
end Release;
end Resource;

<Example of a single protected declaration and corresponding body:>

31

protected Shared_Array is
——< Index, Item, and Item_Array are global types>
function Component (N : in Index) return Item;



procedure Set_Component(N : in Index; E : in Item);
private

Table : Item_Array(Index) := (others => Null_Item);
end Shared_Array;

32
protected body Shared_Array is
function Component(N : in Index) return Item is
begin
return Table(N);
end Component;
33
procedure Set_Component(N : in Index; E : in Item) is
begin
Table(N) := E;
end Set_Component;
end Shared_Array;
34
<Examples of protected objects:>
35
Control : Resource;
Flags : array(l .. 100) of Resource;

10.5 9.5 Intertask Communication

1

The primary means for intertask communication is provided by calls on entries and protected
subprograms. Calls on protected subprograms allow coordinated access to shared data
objects. Entry calls allow for blocking the caller until a given condition is satisfied (namely,
that the corresponding entry is open —— see Section 10.5.3 [9.5.3], page 352), and then
communicating data or control information directly with another task or indirectly via a
shared protected object.

Static Semantics

2

Any call on an entry or on a protected subprogram identifies a <target object> for the
operation, which is either a task (for an entry call) or a protected object (for an entry call
or a protected subprogram call). The target object is considered an implicit parameter to
the operation, and is determined by the operation name (or prefix) used in the call on the
operation, as follows:

3

e If it is a direct_name or expanded name that denotes the declaration (or body) of the
operation, then the target object is implicitly specified to be the current instance of



the task or protected unit immediately enclosing the operation; such a call is defined
to be an <internal call>;

e If it is a selected_component that is not an expanded name, then the target object
is explicitly specified to be the task or protected object denoted by the prefix of the
name; such a call is defined to be an <external call>;

e If the name or prefix is a dereference (implicit or explicit) of an
access—to—protected—subprogram value, then the target object 1is deter-
mined by the prefix of the Access attribute_reference that produced the access value
originally, and the call is defined to be an <external call>;

e If the name or prefix denotes a subprogram_renaming_declaration, then the target
object is as determined by the name of the renamed entity.

7
A corresponding definition of target object applies to a requeue_statement (see
Section 10.5.4 [9.5.4], page 356), with a corresponding distinction between an <internal
requeue> and an <external requeue>.
Legality Rules

7.1/2
The view of the target protected object associated with a call of a protected procedure or
entry shall be a variable.

Dynamic Semantics

8

Within the body of a protected operation, the current instance (see Section 9.6 [8.6],
page 324) of the immediately enclosing protected unit is determined by the target object
specified (implicitly or explicitly) in the call (or requeue) on the protected operation.

9
Any call on a protected procedure or entry of a target protected object is defined to be an
update to the object, as is a requeue on such an entry.

10.5.1 9.5.1 Protected Subprograms and Protected Actions

1

A <protected subprogram> is a subprogram declared immediately within a pro-

tected_definition. Protected procedures provide exclusive read—write access to the data of

a protected object; protected functions provide concurrent read—only access to the data.
Static Semantics

2
Within the body of a protected function (or a function declared immediately within a
protected_body), the current instance of the enclosing protected unit is defined to be a



constant (that is, its subcomponents may be read but not updated). Within the body
of a protected procedure (or a procedure declared immediately within a protected_body),
and within an entry_body, the current instance is defined to be a variable (updating is
permitted).

Dynamic Semantics

3

For the execution of a call on a protected subprogram, the evaluation of the name or prefix
and of the parameter associations, and any assigning back of in out or out parameters,
proceeds as for a normal subprogram call (see Section 7.4 [6.4], page 266). If the call is an
internal call (see Section 10.5 [9.5], page 343), the body of the subprogram is executed as for
a normal subprogram call. If the call is an external call, then the body of the subprogram is
executed as part of a new <protected action> on the target protected object; the protected
action completes after the body of the subprogram is executed. A protected action can also
be started by an entry call (see Section 10.5.3 [9.5.3], page 352).

4

A new protected action is not started on a protected object while another protected action
on the same protected object is underway, unless both actions are the result of a call on
a protected function. This rule is expressible in terms of the execution resource associated
with the protected object:

5

e <Starting> a protected action on a protected object corresponds to <acquiring> the ex-
ecution resource associated with the protected object, either for concurrent read—only
access if the protected action is for a call on a protected function, or for exclusive
read—write access otherwise;

e <Completing> the protected action corresponds to <releasing> the associated execution
resource.

7
After performing an operation on a protected object other than a call on a protected func-
tion, but prior to completing the associated protected action, the entry queues (if any) of
the protected object are serviced (see Section 10.5.3 [9.5.3], page 352).

Bounded (Run-Time) Errors

8
During a protected action, it is a bounded error to invoke an operation that is <potentially
blocking>. The following are defined to be potentially blocking operations:

9

e a select_statement;

10

e an accept_statement;



11

e an entry_call_statement;

12

e a delay_statement;

13

e an abort_statement;

14

e task creation or activation;

15

e an external call on a protected subprogram (or an external requeue) with the same
target object as that of the protected action;

16

e a call on a subprogram whose body contains a potentially blocking operation.

17
If the bounded error is detected, Program_Error is raised. If not detected, the bounded
error might result in deadlock or a (nested) protected action on the same target object.

18

Certain language—defined subprograms are potentially blocking. In particular, the subpro-
grams of the language—defined input—output packages that manipulate files (implicitly or
explicitly) are potentially blocking. Other potentially blocking subprograms are identified
where they are defined. When not specified as potentially blocking, a language—defined
subprogram is nonblocking.

NOTES
19

18 If two tasks both try to start a protected action on a protected
object, and at most one is calling a protected function, then only one
of the tasks can proceed. Although the other task cannot proceed,
it is not considered blocked, and it might be consuming processing
resources while it awaits its turn. There is no language—defined or-
dering or queuing presumed for tasks competing to start a protected
action —— on a multiprocessor such tasks might use busy—waiting;
for monoprocessor considerations, see Section 18.3 [D.3], page 991,
"Section 18.3 [D.3], page 991, Priority Ceiling Locking".

20



19 The body of a protected unit may contain declarations and bod-
ies for local subprograms. These are not visible outside the protected
unit.

21

20 The body of a protected function can contain internal calls on
other protected functions, but not protected procedures, because
the current instance is a constant. On the other hand, the body of
a protected procedure can contain internal calls on both protected
functions and procedures.

22

21 From within a protected action, an internal call on a protected
subprogram, or an external call on a protected subprogram with a
different target object is not considered a potentially blocking oper-
ation.

22.1/2

22 The pragma Detect_Blocking may be used to ensure that all ex-
ecutions of potentially blocking operations during a protected action
raise Program_Error. See Section 22.5 [H.5], page 1163.

Examples

23
<Examples of protected subprogram calls (see Section 10.4 [9.4], page 337):>

24

Shared_Array.Set_Component (N, E);
E := Shared_Array.Component (M) ;
Control.Release;

10.5.2 9.5.2 Entries and Accept Statements

1
Entry_declarations, with the corresponding entry_bodies or accept_statements, are used to
define potentially queued operations on tasks and protected objects.

