Version Management
with
CVS

for cvs 1.12.13-MirOS-0AB9.1

Per Cederqvist et al

Copyright (©) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
Software Foundation, Inc.

Portions
Copyright © 2003, 2004, 2005, 2007, 2009, 2010, 2011, 2013, 2014, 2015, 2016,
2017, 2021 mirabilos, The MirOS Project
Copyright (© 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Derek R. Price,
Copyright (© 2002, 2003, 2004, 2005 Ximbiot http://ximbiot.com,
Copyright (© 1992, 1993, 1999 Signum Support AB,
and Copyright (©) others.

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided also that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the Free Software Foundation.

http://ximbiot.com

Short Contents

© 00 J O Ot = W N o=

—_ =
_ O

12

OV TV OW « v v vt ettt e e 1
The Repositoryo e e 7
Starting a project with CVS. 33
ReVISIONS . . . ot 37
Branching and merging. e 45
Recursive behavior 95
Adding, removing, and renaming files and directories............., 57
History browsing e 63
Handling binary files. e 65
Multiple developers e 67
Revision management e 7
Keyword substitution 79
Tracking third-party sources. i 85
How your build system interacts with CVS. 89
Special Files. . ..o 91
Guide to CVS commandst e 93
Quick reference to CVS commandsttt 139
Reference manual for Administrative files. 153
All environment variables which affect CVSo oL 177
Compatibility between CVS Versions. 181
Troubleshooting. o e 183
Credits . . e 191
Dealing with bugs in CVS or thismanual 193
Alphabetical list of all CVS commands 195

iii

Table of Contents

1 OVEIVIEW . .. 1
1.1 What i OV S o 1
1.2 What is CV S not T . oo 2
1.3 A SAMPIE SESSION .« o vttt et 3

1.3.1 Getting the SOUTrCeot 3
1.3.2 Committing your changesttt 4
1.3.3 Cleamning UD . ..o oottt et e e e 4
1.3.4 Viewing differences. 5

2 The Repository........ ... 7
2.1 Telling CVS where your repository 1S.uut ettt e 7
2.2 How data is stored in the repository....... ... 8

2.2.1 Where files are stored within the repository........... 8
2.2.2 File PermiSSIONS v vttt ettt ettt e 9
2.2.3 File Permission issues specific to Windows.............. ..., 10
2.2.4 The attic ..o 10
2.2.5 The CVS directory in the repository.......... 11
2.2.6 CVS locks in the repository ... 12
2.2.7 How files are stored in the CVSROOT directory.............coooiiiiiii.... 13
2.3 How data is stored in the working directory i 14
2.4 The administrative files. i 16
2.4.1 Editing administrative files....... 17
2.5 Multiple repOSItOTIES\ 17
2.6 Creating a repositoryt 18
2.7 Backing up a repository 18
2.8 MoOVINE & TePOSITOTY . ..ttt e 19
2.9 Remote repositories.o e 19
2.9.1 Server TeQUITEINEIIESt vttt ettt ettt e e e et et e e e 20
2.9.2 The connection method i 20
2.9.3 Connecting with rsh 22
2.9.4 Direct connection with password authentication 23
2.9.4.1 Setting up the server for password authentication........................ 23
2.9.4.2 Using the client with password authentication 27
2.9.4.3 Security considerations with password authentication.................... 28

2.9.5 Direct connection with GSSAPT. 28
2.9.6 Direct connection with Kerberos o i i 29
2.9.7 Connecting with fork..... 29
2.9.8 Distributing load across several CVS Servers............oouiiiiiiiienniena.n. 30
2.10 Read-only repository aCCESS vvttt ittt e 31
2.11 Temporary directories for the server........... ... i 31
3 Starting a project with CVS 33

3.1 Setting up the files. ... 33

iv

3.1.1 Creating a directory tree from a number of files 33
3.1.2 Creating Files From Other Version Control Systems 34
3.1.3 Creating a directory tree from scratch.......... L. 34
3.2 Defining the module 35
Revisions 37
4.1 Revision nUmMDeTrst e 37
4.2 Versions, revisions and releases. i 37
4.3 ASSIgning reviSIOnS. 37
4.4 Tags—Symbolic TeVISIONSttt 38
4.5 Specifying what to tag from the working directory............ 40
4.6 Specifying what to tag by date or revision............ i 40
4.7 Deleting, moving, and renaming tagsouvtiiiiii e 41
4.8 Tagging and adding and removing files..........o i i 42
4.9 SHICKY B8 « ottt 42
Branching and merging................. 45
5.1 What branches are good for........ .. . 45
5.2 Creating a branch e 45
5.3 Accessing branches 46
5.4 Branches and reviSiOnS. e 47
5.5 Magic branch numbers. 48
5.6 Merging an entire branch 49
5.7 Merging from a branch several times......... 49
5.8 Merging differences between any two revisions.............covieiiiiiieiiineann.. 50
5.9 Merging can add or remove files. 51
5.10 Merging and Keywordst 51
Recursive behavior............... 55
Adding, removing, and renaming files and directories 57
7.1 Adding files to a directoryot 57
7.2 Removing fileso 58
7.3 Removing directories. e 59
7.4 Moving and renaming files 60
7.4.1 The Normal way to Rename........ i i 60
7.4.2 Moving the history file....... .. 60
7.4.3 Copying the history file..... ... i 60
7.5 Moving and renaming directories. 61
History browsing.......... 63
8.1 LOZ MESSAEES -« o vttt e e 63
8.2 The history database 63