Syntax
2/2
entry_declaration ::=
[overriding_indicator]
entry defining_identifier [(discrete_subtype_definition)] parameter_profile;
3

accept_statement ::=
accept <entry_>direct_name [(entry_index)] parameter_profile [do



handled_sequence_of_statements
end [<entry_>identifier]];

4
entry_index ::= expression
5
entry_body ::=
entry defining_identifier entry_body_formal_part entry_barrier is
declarative_part
begin
handled_sequence_of_statements
end [<entry_>identifier];
6
entry_body_formal_part ::= [(entry_index_specification)] parameter_profile
7
entry_barrier ::= when condition
8
entry_index_specification ::= for defining_identifier in discrete_subtype_definition
9
If an <entry_>identifier appears at the end of an accept_statement,
it shall repeat the <entry_>direct_name (see [S0092], page 179).
If an <entry_>identifier appears at the end of an entry_body (see
[S0203], page 348), it shall repeat the defining_identifier (see
[S0022], page 49).
10
An entry_declaration is allowed only in a protected or task declara-
tion.
10.1/2
An overriding_indicator is not allowed in an entry_declaration that
includes a discrete_subtype_definition.
Name Resolution Rules
11

In an accept_statement, the expected profile for the <entry_>direct_name is that of the
entry_declaration (see [S0200], page 347); the expected type for an entry_index is that
of the subtype defined by the discrete_subtype_definition (see [S0055], page 114) of the
corresponding entry_declaration (see [S0200], page 347).



12

Within the handled_sequence_of_statements of an accept_statement, if a selected._-
component (see [S0098], page 183) has a prefix that denotes the corresponding
entry_declaration (see [S0200], page 347), then the entity denoted by the prefix is the
accept_statement (see [S0201], page 347), and the selected_component (see [S0098],
page 183) is interpreted as an expanded name (see Section 5.1.3 [4.1.3], page 183); the
selector_name of the selected_component (see [S0098], page 183) has to be the identifier
for some formal parameter of the accept_statement (see [S0201], page 347).

Legality Rules

13
An entry_declaration in a task declaration shall not contain a specification for an access
parameter (see Section 4.10 [3.10], page 156).

13.1/2
If an entry_declaration has an overriding_indicator, then at the point of the declaration:

13.2/2

e if the overriding_indicator is overriding, then the entry shall implement an inherited
subprogram;

13.3/2

e if the overriding_indicator is not overriding, then the entry shall not implement any
inherited subprogram.

13.4/2
In addition to the places where Legality Rules normally apply (see Section 13.3 [12.3],
page 454), these rules also apply in the private part of an instance of a generic unit.

14

For an accept_statement, the innermost enclosing body shall be a task_body, and the <en-
try_>direct_name (see [S0092], page 179) shall denote an entry_declaration (see [S0200],
page 347) in the corresponding task declaration; the profile of the accept_statement (see
[S0201], page 347) shall conform fully to that of the corresponding entry_declaration (see
[S0200], page 347). An accept_statement (see [S0201], page 347) shall have a parenthesized
entry_index (see [S0202], page 348) if and only if the corresponding entry_declaration (see
[S0200], page 347) has a discrete_subtype_definition (see [S0055], page 114).

15

An accept_statement shall not be within another accept_statement that corresponds to
the same entry_declaration (see [S0200], page 347), nor within an asynchronous_select (see
[S0223], page 384) inner to the enclosing task_body.

16

An entry_declaration of a protected unit requires a completion, which shall be an en-
try_body, and every entry_body (see [S0203], page 348) shall be the completion of an
entry_declaration (see [S0200], page 347) of a protected unit. The profile of the entry_-
body (see [S0203], page 348) shall conform fully to that of the corresponding declaration.



17

An entry_body_formal_part shall have an entry_index_specification (see [S0206], page 348)
if and only if the corresponding entry_declaration (see [S0200], page 347) has a discrete_-
subtype_definition (see [S0055], page 114). In this case, the discrete_subtype_definition (see
[S0055], page 114)s of the entry_declaration (see [S0200], page 347) and the entry_index_-
specification (see [S0206], page 348) shall fully conform to one another (see Section 7.3.1
[6.3.1], page 263).

18
A name that denotes a formal parameter of an entry_body is not allowed within the en-
try_barrier of the entry_body.

Static Semantics

19

The parameter modes defined for parameters in the parameter_profile of an en-
try_declaration are the same as for a subprogram_declaration and have the same meaning
(see Section 7.2 [6.2], page 260).

20

An entry_declaration with a discrete_subtype_definition (see Section 4.6 [3.6], page 114)
declares a <family> of distinct entries having the same profile, with one such entry for each
value of the <entry index subtype> defined by the discrete_subtype_definition (see [S0055],
page 114). A name for an entry of a family takes the form of an indexed_component, where
the prefix denotes the entry_declaration for the family, and the index value identifies the
entry within the family. The term <single entry> is used to refer to any entry other than
an entry of an entry family.

21
In the entry_body for an entry family, the entry_index_specification declares a named
constant whose subtype is the entry index subtype defined by the corresponding
entry_declaration; the value of the <named entry index> identifies which entry of the
family was called.

Dynamic Semantics
22/1
The elaboration of an entry_declaration for an entry family consists of the elaboration of
the discrete_subtype_definition (see [S0055], page 114), as described in Section 4.8 [3.8],
page 130. The elaboration of an entry_declaration (see [S0200], page 347) for a single entry
has no effect.

23

The actions to be performed when an entry is called are specified by the corresponding
accept_statement (see [S0201], page 347)s (if any) for an entry of a task unit, and by the
corresponding entry_body (see [S0203], page 348) for an entry of a protected unit.

24

For the execution of an accept_statement, the entry_index, if any, is first evaluated and con-
verted to the entry index subtype; this index value identifies which entry of the family is to
be accepted. Further execution of the accept_statement is then blocked until a caller of the
corresponding entry is selected (see Section 10.5.3 [9.5.3], page 352), whereupon the han-
dled_sequence_of_statements, if any, of the accept_statement is executed, with the formal
parameters associated with the corresponding actual parameters of the selected entry call.



Upon completion of the handled_sequence_of_statements, the accept_statement completes
and is left. When an exception is propagated from the handled_sequence_of_statements of
an accept_statement, the same exception is also raised by the execution of the corresponding
entry_call_statement.

25
The above interaction between a calling task and an accepting task is called a <rendezvous>.
After a rendezvous, the two tasks continue their execution independently.

26

An entry_body is executed when the condition of the entry_barrier evaluates to True and
a caller of the corresponding single entry, or entry of the corresponding entry family, has
been selected (see Section 10.5.3 [9.5.3], page 352). For the execution of the entry_body
(see [S0203], page 348), the declarative_part (see [S0086], page 175) of the entry_body
(see [S0203], page 348) is elaborated, and the handled_sequence_of_statements (see [S0247],
page 420) of the body is executed, as for the execution of a subprogram_body. The value of
the named entry index, if any, is determined by the value of the entry index specified in the
<entry_>name of the selected entry call (or intermediate requeue_statement (see [S0208],
page 356) —— see Section 10.5.4 [9.5.4], page 356).

NOTES
27

23 A task entry has corresponding accept_statements (zero or
more), whereas a protected entry has a corresponding entry_body
(exactly one).

28

24 A consequence of the rule regarding the allowed placements of
accept_statements is that a task can execute accept_statements only
for its own entries.

29/2

25 A return statement (see Section 7.5 [6.5], page 272) or a re-
queue_statement (see Section 10.5.4 [9.5.4], page 356) may be used
to complete the execution of an accept_statement or an entry_body.

30

26 The condition in the entry_barrier may reference anything vis-
ible except the formal parameters of the entry. This includes the
entry index (if any), the components (including discriminants) of the
protected object, the Count attribute of an entry of that protected
object, and data global to the protected unit.

31

The restriction against referencing the formal parameters within an
entry_barrier ensures that all calls of the same entry see the same



barrier value. If it is necessary to look at the parameters of an entry
call before deciding whether to handle it, the entry_barrier can be
"when True" and the caller can be requeued (on some private entry)
when its parameters indicate that it cannot be handled immediately.

Examples

32
<Examples of entry declarations:>
33

entry Read(V : out Item);

entry Seize;

entry Request(Level) (D : Item); ——< a family of entries>
34
<Examples of accept statements:>
35

accept Shut_Down;
36

accept Read(V : out Item) do

V := Local_Item;

end Read;

37

accept Request(Low) (D : Item) do

end Request;

10.5.3 9.5.3 Entry Calls

1

An entry_call_statement (an <entry call>) can appear in various contexts. A <simple> entry
call is a stand—alone statement that represents an unconditional call on an entry of a target
task or a protected object. Entry calls can also appear as part of select_statements (see
Section 10.7 [9.7], page 377).

Syntax
2
entry_call_statement ::= <entry_>name [actual_parameter_part];
Name Resolution Rules
3

The <entry_>name given in an entry_call_statement shall resolve to denote an entry. The
rules for parameter associations are the same as for subprogram calls (see Section 7.4 [6.4],
page 266, and Section 7.4.1 [6.4.1], page 270).

Static Semantics



4
The <entry_>name of an entry_call_statement specifies (explicitly or implicitly) the target
object of the call, the entry or entry family, and the entry index, if any (see Section 10.5
[9.5], page 343).

Dynamic Semantics
5
Under certain circumstances (detailed below), an entry of a task or protected object is
checked to see whether it is <open> or <closed>:

6

e An entry of a task is open if the task is blocked on an accept_statement that corre-
sponds to the entry (see Section 10.5.2 [9.5.2], page 347), or on a selective_accept (see
Section 10.7.1 [9.7.1], page 378) with an open accept_alternative that corresponds to
the entry; otherwise it is closed.

e An entry of a protected object is open if the condition of the entry_barrier of the
corresponding entry_body evaluates to True; otherwise it is closed. If the evaluation of
the condition propagates an exception, the exception Program_Error is propagated to
all current callers of all entries of the protected object.

8

For the execution of an entry_call_statement, evaluation of the name and of the parameter
associations is as for a subprogram call (see Section 7.4 [6.4], page 266). The entry call is
then <issued>: For a call on an entry of a protected object, a new protected action is started
on the object (see Section 10.5.1 [9.5.1], page 344). The named entry is checked to see if it
is open; if open, the entry call is said to be <selected immediately>, and the execution of
the call proceeds as follows:

9

e For a call on an open entry of a task, the accepting task becomes ready and continues the
execution of the corresponding accept_statement (see Section 10.5.2 [9.5.2], page 347).

10

e For a call on an open entry of a protected object, the corresponding entry_body is
executed (see Section 10.5.2 [9.5.2], page 347) as part of the protected action.

11
If the accept_statement or entry_body completes other than by a requeue (see Section 10.5.4
[9.5.4], page 356), return is made to the caller (after servicing the entry queues —— see

below); any necessary assigning back of formal to actual parameters occurs, as for a sub-
program call (see Section 7.4.1 [6.4.1], page 270); such assignments take place outside of
any protected action.

12
If the named entry is closed, the entry call is added to an <entry queue> (as part of the



protected action, for a call on a protected entry), and the call remains queued until it is
selected or cancelled; there is a separate (logical) entry queue for each entry of a given task
or protected object (including each entry of an entry family).

13

When a queued call is <selected>, it is removed from its entry queue. Selecting a queued call
from a particular entry queue is called <servicing> the entry queue. An entry with queued
calls can be serviced under the following circumstances:

14

e When the associated task reaches a corresponding accept_statement, or a
selective_accept with a corresponding open accept_alternative;

15

o If after performing, as part of a protected action on the associated protected object, an
operation on the object other than a call on a protected function, the entry is checked
and found to be open.

16

If there is at least one call on a queue corresponding to an open entry, then one such call is
selected according to the <entry queuing policy> in effect (see below), and the corresponding
accept_statement or entry_body is executed as above for an entry call that is selected
immediately.

17

The entry queuing policy controls selection among queued calls both for task and protected
entry queues. The default entry queuing policy is to select calls on a given entry queue in
order of arrival. If calls from two or more queues are simultaneously eligible for selection,
the default entry queuing policy does not specify which queue is serviced first. Other entry
queuing policies can be specified by pragmas (see Section 18.4 [D.4], page 994).

18
For a protected object, the above servicing of entry queues continues until there are no open
entries with queued calls, at which point the protected action completes.

19

For an entry call that is added to a queue, and that is not the triggering_statement of
an asynchronous_select (see [S0223|, page 384) (see Section 10.7.4 [9.7.4], page 383), the
calling task is blocked until the call is cancelled, or the call is selected and a corresponding
accept_statement or entry_body completes without requeuing. In addition, the calling task
is blocked during a rendezvous.

20

An attempt can be made to cancel an entry call upon an abort (see Section 10.8 [9.8],
page 385) and as part of certain forms of select_statement (see Section 10.7.2 [9.7.2],
page 381, Section 10.7.3 [9.7.3], page 382, and Section 10.7.4 [9.7.4], page 383). The cancel-
lation does not take place until a point (if any) when the call is on some entry queue, and
not protected from cancellation as part of a requeue (see Section 10.5.4 [9.5.4], page 356);
at such a point, the call is removed from the entry queue and the call completes due to
the cancellation. The cancellation of a call on an entry of a protected object is a protected



action, and as such cannot take place while any other protected action is occurring on the
protected object. Like any protected action, it includes servicing of the entry queues (in
case some entry barrier depends on a Count attribute).

21
A call on an entry of a task that has already completed its execution raises the exception
Tasking_Error at the point of the call; similarly, this exception is raised at the point of the
call if the called task completes its execution or becomes abnormal before accepting the call
or completing the rendezvous (see Section 10.8 [9.8], page 385). This applies equally to a
simple entry call and to an entry call as part of a select_statement.

Implementation Permissions

22

An implementation may perform the sequence of steps of a protected action using any
thread of control; it need not be that of the task that started the protected action. If an
entry_body completes without requeuing, then the corresponding calling task may be made
ready without waiting for the entire protected action to complete.

23

When the entry of a protected object is checked to see whether it is open, the implemen-
tation need not reevaluate the condition of the corresponding entry_barrier if no variable
or attribute referenced by the condition (directly or indirectly) has been altered by the
execution (or cancellation) of a protected procedure or entry call on the object since the
condition was last evaluated.