8.3 User-defined logging e 63

9 Handling binary files........... 65
9.1 The issues with binary files 65
9.2 How to store binary files...... ... i 65

10 Multiple developers 67
10.1 File status. ..o e 67
10.2 Bringing a file up to date ... 68
10.3 Conflicts example. 69
10.4 Informing others about commitso 71
10.5 Several developers simultaneously attempting to run CVS.................... ..., 71
10.6 Mechanisms to track who is editing files......... o i 72

10.6.1 Telling CVS to watch certain files....... o i i, 72
10.6.2 Telling CVS to notify you. ... e 73
10.6.3 How to edit a file which is being watched............. 74
10.6.4 Information about who is watching and editing..................... 75
10.6.5 Using watches with old versions of CVS.... i, 75
10.7 Choosing between reserved or unreserved checkouts 75

11 Revision management, 77
11.1 When to commit? e e 77

12 Keyword substitution 79
12.1 Keyword List . ..o 79
12.2 UsSing KeyWordSo o 81
12.3 Avoiding substitution 81
12.4 Substitution MOdesttt e 82
12.5 Configuring Keyword Expansion i 83
12.6 Problems with the Log keyword.......... ... i 84

13 Tracking third-party sources................................ 85
13.1 Importing for the first time 85
13.2 Updating with the import command i i 85
13.3 Reverting to the latest vendor release i 86
13.4 How to handle binary files with cvs import........... i 86
13.5 How to handle keyword substitution with cvs import.............. 86
13.6 Multiple vendor branches i 87

14 How your build system interacts with CVS 89

15 Special Files....... 91

vi

Appendix A Guide to CVS commands 93
A.1 Overall structure of CVS commands.......... ..., 93
A2 CVE’s exit StatUS. oottt 93
A3 Default options and the ~/.cvsrc file. 94
A4 Global OPLIONS . o oottt 94
A5 Common command OPHIONS.ttt e e 97
A6 Date input formats. 99

A.6.1 General date SyNtaxttt 100
A.6.2 Calendar date it@ms. ...t 101
A.6.3 Time of day Ttems.ottt 102
A.6.4 Time ZOne TLeINS . ..ottt ettt et e e 102
A.6.5 Day of week I6eImS.o 103
A.6.6 Relative items in date Strings......... ...t 103
A.6.7 Pure numbers in date Strings.........c.oouiiiiiitt i 104
A.6.8 Seconds since the Epoch........... 104
A6.9 Authorsof get_date.o 105
A.7 admin—Administration front-end for RCS......... L. 105
A7 1 admin OptionS.o 105
A.8 annotate—What revision modified each line of a file? 109
A8.1 annotate OPtIONSttt 109
A.8.2 annotate example 109
A.9 checkout—Check out sources for editingc.ooiiiii i 110
A9.1 checkout Optionst 111
A.9.2 checkout eXamples. 112
A.10 commit—Check files into the repository i 112
A 101 commit OPHIONS . . oo vttt e 113

A 10.2 commit eXamples. e 114
A.10.2.1 Committing to a branch........... ... i 114
A.10.2.2 Creating the branch after editing, 114

A.11 diff—Show differences between revisions.......... ..., 115
ATLT diff OptionS. ..t 115
AT11.1.1 Line group formatst 119
AT1.1.2 LAne formatsottt 121
AT1.2 diff eXxamples. . ..o e 122
A.12 export—Export sources from CVS, similar to checkout 123
A 121 eXport OPtIONS . .ottt 123
A.13 history—Show repository access historyo 124
A 13,1 hisStory OptionSo 124
A.14 import—Import sources into CVS, using vendor branches....................... 126
A T4 T ImMpPort OPEIONS « . oottt e 127
AT4.2 AmMpPOort OULPUL. .« ottt e e e 127

A 143 Import eXamples 128
A.15 log—Print out history information for files 128
AT5.1 10g OPTIONS . . o ettt 128
A15.2 10g eXaMPIES . . oot 130
A.16 s & rls—List files in the repository. 130
AT6.1 18 & rls OPEIONS. ¢ o et 130

AT6.2 TIS eXAIPIES. . ot 131

A.17 rdiff——Create 'patch’ format diffs between revisions 131
ATTT rdiff OptIONS. .\ttt e 131
AQ7.2 rdiff examples. o 132

A.18 release—Indicate that a directory is no longer inuse............................ 132
A 181 release OPHIONSt 133
ALB.2 1elease OULPUL . ..ottt ettt e et e e 133
A 18.3 release eXamplest 133

A.19 server & pserver—Act as a server for a client on stdin/stdout................... 134

A.20 suck—Download RCS ;v file Tawcootiiii e 134

A.21 update—Bring work tree in sync with repositoryo 134
A21.1 update OptionSottt 135
A21.2 update outpubo 136

Appendix B Quick reference to CVS commands 139
Appendix C Reference manual for Administrative files..... 153