24
An implementation may evaluate the conditions of all entry_barriers of a given protected
object any time any entry of the object is checked to see if it is open.

25

When an attempt is made to cancel an entry call, the implementation need not make the
attempt using the thread of control of the task (or interrupt) that initiated the cancellation;
in particular, it may use the thread of control of the caller itself to attempt the cancellation,
even if this might allow the entry call to be selected in the interim.

NOTES
26

27 If an exception is raised during the execution of an entry_body,
it is propagated to the corresponding caller (see Section 12.4 [11.4],
page 422).

27

28 For a call on a protected entry, the entry is checked to see if it
is open prior to queuing the call, and again thereafter if its Count
attribute (see Section 10.9 [9.9], page 388) is referenced in some entry
barrier.

28

29 In addition to simple entry calls, the language permits timed,
conditional, and asynchronous entry calls (see Section 10.7.2 [9.7.2],



page 381, Section 10.7.3 [9.7.3], page 382, and see Section 10.7.4
[9.7.4], page 383).

29
30 The condition of an entry_barrier is allowed to be evaluated by
an implementation more often than strictly necessary, even if the
evaluation might have side effects. On the other hand, an imple-
mentation need not reevaluate the condition if nothing it references
was updated by an intervening protected action on the protected
object, even if the condition references some global variable that
might have been updated by an action performed from outside of a
protected action.
Examples
30
<Examples of entry calls:>
31
Agent.Shut_Down; ——< see Section 10.1 [9.1],
page 329>
Parser.Next_Lexeme (E); ——< see Section 10.1 [9.1],
page 329>
Pool(5) .Read (Next_Char) ; ——< see Section 10.1 [9.1],
page 329>
Controller.Request (Low) (Some_Item) ; ——< see Section 10.1 [9.1],
page 329>
Flags(3) .Seize; ——< see Section 10.4 [9.4],
page 337>

10.5.4 9.5.4 Requeue Statements

1

A requeue_statement can be used to complete an accept_statement or entry_body, while
redirecting the corresponding entry call to a new (or the same) entry queue. Such a <re-
queue> can be performed with or without allowing an intermediate cancellation of the call,
due to an abort or the expiration of a delay.

Syntax
2
requeue_statement ::= requeue <entry_>name |with abort];
Name Resolution Rules
3

The <entry_>name of a requeue_statement shall resolve to denote an entry (the <target
entry>) that either has no parameters, or that has a profile that is type conformant (see
Section 7.3.1 [6.3.1], page 263) with the profile of the innermost enclosing entry_body (see
[S0203], page 348) or accept_statement (see [S0201], page 347).

Legality Rules



4

A requeue_statement shall be within a callable construct that is either an entry_body or
an accept_statement, and this construct shall be the innermost enclosing body or callable
construct.

5
If the target entry has parameters, then its profile shall be subtype conformant with the
profile of the innermost enclosing callable construct.

6

In a requeue_statement of an accept_statement of some task unit, either the target object
shall be a part of a formal parameter of the accept_statement, or the accessibility level of the
target object shall not be equal to or statically deeper than any enclosing accept_statement
of the task unit. In a requeue_statement (see [S0208], page 356) of an entry_body (see
[S0203], page 348) of some protected unit, either the target object shall be a part of a
formal parameter of the entry_body (see [S0203], page 348), or the accessibility level of the
target object shall not be statically deeper than that of the entry_declaration.

Dynamic Semantics

7

The execution of a requeue_statement proceeds by first evaluating the <entry_>name, includ-
ing the prefix identifying the target task or protected object and the expression identifying
the entry within an entry family, if any. The entry_body or accept_statement enclosing the
requeue_statement is then completed, finalized, and left (see Section 8.6.1 [7.6.1], page 299).

8

For the execution of a requeue on an entry of a target task, after leaving the enclosing
callable construct, the named entry is checked to see if it is open and the requeued call is
either selected immediately or queued, as for a normal entry call (see Section 10.5.3 [9.5.3],
page 352).

9

For the execution of a requeue on an entry of a target protected object, after leaving the
enclosing callable construct:

10

e if the requeue is an internal requeue (that is, the requeue is back on an entry of the same
protected object —— see Section 10.5 [9.5], page 343), the call is added to the queue of
the named entry and the ongoing protected action continues (see Section 10.5.1 [9.5.1],
page 344);

11

e if the requeue is an external requeue (that is, the target protected object is not implicitly
the same as the current object —— see Section 10.5 [9.5], page 343), a protected action
is started on the target object and proceeds as for a normal entry call (see Section 10.5.3
[9.5.3], page 352).

12
If the new entry named in the requeue_statement has formal parameters, then during the
execution of the accept_statement or entry_body corresponding to the new entry, the formal



parameters denote the same objects as did the corresponding formal parameters of the
callable construct completed by the requeue. In any case, no parameters are specified in a
requeue_statement; any parameter passing is implicit.

13

If the requeue_statement includes the reserved words with abort (it is a
<requeue—with—abort>), then:

14

e if the original entry call has been aborted (see Section 10.8 [9.8], page 385), then the
requeue acts as an abort completion point for the call, and the call is cancelled and no
requeue is performed;

15

e if the original entry call was timed (or conditional), then the original expiration time
is the expiration time for the requeued call.

16
If the reserved words with abort do not appear, then the call remains protected against
cancellation while queued as the result of the requeue_statement.

NOTES

17
31 A requeue is permitted from a single entry to an entry of an entry
family, or vice—versa. The entry index, if any, plays no part in the
subtype conformance check between the profiles of the two entries;
an entry index is part of the <entry_>name for an entry of a family.

Ezxamples

18

<Examples of requeue statements:>

19
requeue Request(Medium) with abort;

——< requeue on a member of an entry family of the current tas

[9.1], page 329>

20

requeue Flags(I).Seize;
——< requeue on an entry of an array component, see Section 1(
[9.4], page 337>

10.6 9.6 Delay Statements, Duration, and Time

1
A delay_statement is used to block further execution until a specified <expiration time> is
reached. The expiration time can be specified either as a particular point in time (in a



delay_until_statement (see [S0210], page 359)), or in seconds from the current time (in a
delay_relative_statement (see [S0211], page 359)). The language—defined package Calendar
provides definitions for a type Time and associated operations, including a function Clock
that returns the current time.

Syntax

2

delay_statement ::= delay_until_statement | delay_relative_statement
3

delay_until_statement ::= delay until <delay_>expression;
4

delay_relative_statement ::= delay <delay_>expression;

Name Resolution Rules

5

The expected type for the <delay_>expression in a delay_relative_statement is the predefined
type Duration. The <delay_>expression in a delay_until_statement is expected to be of any
nonlimited type.

Legality Rules

6

There can be multiple time bases, each with a corresponding clock, and a corresponding

<time type>. The type of the <delay_>expression in a delay_until_statement shall be a

time type —— either the type Time defined in the language—defined package Calendar (see

below), or some other implementation—defined time type (see Section 18.8 [D.8], page 1008).
Static Semantics

7

There is a predefined fixed point type named Duration, declared in the visible part of
package Standard; a value of type Duration is used to represent the length of an interval of
time, expressed in seconds. The type Duration is not specific to a particular time base, but
can be used with any time base.

8

A value of the type Time in package Calendar, or of some other implementation—defined
time type, represents a time as reported by a corresponding clock.

9
The following language—defined library package exists:

10

package Ada.Calendar is

type
Time is private;



11/2

subtype
Year_Number is Integer range 1901 .. 2399;
subtype
Month_Number is Integer range 1 .. 12;
subtype
Day_Number is Integer range 1 .. 31;
subtype
Day_Duration is Duration range 0.0 .. 86_400.0;
12
function
Clock return Time;
13
function
Year (Date : Time) return Year_Number;
function
Month (Date : Time) return Month_Number;
function
Day (Date : Time) return Day_Number;
function
Seconds(Date : Time) return Day_Duration;
14
procedure
Split (Date : in Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Seconds : out Day_Duration);
15
function
Time_0f (Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Seconds : Day_Duration := 0.0)
return Time;
16

function "+" (Left : Time; Right : Duration) return Time;
function "+" (Left : Duration; Right : Time) return Time;



function "—" (Left : Time; Right : Duration) return Time;

function "—" (Left : Time; Right : Time) return Duration;
17
function "<" (Left, Right : Time) return Boolean;
function "<="(Left, Right : Time) return Boolean;
function ">" (Left, Right : Time) return Boolean;
function ">="(Left, Right : Time) return Boolean;
18
Time_Error : exception;
19
private
... —— <not specified by the language>
end Ada.Calendar;
Dynamic Semantics
20

For the execution of a delay_statement, the <delay_>expression is first evaluated. For a de-
lay_until_statement, the expiration time for the delay is the value of the <delay_>expression,
in the time base associated with the type of the expression. For a delay_relative_statement,
the expiration time is defined as the current time, in the time base associated with relative
delays, plus the value of the <delay_>expression converted to the type Duration, and then
rounded up to the next clock tick. The time base associated with relative delays is as de-
fined in Section 18.9 [D.9], page 1013, "Section 18.9 [D.9], page 1013, Delay Accuracy" or
is implementation defined.

21

The task executing a delay_statement is blocked until the expiration time is reached, at
which point it becomes ready again. If the expiration time has already passed, the task is
not blocked.

22

If an attempt is made to <cancel> the delay_statement (as part of an asynchronous_select
(see [S0223], page 384) or abort —— see Section 10.7.4 [9.7.4], page 383, and Section 10.8
[9.8], page 385), the _statement is cancelled if the expiration time has not yet passed, thereby
completing the delay_statement.

23

The time base associated with the type Time of package Calendar is implementation defined.
The function Clock of package Calendar returns a value representing the current time for
this time base. The implementation—defined value of the named number System.Tick (see
Section 14.7 [13.7], page 510) is an approximation of the length of the real—time interval
during which the value of Calendar.Clock remains constant.

24/2

The functions Year, Month, Day, and Seconds return the corresponding values for a given



value of the type Time, as appropriate to an implementation—defined time zone; the proce-
dure Split returns all four corresponding values. Conversely, the function Time_Of combines
a year number, a month number, a day number, and a duration, into a value of type Time.

The operators "+" and "—" for addition and subtraction of times and durations, and the
relational operators for times, have the conventional meaning.
25

If Time_Of is called with a seconds value of 86_400.0, the value returned is equal to the
value of Time_Of for the next day with a seconds value of 0.0. The value returned by the
function Seconds or through the Seconds parameter of the procedure Split is always less
than 86-400.0.

26/1
The exception Time_Error is raised by the function Time_Of if the actual parameters do
not form a proper date. This exception is also raised by the operators "+" and "—" if the

result is not representable in the type Time or Duration, as appropriate. This exception is

also raised by the functions Year, Month, Day, and Seconds and the procedure Split if the

year number of the given date is outside of the range of the subtype Year_Number.
Implementation Requirements

27
The implementation of the type Duration shall allow representation of time intervals (both
positive and negative) up to at least 86400 seconds (one day); Duration’Small shall not
be greater than twenty milliseconds. The implementation of the type Time shall allow
representation of all dates with year numbers in the range of Year_Number; it may allow
representation of other dates as well (both earlier and later).
Implementation Permissions
28
An implementation may define additional time types (see Section 18.8 [D.8], page 1008).
29
An implementation may raise Time_Error if the value of a <delay_>expression in a de-
lay_until_statement of a select_statement represents a time more than 90 days past the
current time. The actual limit, if any, is implementation—defined.
Implementation Advice
30
Whenever possible in an implementation, the value of Duration’Small should be no greater
than 100 microseconds.
31
The time base for delay_relative_statements should be monotonic; it need not be the same
time base as used for Calendar.Clock.
NOTES

32

32 A delay_relative_statement with a negative value of the <de-
lay_>expression is equivalent to one with a zero value.

33



33 A delay_statement may be executed by the environment task;
consequently delay_statements may be executed as part of the elab-
oration of a library_item or the execution of the main subprogram.
Such statements delay the environment task (see Section 11.2 [10.2],

page 409).
34
34 A delay_statement is an abort completion point and a potentially
blocking operation, even if the task is not actually blocked.
35
35 There is no necessary relationship between System.Tick (the res-
olution of the clock of package Calendar) and Duration’Small (the
<small> of type Duration).
36
36 Additional requirements associated with delay_statements are
given in Section 18.9 [D.9], page 1013, "Section 18.9 [D.9], page 1013,
Delay Accuracy".
Examples
37
<Example of a relative delay statement:>
38
delay 3.0; ——< delay 3.0 seconds>
39
<Example of a periodic task:>
40
declare
use Ada.Calendar;
Next_Time : Time := Clock + Period;
——< Period is a global constant of type Duration>]]
begin
loop ——< repeated every Period seconds>

delay until Next_Time;
——< perform some actions>
Next_Time := Next_Time + Period;
end loop;
end;

10.6.1 9.6.1 Formatting, Time Zones, and other operations for
Time

Static Semantics



1/2
The following language—defined library packages exist

2/2
package Ada.Calendar.Time_Zones is
3/2
—— <Time zone manipulation:>
4/2
type
Time_Offset is range —28*60 .. 28%60;
5/2
Unknown_Zone_Error : exception;
6,2
function
UTC_Time_0Offset (Date : Time := Clock) return Time_QOffset;
7/2
end Ada.Calendar.Time_Zones;
8,2
package Ada.Calendar.Arithmetic is
9/2
—— <Arithmetic on days:>
10/2

type
Day_Count is range
—366* (1+Year_Number’Last — Year_Number’First)

366*(1+Year_Number’Last — Year_Number’First);



11/2

subtype
Leap_Seconds_Count is Integer range —2047 .. 2047;
12/2
procedure
Difference (Left, Right : in Time;
Days : out Day_Count;
Seconds : out Duration;
Leap_Seconds : out Leap_Seconds_Count);
13/2
function "+" (Left : Time; Right : Day_Count) return Time;
function "+" (Left : Day_Count; Right : Time) return Time;
function "—" (Left : Time; Right : Day_Count) return Time;
function "—" (Left, Right : Time) return Day_Count;
14/2
end Ada.Calendar.Arithmetic;
15/2
with Ada.Calendar.Time_Zones;
package Ada.Calendar.Formatting is
16/2
—— <Day of the week:>
17/2
type
Day_Name is (
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday) ;

18/2



19/2

20/2

21/2

22/2

23/2

24/2

25/2

function

Day_of_Week (Date

: Time) return Day_Name;

—— <Hours:Minutes:Seconds access:>

subtype
Hour_Number
subtype
Minute_Number
subtype
Second_Number
subtype
Second_Duration

function

Year (Date

function

Month (Date

function
Day (Date

function

Hour (Date

function

Minute (Date

is Natural range 0 .. 23;
is Natural range O .. 59;
is Natural range O .. 59;

is Day_Duration range 0.0 ..