C.1 The modules file e e e e 153
C.1.1 Allas MOduleso e 153
C.1.2 Regular modules 154
C.1.3 Ampersand modules.o 154
C.1.4 Excluding dir€Ctoriesvuvnutit et et e 155
C.1.5 Module OptIONS. . .ottt et e e e e 155
C.1.6 How the modules file “program options” programs are run.................. 155

C.2 The cvswrappers file 156

C.3 The Trigger SCriptsttt e e e 156
C.3.1 The COMMON SYIEAX .+t vttt ettt ettt ettt et et e e e e e 157
C.3.2 Security and the Trigger Scripts ... 158
C.3.3 The commit support files......... ... 159

C.3.3.1 Updating legacy repositories to stop using
deprecated command line template formats............ o 159
C.3.4 Commitinfo 160
C.3.5 Verifying 1log messages.t 161
C.3.5.1 Verifying log messagesounn ittt 162
C.3.6 Loginfo 163
C.3.6.1 Loginfo example. ... 164
C.3.6.2 Keeping a checked out COPY .. nvvvii e 164
C.3.7 Logging admin commandsuuuutiittiitii i 164
C.3.8 Taginfoooe e 165
C.3.9 Logging tags . oottt 165
C.3.10 Logging watch commands 166
C.3.11 Launch a Script before Proxying........ ... 166
C.3.12 Launch a Script after Proxying........ ... 166

C.d Resinfo ..o 167

C.5 Ignoring files via CVSIBNOTEttt e e 167

C.6 The checkoutlist file. i 168

C.7 The history file. 169

C.8 Expansions in administrative files 169

C.9 The CVSROOT //config configuration file............ ... oo, 170

viii

Appendix D All environment variables which affect CVS .. 177

Appendix E Compatibility between CVS Versions.......... 181
Appendix F Troubleshooting 183
F.1 Partial list of error messages.ot e 183
F.2 Trouble making a connection to a CVS server...........c.oooiiiiiiiiiiiiann.. 189
F.3 Other common problems e 190
Appendix G Credits............... 191
Appendix H Dealing with bugs in CVS or this manual..... 193
Appendix I Alphabetical list of all CVS commands........ 195

1 Overview

This chapter is for people who have never used cvs, and perhaps have never used version control
software before.

If you are already familiar with cvs and are just trying to learn a particular feature or
remember a certain command, you can probably skip everything here.

1.1 What is CVS?

CVS is a version control system. Using it, you can record the history of your source files.

For example, bugs sometimes creep in when software is modified, and you might not detect
the bug until a long time after you make the modification. With cvs, you can easily retrieve
old versions to see exactly which change caused the bug. This can sometimes be a big help.

You could of course save every version of every file you have ever created. This would however
waste an enormous amount of disk space. CVs stores all the versions of a file in a single file in
a clever way that only stores the differences between versions.

CVSs also helps you if you are part of a group of people working on the same project. It is
all too easy to overwrite each others’ changes unless you are extremely careful. Some editors,
like GNU Emags, try to make sure that two people never modify the same file at the same time.
Unfortunately, if someone is using another editor, that safeguard will not work. Cvs solves this
problem by insulating the different developers from each other. Every developer works in his
own directory, and cvs merges the work when each developer is done.

cvs started out as a bunch of shell scripts written by Dick Grune, posted to the newsgroup
comp.sources.unix in the volume 6 release of July, 1986. While no actual code from these shell
scripts is present in the current version of ¢vs much of the cvs conflict resolution algorithms
come from them.

In April, 1989, Brian Berliner designed and coded cvs. Jeff Polk later helped Brian with the
design of the cvs module and vendor branch support.

You can get CVS in a variety of ways, including free download from the Internet. For more
information on downloading cvs and other CVs topics, see:

http://cvs.nongnu.org/

There is a mailing list, known as info-cvs@nongnu.org, devoted to cvs. To subscribe or
unsubscribe write to info-cvs-request@nongnu.org. If you prefer a Usenet group, there is a
one-way mirror (posts to the email list are usually sent to the news group, but not visa versa) of
info-cvs@nongnu.org at news:gnu.cvs.help. The right Usenet group for posts is news: comp.
software.config-mgmt which is for cvs discussions (along with other configuration manage-
ment systems). In the future, it might be possible to create a comp.software.config-mgmt.cvs,
but probably only if there is sufficient cvS traffic on news:comp.software.config-mgmt.

You can also subscribe to the bug-cvs@nongnu.org mailing list, described in more detail
in Appendix H [BUGS], page 193. To subscribe send mail to bug-cvs-request@nongnu.org.
There is a two-way Usenet mirror (posts to the Usenet group are usually sent to the email list
and visa versa) of bug-cvs@nongnu.org named news:gnu.cvs.bug.

http://cvs.nongnu.org/
mailto:info-cvs@nongnu.org
mailto:info-cvs-request@nongnu.org
mailto:info-cvs@nongnu.org
news:gnu.cvs.help
news:comp.software.config-mgmt
news:comp.software.config-mgmt
news:comp.software.config-mgmt
mailto:bug-cvs@nongnu.org
mailto:bug-cvs-request@nongnu.org
mailto:bug-cvs@nongnu.org
news:gnu.cvs.bug

2 CVS—~Concurrent Versions System v1.12.13

1.2 What is CVS not?

cvs can do a lot of things for you, but it does not try to be everything for everyone.