: Time;

Time_Zone

: Time_Zones

return Year_Number;

: Time;

Time_Zone

: Time_Zones

return Month_Number;

: Time;

Time_Zone

: Time_Zones

return Day_Number;

: Time;

Time_Zone

: Time_Zones

return Hour_Number;

: Time;

Time_Zone

: Time_Zones

1.0;

.Time_QOffset

.Time_QOffset

.Time_QOffset

.Time_QOffset

.Time_QOffset

0)

0)

0)

0)

0)



return Minute_Number;

26/2
function
Second (Date : Time)
return Second_Number;
27/2
function
Sub_Second (Date : Time)
return Second_Duration;
28/2
function
Seconds_0f (Hour :  Hour_Number;
Minute : Minute_Number;
Second : Second_Number := 0;
Sub_Second : Second_Duration := 0.0)
return Day_Duration;
29/2
procedure
Split (Seconds : in Day_Duration;
Hour : out Hour_Number;
Minute : out Minute_Number;
Second : out Second_Number;
Sub_Second : out Second_Duration);
30/2
function
Time_0f (Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Hour : Hour_Number;
Minute : Minute_Number;
Second : Second_Number;
Sub_Second : Second_Duration := 0.0;
Leap_Second: Boolean := False;
Time_Zone : Time_Zones.Time_0ffset := 0)
return Time;
31/2
function

Time_0f (Year : Year_Number;



Month : Month_Number;

Day : Day_Number;

Seconds : Day_Duration := 0.0;
Leap_Second: Boolean := False;

Time_Zone : Time_Zones.Time_0Offset := 0)

return Time;

32/2
procedure
Split (Date : in Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Hour : out Hour_Number;
Minute : out Minute_Number;
Second : out Second_Number;
Sub_Second : out Second_Duration;
Time_Zone : in Time_Zones.Time_0ffset := 0);
33/2
procedure
Split (Date : in Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Hour : out Hour_Number;
Minute : out Minute_Number;
Second : out Second_Number;
Sub_Second : out Second_Duration;
Leap_Second: out Boolean;
Time_Zone : in Time_Zones.Time_0ffset := 0);
34/2
procedure
Split (Date : in Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Seconds : out Day_Duration;
Leap_Second: out Boolean;
Time_Zone : in Time_Zones.Time_0ffset := 0);
35/2

—— <Simple image and value:>
function



Image (Date : Time;

Include_Time_Fraction : Boolean := False;
Time_Zone : Time_Zones.Time_Offset := 0) return String;]]
36/2
function
Value (Date : String;
Time_Zone : Time_Zones.Time_Offset := 0) return Time;ll
37/2
function
Image (Elapsed_Time : Duration;
Include_Time_Fraction : Boolean := False) return String;]}
38/2
function
Value (Elapsed_Time : String) return Duration;
39/2
end Ada.Calendar.Formatting;
40/2

Type Time_Offset represents the number of minutes difference between the
implementation—defined time zone used by Calendar and another time zone.

41/2

function UTC_Time_Offset (Date : Time := Clock) return Time_Offset;
42/2

Returns, as a number of minutes, the dif-
ference between the implementation—defined
time zone of Calendar, and UTC time, at
the time Date. If the time zone of the Cal-
endar implementation is unknown, then Un-
known_Zone_Error is raised.

43/2

procedure Difference (Left, Right : in Time;
Days : out Day_Count;
Seconds : out Duration;
Leap_Seconds : out Leap_Seconds_Count);

44/2



Returns the difference between Left and
Right. Days is the number of days of
difference, Seconds is the remainder seconds
of difference excluding leap seconds, and
Leap_Seconds is the number of leap seconds.
If Left < Right, then Seconds <= 0.0, Days
<= 0, and Leap_Seconds <= 0. Otherwise,
all values are nonnegative. The absolute
value of Seconds is always less than 86_400.0.
For the returned values, if Days = 0, then
Seconds + Duration(Leap_Seconds) =
Calendar."—" (Left, Right).

45/2
function "+" (Left : Time; Right : Day_Count) return Time;
function "+" (Left : Day_Count; Right : Time) return Time;
46/2
Adds a number of days to a time value.
Time_Error is raised if the result is not
representable as a value of type Time.
47/2
function "—" (Left : Time; Right : Day_Count) return Time;
48/2
Subtracts a number of days from a time value.
Time_Error is raised if the result is not rep-
resentable as a value of type Time.
49/2
function "—" (Left, Right : Time) return Day_Count;
50/2
Subtracts two time values, and returns the
number of days between them. This is the
same value that Difference would return in
Days.
51/2

function Day_of_Week (Date : Time) return Day_Name;
52/2



53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

Returns the day of the week for Time. This
is based on the Year, Month, and Day values
of Time.

function Year (Date : Time;
Time_Zone : Time_Zones.Time_0ffset
return Year_Number;

Returns the year for Date, as appropriate for
the specified time zone offset.

function Month (Date : Time;
Time_Zone : Time_Zones.Time_0ffset
return Month_Number;

Returns the month for Date, as appropriate
for the specified time zone offset.

function Day (Date : Time;
Time_Zone : Time_Zones.Time_Offset
return Day_Number;

Returns the day number for Date, as appro-
priate for the specified time zone offset.

function Hour (Date : Time;
Time_Zone : Time_Zones.Time_Offset
return Hour_Number;

Returns the hour for Date, as appropriate for
the specified time zone offset.

function Minute (Date : Time;
Time_Zone : Time_Zones.Time_Offset

0)

0)

0)

0)

0)



return Minute_Number;

62/2

Returns the minute within the hour for Date,
as appropriate for the specified time zone off-
set.

63/2

function Second (Date : Time)
return Second_Number;

64/2

Returns the second within the hour and
minute for Date.

65,2

function Sub_Second (Date : Time)
return Second_Duration;

66/2

Returns the fraction of second for Date (this
has the same accuracy as Day_Duration).
The value returned is always less than 1.0.

67/2

function Seconds_0f (Hour : Hour_Number;
Minute : Minute_Number;
Second : Second_Number := 0;
Sub_Second : Second_Duration := 0.0)
return Day_Duration;

68/2

Returns a Day_Duration value for the
combination of the given Hour, Minute,
Second, and Sub_Second. This value
can be used in Calendar.Time_Of as well
as the argument to Calendar."+" and
Calendar."—". If Seconds_Of is called with a
Sub_Second value of 1.0, the value returned
is equal to the value of Seconds_Of for the
next second with a Sub_Second value of 0.0.

69/2

procedure Split (Seconds : in Day_Duration;



70/2

71/2

72/2

73/2

function Time_0f (Year

function Time_0f (Year

Hour : out Hour_Number;
Minute : out Minute_Number;
Second : out Second_Number;

Sub_Second : out Second_Duration);

Splits Seconds into Hour, Minute, Second and
Sub_Second in such a way that the resulting
values all belong to their respective subtypes.
The value returned in the Sub_Second param-
eter is always less than 1.0.

: Year_Number;

Month : Month_Number;

Day : Day_Number;

Hour : Hour_Number;

Minute : Minute_Number;

Second : Second_Number;
Sub_Second : Second_Duration :
Leap_Second: Boolean := False;
Time_Zone : Time_Zones.Time_0Offset

return Time;

If Leap_Second is False, returns a Time built
from the date and time values, relative to the
specified time zone offset. If Leap_Second
is True, returns the Time that represents
the time within the leap second that is one
second later than the time specified by the
other parameters. Time_Error is raised
if the parameters do not form a proper
date or time. If Time_Of is called with a
Sub_Second value of 1.0, the value returned
is equal to the value of Time_Of for the next
second with a Sub_Second value of 0.0.

: Year_Number;

Month : Month_Number;

Day : Day_Number;

Seconds : Day_Duration := 0.0;
Leap_Second: Boolean := False;
Time_Zone : Time_Zones.Time_0Offset

0)

0)



return Time;

74/2

If Leap_Second is False, returns a Time built
from the date and time values, relative to the
specified time zone offset. If Leap_Second is
True, returns the Time that represents the
time within the leap second that is one sec-
ond later than the time specified by the other
parameters. Time_KError is raised if the pa-
rameters do not form a proper date or time.
If Time_Of is called with a Seconds value of
86_400.0, the value returned is equal to the
value of Time_Of for the next day with a Sec-
onds value of 0.0.

75/2

procedure Split (Date : in Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Hour : out Hour_Number;
Minute : out Minute_Number;
Second : out Second_Number;
Sub_Second : out Second_Duration;
Leap_Second: out Boolean;
Time_Zone : in Time_Zones.Time_0ffset := 0);

76,2

If Date does not represent a time within a
leap second, splits Date into its constituent
parts (Year, Month, Day, Hour, Minute,
Second, Sub_Second), relative to the
specified time =zone offset, and sets
Leap_Second to False. If Date represents a
time within a leap second, set the constituent
parts to values corresponding to a time one
second earlier than that given by Date,
relative to the specified time zone offset,
and sets Leap_Seconds to True. The value
returned in the Sub_Second parameter is
always less than 1.0.

77/2

procedure Split (Date : in Time;



78/2

79/2

80/2

81/2

procedure

Year : out Year_Number;

Month : out Month_Number;
Day : out Day_Number;
Hour : out Hour_Number;
Minute : out Minute_Number;
Second : out Second_Number;

Sub_Second : out Second_Duration;
Time_Zone : in Time_Zones.Time_0ffset := 0);

Splits Date into its constituent parts
(Year, Month, Day, Hour, Minute, Second,
Sub_Second), relative to the specified time
zone offset.  The value returned in the
Sub_Second parameter is always less than
1.0.

Split (Date : in Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Seconds : out Day_Duration;

Leap_Second: out Boolean;

Time_Zone : in Time_Zones.Time_0Offset := 0);

If Date does not represent a time within a
leap second, splits Date into its constituent
parts (Year, Month, Day, Seconds), relative
to the specified time zone offset, and sets
Leap_Second to False. If Date represents a
time within a leap second, set the constituent
parts to values corresponding to a time one
second earlier than that given by Date,
relative to the specified time zone offset,
and sets Leap_Seconds to True. The value
returned in the Seconds parameter is always
less than 86_400.0.

function Image (Date : Time;

Include_Time_Fraction : Boolean

:= False;

Time_Zone : Time_Zones.Time_0ffset := 0) return

String;|]



82/2

Returns a string form of the Date relative
to the given Time_Zone. The format is
"Year—Month—Day Hour:Minute:Second",
where the Year is a 4—digit value,
and all others are 2-—digit values, of
the functions defined in Calendar and
Calendar.Formatting, including a leading
zero, if needed. The separators between the
values are a minus, another minus, a colon,
and a single space between the Day and
Hour. If Include_Time_Fraction is True, the
integer part of Sub_Seconds*100 is suffixed
to the string as a point followed by a 2—digit
value.

83,2

function Value (Date : String;
Time_Zone : Time_Zones.Time_0ffset := 0) return Time;l]

84/2

Returns a Time value for the image given as
Date, relative to the given time zone. Con-
straint_Error is raised if the string is not for-
matted as described for Image, or the func-
tion cannot interpret the given string as a
Time value.

85/2

function Image (Elapsed_Time : Duration;
Include_Time_Fraction : Boolean := False) return String;l]

86/2

Returns a string form of the Elapsed_Time.
The format is "Hour:Minute:Second",
where all values are 2-—digit values,
including a leading zero, if needed. The
separators between the values are colons. If
Include_Time_Fraction is True, the integer
part of Sub_Seconds*100 is suffixed to the
string as a point followed by a 2—digit value.
If Elapsed_Time < 0.0, the result is Image
(abs Elapsed_Time, Include_Time_Fraction)
prefixed with a minus sign. If abs



Elapsed_Time represents 100 hours or more,
the result is implementation—defined.

87/2

function Value (Elapsed_Time : String) return Duration;

88/2

Returns a Duration value for the image given

as Elapsed_Time. Constraint_Error is raised

if the string is not formatted as described for

Image, or the function cannot interpret the

given string as a Duration value.

Implementation Advice

89/2
An implementation should support leap seconds if the target system supports them. If leap
seconds are not supported, Difference should return zero for Leap_Seconds, Split should
return False for Leap_Second, and Time_Of should raise Time_Error if Leap_Second is
True.

NOTES
90/2

37 The implementation—defined time zone of package Calendar
may, but need not, be the local time zone. UTC_Time_Offset always
returns the difference relative to the implementation—defined time
zone of package Calendar. If UTC_Time_Offset does not raise
Unknown_Zone_Error, UTC time can be safely calculated (within
the accuracy of the underlying time—base).

91/2

38 Calling Split on the results of subtracting Dura-
tion(UTC_Time_Offset*60) from Clock provides the components
(hours, minutes, and so on) of the UTC time. In the United States,
for example, UTC_Time_Offset will generally be negative.

10.7 9.7 Select Statements

1
There are four forms of the select_statement. One form provides a selective wait for one
or more select_alternatives. Two provide timed and conditional entry calls. The fourth
provides asynchronous transfer of control.

Syntax

select_statement ::=
selective_accept



| timed_entry_call
| conditional _entry_call
| asynchronous_select

Ezamples
3
<Example of a select statement:>
4
select
accept Driver_Awake_Signal;
or

delay 30.0*Seconds;
Stop_The_Train;
end select;

10.7.1 9.7.1 Selective Accept

1
This form of the select_statement allows a combination of waiting for, and selecting from,

one or more alternatives. The selection may depend on conditions associated with each

alternative of the selective_accept.
Syntax

selective_accept ::=
select
[guard]
select_alternative
{or
[guard]
select_alternative }
[ else
sequence_of_statements |
end select;

guard ::= when condition =>

select_alternative ::=
accept_alternative
| delay_alternative
| terminate_alternative



accept_alternative ::=
accept_statement [sequence_of_statements]

6
delay_alternative ::=
delay_statement [sequence_of_statements]
7
terminate_alternative ::= terminate;
8
A selective_accept shall contain at least one accept_alternative. In
addition, it can contain:
9
e a terminate_alternative (only one); or
10
e one or more delay_alternatives; or
11
e an <else part> (the reserved word else followed by a
sequence_of_statements).
12
These three possibilities are mutually exclusive.
Legality Rules
13

If a selective_accept contains more than one delay_alternative, then all shall be
delay_relative_statement (see [S0211], page 359)s, or all shall be delay_until_statement (see
[S0210], page 359)s for the same time type.