CVS is not a build system.
Though the structure of your repository and modules file interact with your build
system (e.g. Makefiles), they are essentially independent.

cvs does not dictate how you build anything. It merely stores files for retrieval in
a tree structure you devise.

cvs does not dictate how to use disk space in the checked out working directories.
If you write your Makefiles or scripts in every directory so they have to know the
relative positions of everything else, you wind up requiring the entire repository to
be checked out.

If you modularise your work, and construct a build system that will share files (via
links, mounts, VPATH in Makefiles, etc.), you can arrange your disk usage however
you like.

But you have to remember that any such system is a lot of work to construct and
maintain. CVS does not address the issues involved.

Of course, you should place the tools created to support such a build system (scripts,
Makefiles, etc) under CVvs.

Figuring out what files need to be rebuilt when something changes is, again, some-
thing to be handled outside the scope of cvs. One traditional approach is to use
make for building, and use some automated tool for generating the dependencies
which make uses.

See Chapter 14 [Builds], page 89, for more information on doing builds in conjunction
with cvs.

CVS is not a substitute for management.
Your managers and project leaders are expected to talk to you frequently enough
to make certain you are aware of schedules, merge points, branch names and release
dates. If they don’t, cvs can’t help.

CVs is an instrument for making sources dance to your tune. But you are the piper
and the composer. No instrument plays itself or writes its own music.

CVS is not a substitute for developer communication.
When faced with conflicts within a single file, most developers manage to resolve
them without too much effort. But a more general definition of “conflict” includes
problems too difficult to solve without communication between developers.

CVs cannot determine when simultaneous changes within a single file, or across a
whole collection of files, will logically conflict with one another. Its concept of a
conflict is purely textual, arising when two changes to the same base file are near
enough to spook the merge (i.e. diff3) command.

cvs does not claim to help at all in figuring out non-textual or distributed conflicts
in program logic.

For example: Say you change the arguments to function X defined in file A. At

the same time, someone edits file B, adding new calls to function X using the old
arguments. You are outside the realm of cvs’s competence.

Chapter 1: Overview 3

Acquire the habit of reading specs and talking to your peers.

Vs does not have change control
Change control refers to a number of things. First of all it can mean bug-tracking,
that is being able to keep a database of reported bugs and the status of each one
(is it fixed? in what release? has the bug submitter agreed that it is fixed?). For
interfacing CVS to an external bug-tracking system, see the rcsinfo and verifymsg
files (see Appendix C [Administrative files|, page 153).

Another aspect of change control is keeping track of the fact that changes to several
files were in fact changed together as one logical change. If you check in several files
in a single cvs commit operation, CVs then forgets that those files were checked in
together, and the fact that they have the same log message is the only thing tying
them together. Keeping a GNU style ChangeLog can help somewhat.

Another aspect of change control, in some systems, is the ability to keep track of
the status of each change. Some changes have been written by a developer, others
have been reviewed by a second developer, and so on. Generally, the way to do this
with Vs is to generate a diff (using cvs diff or diff) and email it to someone
who can then apply it using the patch utility. This is very flexible, but depends on
mechanisms outside CVS to make sure nothing falls through the cracks.

CVS is not an automated testing program
It should be possible to enforce mandatory use of a test suite using the commitinfo
file. I haven’t heard a lot about projects trying to do that or whether there are
subtle gotchas, however.

cVvs does not have a built-in process model
Some systems provide ways to ensure that changes or releases go through various
steps, with various approvals as needed. Generally, one can accomplish this with cvs
but it might be a little more work. In some cases you’ll want to use the commitinfo,
loginfo, rcsinfo, or verifymsg files, to require that certain steps be performed
before cvs will allow a checkin. Also consider whether features such as branches and
tags can be used to perform tasks such as doing work in a development tree and
then merging certain changes over to a stable tree only once they have been proven.

1.3 A sample session

As a way of introducing cvs, we’ll go through a typical work-session using ¢vs. The first thing
to understand is that cvs stores all files in a centralised repository (see Chapter 2 [Repository],
page T7); this section assumes that a repository is set up.

Suppose you are working on a simple compiler. The source consists of a handful of C files
and a Makefile. The compiler is called ‘tc’ (Trivial Compiler), and the repository is set up so
that there is a module called ‘tc’.

1.3.1 Getting the source

The first thing you must do is to get your own working copy of the source for ‘tc’. For this, you
use the checkout command:

$ cvs checkout tc

4 CVS—~Concurrent Versions System v1.12.13

This will create a new directory called tc and populate it with the source files.

$ cd tc
$ 1s
CvVs Makefile backend.c driver.c frontend.c parser.c

The CVS directory is used internally by ¢vs. Normally, you should not modify or remove any
of the files in it.

You start your favorite editor, hack away at backend.c, and a couple of hours later you have
added an optimization pass to the compiler. A note to RCS and sccs users: There is no need
to lock the files that you want to edit. See Chapter 10 [Multiple developers|, page 67, for an
explanation.

1.3.2 Committing your changes

When you have checked that the compiler is still compilable you decide to make a new version
of backend.c. This will store your new backend.c in the repository and make it available to
anyone else who is using that same repository.

$ cvs commit backend.c

VS starts an editor, to allow you to enter a log message. You type in “Added an optimization
pass.”, save the temporary file, and exit the editor.

The environment variable $CVSEDITOR determines which editor is started. If $CVSEDITOR is
not set, then if the environment variable $EDITOR is set, it will be used. If both $CVSEDITOR
and $EDITOR are not set then there is a default which will vary with your operating system, for
example vi for unix or notepad for Windows NT/95.

In addition, cvs checks the $VISUAL environment variable. Opinions vary on whether this
behavior is desirable and whether future releases of ¢vs should check $VISUAL or ignore it. You
will be OK either way if you make sure that $VISUAL is either unset or set to the same thing as
$EDITOR.

When cvs starts the editor, it includes a list of files which are modified. For the cvs client,
this list is based on comparing the modification time of the file against the modification time
that the file had when it was last gotten or updated. Therefore, if a file’s modification time
has changed but its contents have not, it will show up as modified. The simplest way to handle
this is simply not to worry about it—if you proceed with the commit cvs will detect that the
contents are not modified and treat it as an unmodified file. The next update will clue cvs in
to the fact that the file is unmodified, and it will reset its stored timestamp so that the file will
not show up in future editor sessions.

If you want to avoid starting an editor you can specify the log message on the command line
using the ‘-m’ flag instead, like this:

$ cvs commit -m "Added an optimization pass" backend.c

1.3.3 Cleaning up

Before you turn to other tasks you decide to remove your working copy of tc. One acceptable
way to do that is of course

$ cd ..
$ rm -r tc

Chapter 1: Overview 5

but a better way is to use the release command (see Section A.18 [release], page 132):

$ cd ..

$ cvs release -d tc

M driver.c

? tc

You have [1] altered files in this repository.

Are you sure you want to release (and delete) directory ‘tc’: n
*x ‘release’ aborted by user choice.

The release command checks that all your modifications have been committed. If history
logging is enabled it also makes a note in the history file. See Section C.7 [history file], page 169.

When you use the ‘-d’ flag with release, it also removes your working copy.

In the example above, the release command wrote a couple of lines of output. ‘? tc’ means
that the file tc is unknown to cvs. That is nothing to worry about: tc is the executable
compiler, and it should not be stored in the repository. See Section C.5 [cvsignore]|, page 167,
for information about how to make that warning go away. See Section A.18.2 [release output],
page 133, for a complete explanation of all possible output from release

‘M driver.c’ is more serious. It means that the file driver.c has been modified since it was
checked out.

The release command always finishes by telling you how many modified files you have in
your working copy of the sources, and then asks you for confirmation before deleting any files
or making any note in the history file.

You decide to play it safe and answer n RET when release asks for confirmation.

1.3.4 Viewing differences
You do not remember modifying driver.c, so you want to see what has happened to that file.

$ cd tc
$ cvs diff driver.c

This command runs diff to compare the version of driver.c that you checked out with
your working copy. When you see the output you remember that you added a command line
option that enabled the optimization pass. You check it in, and release the module.

$ cvs commit -m "Added an optimization pass" driver.c

Checking in driver.c;

/usr/local/cvsroot/tc/driver.c,vn <-- driver.c

new revision: 1.2; previous revision: 1.1

done

$ cd ..

$ cvs release -d tc

? tc

You have [0] altered files in this repository.

Are you sure you want to release (and delete) directory ‘tc’: y

2 The Repository

The cvs repository stores a complete copy of all the files and directories which are under version
control.

Normally, you never access any of the files in the repository directly. Instead, you use cvs
commands to get your own copy of the files into a working directory, and then work on that copy.
When you've finished a set of changes, you check (or commit) them back into the repository.
The repository then contains the changes which you have made, as well as recording exactly
what you changed, when you changed it, and other such information. Note that the repository is
not a subdirectory of the working directory, or vice versa; they should be in separate locations.

CVS can access a repository by a variety of means. It might be on the local computer,
or it might be on a computer across the room or across the world. To distinguish various
ways to access a repository, the repository name can start with an access method. For ex-
ample, the access method :local: means to access a repository directory, so the repository
:local:/usr/local/cvsroot means that the repository is in /usr/local/cvsroot on the
computer running Cvs. For information on other access methods, see Section 2.9 [Remote
repositories], page 19.

If the access method is omitted, then if the repository starts with ‘/’, then :local: is
assumed. If it does not start with ‘/’ then either :ext: or :server: is assumed. For example, if
you have a local repository in /usr/local/cvsroot, you can use /usr/local/cvsroot instead
of :1local:/usr/local/cvsroot. But if (under Windows NT, for example) your local repository
is c:\src\cvsroot, then you must specify the access method, as in :1local:c:/src/cvsroot.

The repository is split in two parts. $CVSRO0OT/CVSROOT contains administrative files for cvs.
The other directories contain the actual user-defined modules.

2.1 Telling CVS where your repository is
There are several ways to tell cvs where to find the repository. You can name the repository
on the command line explicitly, with the -d (for "directory") option:

cvs -d /usr/local/cvsroot checkout yoyodyne/tc

Or you can set the $CVSROOT environment variable to an absolute path to the root of the
repository, /usr/local/cvsroot in this example. To set $CVSROOT, csh and tcsh users should
have this line in their .cshrc or .tcshrc files:

setenv CVSROOT /usr/local/cvsroot
sh and bash users should instead have these lines in their .profile or .bashrc:

CVSRO0T=/usr/local/cvsroot
export CVSROOT

A repository specified with -d will override the $CVSROOT environment variable. Once you’ve
checked a working copy out from the repository, it will remember where its repository is (the
information is recorded in the CVS/Root file in the working copy).