Dynamic Semantics

14
A select_alternative is said to be <open> if it is not immediately preceded by a guard, or if
the condition of its guard evaluates to True. It is said to be <closed> otherwise.

15

For the execution of a selective_accept, any guard conditions are evaluated; open alter-
natives are thus determined. For an open delay_alternative, the <delay_>expression is also
evaluated. Similarly, for an open accept_alternative for an entry of a family, the entry_index
is also evaluated. These evaluations are performed in an arbitrary order, except that a <de-
lay_>expression or entry_index is not evaluated until after evaluating the corresponding
condition, if any. Selection and execution of one open alternative, or of the else part, then



completes the execution of the selective_accept; the rules for this selection are described
below.

16

Open accept_alternatives are first considered. Selection of one such alternative takes place
immediately if the corresponding entry already has queued calls. If several alternatives can
thus be selected, one of them is selected according to the entry queuing policy in effect (see
Section 10.5.3 [9.5.3], page 352, and Section 18.4 [D.4], page 994). When such an alternative
is selected, the selected call is removed from its entry queue and the handled_sequence_of_-
statements (see [S0247], page 420) (if any) of the corresponding accept_statement is exe-
cuted; after the rendezvous completes any subsequent sequence_of_statements (see [S0130],
page 240) of the alternative is executed. If no selection is immediately possible (in the above
sense) and there is no else part, the task blocks until an open alternative can be selected.

17
Selection of the other forms of alternative or of an else part is performed as follows:

18

e An open delay_alternative is selected when its expiration time is reached if no accept_-
alternative (see [S0216], page 379) or other delay_alternative (see [S0217], page 379)
can be selected prior to the expiration time. If several delay_alternative (see [S0217],
page 379)s have this same expiration time, one of them is selected according to the
queuing policy in effect (see Section 18.4 [D.4], page 994); the default queuing policy
chooses arbitrarily among the delay_alternative (see [S0217], page 379)s whose expira-
tion time has passed.

19

e The else part is selected and its sequence_of_statements (see [S0130], page 240) is
executed if no accept_alternative can immediately be selected; in particular, if all al-
ternatives are closed.

20

e An open terminate_alternative is selected if the conditions stated at the end of clause
Section 10.3 [9.3], page 335, are satisfied.

21

The exception Program_Error is raised if all alternatives are closed and there is no else part.
NOTES

22
39 A selective_accept is allowed to have several open de-
lay_alternatives. A selective_accept is allowed to have several open
accept_alternatives for the same entry.

Examples
23

<Example of a task body with a selective accept:>



24

task body Server is
Current_Work_Item : Work_Item;

begin
loop
select
accept Next_Work_Item(WI : in Work_Item) do
Current_Work_TItem := WI;
end;
Process_Work_Item(Current_Work_Item) ;
or
accept Shut_Down;
exit; ——< Premature shut down requested>
or
terminate; ——< Normal shutdown at end of scope>
end select;
end loop;

end Server;

10.7.2 9.7.2 Timed Entry Calls

1/2

A timed_entry_call issues an entry call that is cancelled if the call (or a requeue—with—abort
of the call) is not selected before the expiration time is reached. A procedure call may appear
rather than an entry call for cases where the procedure might be implemented by an entry.

Syntax

timed_entry_call ::=
select
entry_call_alternative
or
delay _alternative
end select;

3/2

entry_call_alternative ::=
procedure_or_entry_call [sequence_of_statements]

3.1/2
procedure_or_entry_call ::=

procedure_call_statement | entry_call_statement
Legality Rules



3.2/2
If a procedure_call_statement is used for a procedure_or_entry_call, the <procedure_>name
or <procedure_>prefix of the procedure_call_statement shall statically denote an entry re-
named as a procedure or (a view of) a primitive subprogram of a limited interface whose
first parameter is a controlling parameter (see Section 4.9.2 [3.9.2], page 145).
Static Semantics

3.3/2
If a procedure_call_statement is used for a procedure_or_entry_call, and the procedure is
implemented by an entry, then the <procedure_>name, or <procedure_>prefix and possibly
the first parameter of the procedure_call_statement, determine the target object of the call
and the entry to be called.

Dynamic Semantics
4/2
For the execution of a timed_entry_call, the <entry_>name, <procedure_>name, or <pro-
cedure_>prefix, and any actual parameters are evaluated, as for a simple entry call (see
Section 10.5.3 [9.5.3], page 352) or procedure call (see Section 7.4 [6.4], page 266). The
expiration time (see Section 10.6 [9.6], page 358) for the call is determined by evaluating
the <delay_>expression of the delay_alternative. If the call is an entry call or a call on
a procedure implemented by an entry, the entry call is then issued. Otherwise, the call
proceeds as described in Section 7.4 [6.4], page 266, for a procedure call, followed by the
sequence_of_statements (see [S0130], page 240) of the entry_call_alternative (see [S0220],
page 381); the sequence_of_statements (see [S0130], page 240) of the delay_alternative (see
[S0217], page 379) is ignored.
5
If the call is queued (including due to a requeue—with—abort), and not selected before the
expiration time is reached, an attempt to cancel the call is made. If the call completes
due to the cancellation, the optional sequence_of_statements (see [S0130], page 240) of the
delay_alternative (see [S0217], page 379) is executed; if the entry call completes normally,
the optional sequence_of_statements (see [S0130], page 240) of the entry_call_alternative
(see [S0220], page 381) is executed.

Ezamples
6
<Example of a timed entry call:>
7
select
Controller.Request(Medium) (Some_Item) ;
or
delay 45.0;

——< controller too busy, try something else>
end select;

10.7.3 9.7.3 Conditional Entry Calls

1/2
A conditional_entry_call issues an entry call that is then cancelled if it is not selected imme-
diately (or if a requeue—with—abort of the call is not selected immediately). A procedure



call may appear rather than an entry call for cases where the procedure might be imple-
mented by an entry.

Syntax
2
conditional _entry_call ::=

select

entry_call_alternative

else

sequence_of_statements

end select;

Dynamic Semantics

3

The execution of a conditional_entry_call is defined to be equivalent to the execution of a
timed_entry_call (see [S0219], page 381) with a delay_alternative (see [S0217|, page 379)
specifying an immediate expiration time and the same sequence_of_statements (see [S0130],
page 240) as given after the reserved word else.

NOTES
4
40 A conditional_entry_call may briefly increase the Count attribute
of the entry, even if the conditional call is not selected.
Ezamples
5
<Example of a conditional entry call:>
6

procedure Spin(R : in Resource) is
begin
loop
select
R.Seize;
return;
else
null; ——< busy waiting>
end select;
end loop;
end;