The -d option and the CVS/Root file both override the $CVSROOT environment variable. If -d
option differs from CVS/Root, the former is used. Of course, for proper operation they should
be two ways of referring to the same repository.

8 CVS—~Concurrent Versions System v1.12.13

2.2 How data is stored in the repository

For most purposes it isn’t important how CVS stores information in the repository. In fact, the
format has changed in the past, and is likely to change in the future. Since in almost all cases
one accesses the repository via CVs commands, such changes need not be disruptive.

However, in some cases it may be necessary to understand how cCvs stores data in the

repository, for example you might need to track down cvs locks (see Section 10.5 [Concurrency],
page 71) or you might need to deal with the file permissions appropriate for the repository.

2.2.1 Where files are stored within the repository

The overall structure of the repository is a directory tree corresponding to the directories in the
working directory. For example, supposing the repository is in

/usr/local/cvsroot
here is a possible directory tree (showing only the directories):

/usr

+--local

| +--cvsroot
| | |
| | +--CVSROOT
| (administrative files)

+-—gnu
| |
| +--diff
| | (source code to GNU diff)
| |
I +--rcs
| | (source code to RCS)
| |
| +--cvs
| (source code to CVS)
|
+--yoyodyne
|
+--tc

+--testing

+-—(other Yoyodyne software)

With the directories are history files for each file under version control. The name of the
history file is the name of the corresponding file with ‘,v’ appended to the end. Here is what
the repository for the yoyodyne/tc directory might look like:

Chapter 2: The Repository 9

$CVSROOT
I
+--yoyodyne
I
| +--tc

I I I
+--Makefile,v
+--backend.c,v
+--driver.c,v
+--frontend.c,v
+--parser.c,v
+--man
I I
| +-—-tc.1,v
I
+--testing
I
+-—testpgm.t,v
+--test2.t,v

The history files contain, among other things, enough information to recreate any revision
of the file, a log of all commit messages and the user-name of the person who committed the
revision. The history files are known as RCS files, because the first program to store files in
that format was a version control system known as RCS. For a full description of the file format,
see the man page resfile(5), distributed with RCS, or the file doc/RCSFILES in the CVs source
distribution. This file format has become very common—many systems other than Cvs or RCS
can at least import history files in this format.

The Rcs files used in ¢vs differ in a few ways from the standard format. The biggest difference
is magic branches; for more information see Section 5.5 [Magic branch numbers], page 48. Also
in cvs the valid tag names are a subset of what RCS accepts; for cvs’s rules see Section 4.4
[Tags], page 38.

2.2.2 File permissions

All “,v’ files are created read-only, and you should not change the permission of those files.
The directories inside the repository should be writable by the persons that have permission to
modify the files in each directory. This normally means that you must create a UNIX group
(see group(5)) consisting of the persons that are to edit the files in a project, and set up the
repository so that it is that group that owns the directory. (On some systems, you also need
to set the set-group-ID-on-execution bit on the repository directories (see chmod(1)) so that
newly-created files and directories get the group-ID of the parent directory rather than that of
the current process.)

This means that you can only control access to files on a per-directory basis.

Note that users must also have write access to check out files, because CvS needs to create
lock files (see Section 10.5 [Concurrency]|, page 71). You can use LockDir in CVSROOT /config
to put the lock files somewhere other than in the repository if you want to allow read-only access
to some directories (see Section C.9 [config], page 170).

10 CVS—~Concurrent Versions System v1.12.13

Also note that users must have write access to the CVSRO0T/val-tags file. CVS uses it to
keep track of what tags are valid tag names (it is sometimes updated when tags are used, as
well as when they are created).

Each rcs file will be owned by the user who last checked it in. This has little significance;
what really matters is who owns the directories.

CvVs tries to set up reasonable file permissions for new directories that are added inside the
tree, but you must fix the permissions manually when a new directory should have different
permissions than its parent directory. If you set the CVSUMASK environment variable that will
control the file permissions which CvS uses in creating directories and/or files in the reposi-
tory. CVSUMASK does not affect the file permissions in the working directory; such files have the
permissions which are typical for newly created files, except that sometimes CVs creates them
read-only (see the sections on watches, Section 10.6.1 [Setting a watch], page 72; -r, Section A.4
[Global options], page 94; or CVSREAD, Appendix D [Environment variables|, page 177).

Note that using the client/server cvs (see Section 2.9 [Remote repositories|, page 19), there
is no good way to set CVSUMASK; the setting on the client machine has no effect. If you are
connecting with rsh, you can set CVSUMASK in .bashrc or .cshrc, as described in the documen-
tation for your operating system. This behavior might change in future versions of Cvs; do not
rely on the setting of CVSUMASK on the client having no effect.

Using pserver, you will generally need stricter permissions on the CVSROOT directory and
directories above it in the tree; see Section 2.9.4.3 [Password authentication security], page 28.

Some operating systems have features which allow a particular program to run with the
ability to perform operations which the caller of the program could not. For example, the set
user ID (setuid) or set group ID (setgid) features of unix or the installed image feature of VMS.
CVS was not written to use such features and therefore attempting to install ¢vs in this fashion
will provide protection against only accidental lapses; anyone who is trying to circumvent the
measure will be able to do so, and depending on how you have set it up may gain access to more
than just cvs. You may wish to instead consider pserver. It shares some of the same attributes,
in terms of possibly providing a false sense of security or opening security holes wider than the
ones you are trying to fix, so read the documentation on pserver security carefully if you are
considering this option (Section 2.9.4.3 [Password authentication security], page 28).

2.2.3 File Permission issues specific to Windows

Some file permission issues are specific to Windows operating systems (Windows 95, Windows
NT, and presumably future operating systems in this family. Some of the following might apply
to OS/2 but I'm not sure).

If you are using local cvs and the repository is on a networked filesystem which is served
by the Samba SMB server, some people have reported problems with permissions. Enabling
WRITE=YES in the samba configuration is said to fix/workaround it. Disclaimer: I haven’t
investigated enough to know the implications of enabling that option, nor do I know whether
there is something which cvs could be doing differently in order to avoid the problem. If you
find something out, please let us know as described in Appendix H [BUGS], page 193.

2.2.4 The attic

You will notice that sometimes CvSs stores an RCS file in the Attic. For example, if the cvs-
ROOT is /usr/local/cvsroot and we are talking about the file backend.c in the directory
yoyodyne/tc, then the file normally would be in

Chapter 2: The Repository 11

/usr/local/cvsroot/yoyodyne/tc/backend.c,v
but if it goes in the attic, it would be in
/usr/local/cvsroot/yoyodyne/tc/Attic/backend.c,v

instead. It should not matter from a user point of view whether a file is in the attic; cvs keeps
track of this and looks in the attic when it needs to. But in case you want to know, the rule is
that the RCS file is stored in the attic if and only if the head revision on the trunk has state
dead. A dead state means that file has been removed, or never added, for that revision. For
example, if you add a file on a branch, it will have a trunk revision in dead state, and a branch
revision in a non-dead state.

2.2.5 The CVS directory in the repository

The CVS directory in each repository directory contains information such as file attributes (in
a file called CVS/fileattr. In the future additional files may be added to this directory, so
implementations should silently ignore additional files.

This behavior is implemented only by cvs 1.7 and later; for details see Section 10.6.5 [Watches
Compatibility], page 75.

The format of the fileattr file is a series of entries of the following form (where ‘{’ and ‘}’
means the text between the braces can be repeated zero or more times):

ent-type filename <tab> attrname = attrval {; attrname = attrval} <linefeed>
ent-type is ‘F’ for a file, in which case the entry specifies the attributes for that file.

ent-type is ‘D’, and filename empty, to specify default attributes to be used for newly added
files.

Other ent-type are reserved for future expansion. Ccvs 1.9 and older will delete them any
time it writes file attributes. cvs 1.10 and later will preserve them.

Note that the order of the lines is not significant; a program writing the fileattr file may
rearrange them at its convenience.

There is currently no way of quoting tabs or line feeds in the filename, ‘=" in attrname, ;’

in attrval, etc. Note: some implementations also don’t handle a NUL character in any of the
fields, but implementations are encouraged to allow it.

By convention, attrname starting with ‘_’ is for an attribute given special meaning by cvs;
other attrnames are for user-defined attributes (or will be, once implementations start supporting
user-defined attributes).

Built-in attributes:
_watched Present means the file is watched and should be checked out read-only.

_watchers
Users with watches for this file. Value is watcher > type { , watcher > type } where
watcher is a username, and type is zero or more of edit,unedit,commit separated by
‘+’ (that is, nothing if none; there is no "none" or "all" keyword).

_editors Users editing this file. Value is editor > val { , editor > val } where editor is
a username, and val is time+hostname+pathname, where time is when the cvs
edit command (or equivalent) happened, and hostname and pathname are for the
working directory.

12 CVS—~Concurrent Versions System v1.12.13

Example:

Ffilel _watched=;_watchers=joe>edit,mary>commit
Ffile2 _watched=;_editors=sue>8 Jan 1975+workstni+/home/sue/cvs
D _watched=

means that the file filel should be checked out read-only. Furthermore, joe is watching for
edits and mary is watching for commits. The file £ile2 should be checked out read-only; sue
started editing it on 8 Jan 1975 in the directory /home/sue/cvs on the machine workstnl.
Future files which are added should be checked out read-only. To represent this example here,
we have shown a space after ‘D’, ‘Ffilel’, and ‘Ffile2’, but in fact there must be a single tab
character there and no spaces.

2.2.6 CVS locks in the repository

For an introduction to cvs locks focusing on user-visible behavior, see Section 10.5 [Concur-
rency], page 71. The following section is aimed at people who are writing tools which want to
access a CVS repository without interfering with other tools accessing the same repository. If
you find yourself confused by concepts described here, like read lock, write lock, and deadlock,
you might consult the literature on operating systems or databases.

Any file in the repository with a name starting with #cvs.rfl. is a read lock. Any file in
the repository with a name starting with #cvs.pfl is a promotable read lock. Any file in the
repository with a name starting with #cvs.wfl is a write lock. Old versions of cvs (before Cvs
1.5) also created files with names starting with #cvs.tfl, but they are not discussed here. The
directory #cvs.lock serves as a master lock. That is, one must obtain this lock first before
creating any of the other locks.

To obtain a read lock, first create the #cvs.lock directory. This operation must be atomic
(which should be true for creating a directory under most operating systems). If it fails because
the directory already existed, wait for a while and try again. After obtaining the #cvs.lock
lock, create a file whose name is #cvs.rfl. followed by information of your choice (for example,
hostname and process identification number). Then remove the #cvs.lock directory to release
the master lock. Then proceed with reading the repository. When you are done, remove the
#cvs.rfl file to release the read lock.

Promotable read locks are a concept you may not find in other literature on concurrency.
They are used to allow a two (or more) pass process to only lock a file for read on the first
(read) pass(es), then upgrade its read locks to write locks if necessary for a final pass, still
assured that the files have not changed since they were first read. CvS uses promotable read
locks, for example, to prevent commit and tag verification passes from interfering with other
reading processes. It can then lock only a single directory at a time for write during the write
pass.

To obtain a promotable read lock, first create the #cvs.lock directory, as with a non-
promotable read lock. Then check that there are no files that start with #cvs.pfl. If there
are, remove the master #cvs.lock directory, wait awhile (CVS waits 30 seconds between lock
attempts), and try again. If there are no other promotable locks, go ahead and create a file
whose name is #cvs.pfl followed by information of your choice (for example, CVS uses its
hostname and the process identification number of the CVS server process creating the lock).
If versions of cvs older than version 1.12.4 access your repository directly (not via a Cvs server
of version 1.12.4 or later), then you should also create a read lock since older versions of CVS

Chapter 2: The Repository 13

will ignore the promotable lock when attempting to create their own write lock. Then remove
the master #cvs.lock directory in order to allow other processes to obtain read locks.

To obtain a write lock, first create the #cvs.lock directory, as with read locks. Then check
that there are no files whose names start with #cvs.rfl. and no files whose names start with
#cvs.pfl that are not owned by the process attempting to get the write lock. If either exist,
remove #cvs.lock, wait for a while, and try again. If there are no readers or promotable locks
from other processes, then create a file whose name is #cvs.wfl followed by information of your
choice (again, CVS uses the hostname and server process identification number). Remove your
#cvs.pfl file if present. Hang on to the #cvs.lock lock. Proceed with writing the repository.
When you are done, first remove the #cvs.wfl file and then the #cvs.lock directory. Note that
unlike the #cvs.rfl file, the #cvs.wfl file is just informational; it has no effect on the locking
operation beyond what is provided by holding on to the #cvs.lock lock itself.

Note that each lock (write lock or read lock) only locks a single directory in the repository,
including Attic and CVS but not including subdirectories which represent other directories under
version control. To lock an entire tree, you need to lock each directory (note that if you fail to
obtain any lock you need, you must release the whole tree before waiting and trying again, to
avoid deadlocks).

Note also that cvs expects write locks to control access to individual foo,v files. RCS has a
scheme where the ,foo, file serves as a lock, but cvs does not implement it and so taking out
a CvSs write lock is recommended. See the comments at res_internal_lockfile in the CvSs source
code for further discussion/rationale.

2.2.7 How files are stored in the CVSROOT directory

The $CVSROOT/CVSROOT directory contains the various administrative files. In some ways this
directory is just like any other directory in the repository; it contains RCS files whose names end
in ‘,v’, and many of the Cvs commands operate on it the same way. However, there are a few
differences.

For each administrative file, in addition to the RCS file, there is also a checked out copy of the
file. For example, there is an RCS file loginfo,v and a file loginfo which contains the latest
revision contained in loginfo,v. When you check in an administrative file, cvs should print

cvs commit: Rebuilding administrative file database

and update the checked out copy in $CVSROOT/CVSROOT. If it does not, there is something
wrong (see Appendix H [BUGS], page 193). To add your own files to the files to be updated
in this fashion, you can add them to the checkoutlist administrative file (see Section C.6
[checkoutlist], page 168).

By default, the modules file behaves as described above. If the modules file is very large,
storing it as a flat text file may make looking up modules slow (I'm not sure whether this is
as much of a concern now as when Cvs first evolved this feature; I haven’t seen benchmarks).
Therefore, by making appropriate edits to the CvS source code one can store the modules file in
a database which implements the ndbm interface, such as Berkeley db or GDBM. If this option is
in use, then the modules database will be stored in the files modules.db, modules.pag, and/or
modules.dir.

For information on the meaning of the various administrative files, see Appendix C [Admin-
istrative files], page 153.

14 CVS—~Concurrent Versions System v1.12.13

2.3 How data is stored in the working directory

While we are discussing CVSs internals which may become visible from time to time, we might
as well talk about what cvs puts in the CVS directories in the working directories. As with the
repository, cvs handles this information and one can usually access it via CVS commands. But
in some cases it may be useful to look at it, and other programs, such as the jCVS graphical
user interface or the VC package for emacs, may need to look at it. Such programs should follow
the recommendations in this section if they hope to be able to work with other programs which
use those files, including future versions of the programs just mentioned and the command-line
Cvs client.

